Skip to main content

Pollen Metabolome Dynamics: Biochemistry, Regulation and Analysis

  • Chapter
  • First Online:
Pollen Tip Growth

Abstract

The metabolome of an organism represents the readout of its biochemistry comprising numerous and tightly regulated metabolic pathways. Experimental analysis of the metabolome and its interpretation in a biochemically and physiologically meaningful context is focused by the research field of metabolomics which has become an integral part of many systems biological studies. Pollen development, germination and tube growth comprise numerous steps of metabolic regulation resulting in significant metabolome dynamics. To unravel involved regulatory molecular processes and to promote the understanding of developmental reprogramming and stress tolerance mechanisms in pollen, it is crucial to quantitatively resolve dynamics in the pollen metabolome. Since these dynamics affect various substance groups with different physico-chemical properties, different experimental platforms are needed for robust compound identification and quantification. It has been shown that developmentally and stress-induced metabolic reprogramming in pollen significantly affects the redox homeostasis as well as metabolism of carbohydrates, amino acids, lipids, polyamines, flavonoids and phytohormones. In this chapter, mechanisms of metabolic reprogramming are summarized and discussed in the context of pollen development and stress exposure. Finally, it is discussed how these metabolome dynamics can be resolved methodologically in order to unravel molecular physiological mechanisms of pollen development.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

ABA:

Abscisic acid

ATP:

Adenosine triphosphate

GA:

Gibberellic acid

GABA:

γ-Aminobutyric acid

GC:

Gas chromatography

HXK:

Hexokinase

Inv:

Invertase

LC:

Liquid chromatography

MS:

Mass spectrometry

NAD+/NADH+H+ :

Nicotinamide adenine dinucleotide (oxidized and reduced form)

STP:

Sugar transport protein

SuSy:

Sucrose synthase

UV:

Ultraviolet

References

  • Alcázar R, Tiburcio AF (2016) Polyamines in stress protection: applications in agriculture. In: Abiotic stress response in plants. Wiley-VCH, Weinheim, pp 411–422

    Chapter  Google Scholar 

  • Alcázar R, Altabella T, Marco F, Bortolotti C, Reymond M, Koncz C, Carrasco P, Tiburcio AF (2010) Polyamines: molecules with regulatory functions in plant abiotic stress tolerance. Planta 231:1237–1249

    Article  PubMed  CAS  Google Scholar 

  • Aloisi I, Cai G, Tumiatti V, Minarini A, Del Duca S (2015) Natural polyamines and synthetic analogs modify the growth and the morphology of Pyrus communis pollen tubes affecting ROS levels and causing cell death. Plant Sci 239:92–105

    Article  CAS  PubMed  Google Scholar 

  • Aloisi I, Cai G, Serafini-Fracassini D, Del Duca S (2016) Polyamines in pollen: from microsporogenesis to fertilization. Front Plant Sci 7:155. doi:10.3389/fpls.2016.00155

    PubMed  PubMed Central  Google Scholar 

  • Aya K, Ueguchi-Tanaka M, Kondo M, Hamada K, Yano K, Nishimura M, Matsuoka M (2009) Gibberellin modulates anther development in rice via the transcriptional regulation of GAMYB. Plant Cell 21:1453–1472

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Baker HG, Baker I (1979) Starch in angiosperm pollen grains and its evolutionary significance. Am J Bot 66:591–600

    Article  Google Scholar 

  • Barnabas B, Fridvalszky L (1984) Adhesion and germination of differently treated maize pollen grains on the stigma. Acta Bot Hungar 30:329–332

    Google Scholar 

  • Biancucci M, Mattioli R, Forlani G, Funck D, Costantino P, Trovato M (2015) Role of proline and GABA in sexual reproduction of angiosperms. Front Plant Sci 6. doi:10.3389/fpls.2015.00680

  • Borg M, Brownfield L, Twell D (2009) Male gametophyte development: a molecular perspective. J Exp Bot 60:1465–1478

    Article  CAS  PubMed  Google Scholar 

  • Bosco CD, Dovzhenko A, Liu X, Woerner N, Rensch T, Eismann M, Eimer S, Hegermann J, Paponov IA, Ruperti B (2012) The endoplasmic reticulum localized PIN8 is a pollen-specific auxin carrier involved in intracellular auxin homeostasis. Plant J 71:860–870

    Article  CAS  Google Scholar 

  • Burbulis IE, Iacobucci M, Shirley BW (1996) A null mutation in the first enzyme of flavonoid biosynthesis does not affect male fertility in Arabidopsis. Plant Cell 8:1013–1025

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cecchetti V, Altamura MM, Falasca G, Costantino P, Cardarelli M (2008) Auxin regulates Arabidopsis anther dehiscence, pollen maturation, and filament elongation. Plant Cell 20:1760–1774

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen D, Zhao J (2008) Free IAA in stigmas and styles during pollen germination and pollen tube growth of Nicotiana tabacum. Physiol Plant 134:202–215

    Article  CAS  PubMed  Google Scholar 

  • Cheung AY, Wu H-M (2008) Structural and signaling networks for the polar cell growth machinery in pollen tubes. Annu Rev Plant Biol 59:547–572

    Article  CAS  PubMed  Google Scholar 

  • Cheung AY, Wu H-M (2016) Plant biology: LURE is bait for multiple receptors. Nature 531:178–180

    Article  CAS  PubMed  Google Scholar 

  • Chhun T, Aya K, Asano K, Yamamoto E, Morinaka Y, Watanabe M, Kitano H, Ashikari M, Matsuoka M, Ueguchi-Tanaka M (2007) Gibberellin regulates pollen viability and pollen tube growth in rice. Plant Cell 19:3876–3888

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Claeys H, De Bodt S, Inzé D (2014) Gibberellins and DELLAs: central nodes in growth regulatory networks. Trends Plant Sci 19:231–239

    Article  CAS  PubMed  Google Scholar 

  • Clément C, Audran JC (1995) Anther wall layers control pollen sugar nutrition in Lilium. Protoplasma 187:172–181

    Article  Google Scholar 

  • Clement C, Burrus M, Audran J-C (1996) Floral organ growth and carbohydrate content during pollen development in Lilium. Am J Bot 83:459–469

    Article  CAS  Google Scholar 

  • Clément C, Mischler P, Burrus M, Audran J-C (1997) Characteristics of the photosynthetic apparatus and CO2-fixation in the flower bud of Lilium. II. Anther. Int J Plant Sci 158:801–810

    Article  Google Scholar 

  • Clément C, Laporte P, Audran J (1998) The loculus content and tapetum during pollen development in Lilium. Sex Plant Reprod 11:94–106

    Article  Google Scholar 

  • Datta R, Chamusco KC, Chourey PS (2002) Starch biosynthesis during pollen maturation is associated with altered patterns of gene expression in maize. Plant Physiol 130:1645–1656

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • David-Schwartz R, Weintraub L, Vidavski R, Zemach H, Murakhovsky L, Swartzberg D, Granot D (2013) The SIFRK4 promoter is active only during late stages of pollen and anther development. Plant Sci 199:61–70

    Article  PubMed  CAS  Google Scholar 

  • De Storme N, Geelen D (2014) The impact of environmental stress on male reproductive development in plants: biological processes and molecular mechanisms. Plant Cell Environ 37:1–18

    Article  PubMed  CAS  Google Scholar 

  • Dekkers BJ, Schuurmans JA, Smeekens SC (2008) Interaction between sugar and abscisic acid signalling during early seedling development in Arabidopsis. Plant Mol Biol 67:151–167

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Del Duca S, Serafini-Fracassini D, Bonner P, Cresti M, Cai G (2009) Effects of post-translational modifications catalysed by pollen transglutaminase on the functional properties of microtubules and actin filaments. Biochem J 418:651–664

    Article  PubMed  Google Scholar 

  • Di Sandro A, Del Duca S, Verderio E, Hargreaves AJ, Scarpellini A, Cai G, Cresti M, Faleri C, Iorio RA, Hirose S (2010) An extracellular transglutaminase is required for apple pollen tube growth. Biochem J 429:261–271

    Article  PubMed  CAS  Google Scholar 

  • Ding Z, Wang B, Moreno I, Duplakova N, Simon S, Carraro N, Reemmer J, Pencik A, Chen X, Tejos R, Skupa P, Pollmann S, Mravec J, Petrasek J, Zazimalova E, Honys D, Rolcik J, Murphy A, Orellana A, Geisler M, Friml J (2012) ER-localized auxin transporter PIN8 regulates auxin homeostasis and male gametophyte development in Arabidopsis. Nat Commun 3:941. doi:10.1038/ncomms1941

    Article  PubMed  CAS  Google Scholar 

  • Doerfler H, Lyon D, Nägele T, Sun X, Fragner L, Hadacek F, Egelhofer V, Weckwerth W (2013) Granger causality in integrated GC-MS and LC-MS metabolomics data reveals the interface of primary and secondary metabolism. Metabolomics 9:564–574

    Article  CAS  PubMed  Google Scholar 

  • Dorion S, Lalonde S, Saini HS (1996) Induction of male sterility in wheat by meiotic-stage water deficit is preceded by a decline in invertase activity and changes in carbohydrate metabolism in anthers. Plant Physiol 111:137–145

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dresselhaus T, Franklin-Tong N (2013) Male–female crosstalk during pollen germination, tube growth and guidance, and double fertilization. Mol Plant 6:1018–1036

    Article  CAS  PubMed  Google Scholar 

  • Du F, Ruan G, Liu H (2012) Analytical methods for tracing plant hormones. Anal Bioanal Chem 403:55–74

    Article  CAS  PubMed  Google Scholar 

  • Dupl'akova N, Dobrev PI, Renak D, Honys D (2016) Rapid separation of Arabidopsis male gametophyte developmental stages using a Percoll gradient. Nat Protoc 11:1817–1832

    Article  PubMed  CAS  Google Scholar 

  • Fait A, Fromm H, Walter D, Galili G, Fernie AR (2008) Highway or byway: the metabolic role of the GABA shunt in plants. Trends Plant Sci 13:14–19

    Article  CAS  PubMed  Google Scholar 

  • Fellenberg C, Vogt T (2015) Evolutionarily conserved phenylpropanoid pattern on angiosperm pollen. Trends Plant Sci 20:212–218

    Article  CAS  PubMed  Google Scholar 

  • Feng X-L, Ni W-M, Elge S, Mueller-Roeber B, Xu Z-H, Xue H-W (2006) Auxin flow in anther filaments is critical for pollen grain development through regulating pollen mitosis. Plant Mol Biol 61:215–226

    Article  CAS  PubMed  Google Scholar 

  • Fiehn O (2002) Metabolomics--the link between genotypes and phenotypes. Plant Mol Biol 48:155–171

    Article  CAS  PubMed  Google Scholar 

  • Firon N, Nepi M, Pacini E (2012) Water status and associated processes mark critical stages in pollen development and functioning. Ann Bot 109:1201–1214

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fragner L, Furuhashi T, Weckwerth W (2014) Gas chromatography coupled to mass spectrometry for metabolomics research. In: Dettmer-Wilde K, Engewald W (eds) Practical gas chromatography. Springer, Berlin, pp 783–797

    Google Scholar 

  • Franklin-Tong VE (1999) Signaling and the modulation of pollen tube growth. Plant Cell 11:727–738

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fu J, Sun X, Wang J, Chu J, Yan C (2011) Progress in quantitative analysis of plant hormones. Chin Sci Bull 56:355–366

    Article  CAS  Google Scholar 

  • Gass N, Glagotskaia T, Mellema S, Stuurman J, Barone M, Mandel T, Roessner-Tunali U, Kuhlemeier C (2005) Pyruvate decarboxylase provides growing pollen tubes with a competitive advantage in Petunia. Plant Cell 17:2355–2368

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gibson SI (2004) Sugar and phytohormone response pathways: navigating a signalling network. J Exp Bot 55:253–264

    Article  CAS  PubMed  Google Scholar 

  • Goetz M, Godt DE, Guivarc'h A, Kahmann U, Chriqui D, Roitsch T (2001) Induction of male sterility in plants by metabolic engineering of the carbohydrate supply. Proc Natl Acad Sci U S A 98:6522–6527

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hedhly A, Vogler H, Schmid MW, Pazmino D, Gagliardini V, Santelia D, Grossniklaus U (2016) Starch turnover and metabolism during flower and early embryo development. Plant Physiol 172:2388–2402

    Article  CAS  PubMed  Google Scholar 

  • Heslop-Harrison J (1968) Pollen wall development. Science 161:230–237

    Article  CAS  PubMed  Google Scholar 

  • Higashiyama T, Takeuchi H (2015) The mechanism and key molecules involved in pollen tube guidance. Annu Rev Plant Biol 66:393–413

    Article  CAS  PubMed  Google Scholar 

  • Hiscock SJ, Allen AM (2008) Diverse cell signalling pathways regulate pollen-stigma interactions: the search for consensus. New Phytol 179:286–317

    Article  CAS  PubMed  Google Scholar 

  • Hsieh K, Huang AH (2007) Tapetosomes in Brassica tapetum accumulate endoplasmic reticulum–derived flavonoids and alkanes for delivery to the pollen surface. Plant Cell 19:582–596

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ischebeck T (2016) Lipids in pollen – they are different. Biochim Biophys Acta 1861:1315–1328

    Article  CAS  PubMed  Google Scholar 

  • Ishiguro S, Kawai-Oda A, Ueda J, Nishida I, Okada K (2001) The DEFECTIVE IN ANTHER DEHISCENCE1 gene encodes a novel phospholipase A1 catalyzing the initial step of jasmonic acid biosynthesis, which synchronizes pollen maturation, anther dehiscence, and flower opening in Arabidopsis. Plant Cell 13:2191–2209

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jessen D, Olbrich A, Knüfer J, Krüger A, Hoppert M, Polle A, Fulda M (2011) Combined activity of LACS1 and LACS4 is required for proper pollen coat formation in Arabidopsis. Plant J 68:715–726

    Article  CAS  PubMed  Google Scholar 

  • Ji X, Dong B, Shiran B, Talbot MJ, Edlington JE, Hughes T, White RG, Gubler F, Dolferus R (2011) Control of abscisic acid catabolism and abscisic acid homeostasis is important for reproductive stage stress tolerance in cereals. Plant Physiol 156:647–662

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jung K-H, Han M-J, Lee D-Y, Lee Y-S, Schreiber L, Franke R, Faust A, Yephremov A, Saedler H, Kim Y-W (2006) Wax-deficient anther1 is involved in cuticle and wax production in rice anther walls and is required for pollen development. Plant Cell 18:3015–3032

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Keijzer C (1987) The processes of anther dehiscence and pollen dispersal. New Phytol 105:487–498

    Article  Google Scholar 

  • Kim Y, Song K, Cheong H (1996) Effects of flavonoids on pollen tube growth in Arabidopsis thaliana. J Plant Biol 39:273–278

    CAS  Google Scholar 

  • Kirichenko E, Krendeleva T, Kukarskikh G, Nizovskaya N (1993) Photochemical activity in chloroplasts of anthers and caryopsis pericarp in cereals. Russ Plant Physiol 40:229–233

    Google Scholar 

  • Labarca C, Loewus F (1973) The nutritional role of pistil exudate in pollen tube wall formation in Lilium longiflorum II. Production and utilization of exudate from stigma and stylar canal. Plant Physiol 52:87–92

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu J, Lindsey K, Hussey PJ (2014) Elucidating the regulation of complex signalling systems in plant cells. Biochem Soc Trans 42:219–223

    Article  CAS  PubMed  Google Scholar 

  • Mascarenhas JP (1993) Molecular mechanisms of pollen tube growth and differentiation. Plant Cell 5:1303–1314

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mellema S, Eichenberger W, Rawyler A, Suter M, Tadege M, Kuhlemeier C (2002) The ethanolic fermentation pathway supports respiration and lipid biosynthesis in tobacco pollen. Plant J 30:329–336

    Article  CAS  PubMed  Google Scholar 

  • Miller WB, Ranwala AP (1994) Characterization and localization of three soluble invertase forms from Lilium longiflorum flower buds. Physiol Plant 92:247–253

    Article  CAS  Google Scholar 

  • Misra BB, Assmann SM, Chen S (2014) Plant single-cell and single-cell-type metabolomics. Trends Plant Sci 19:637–646

    Article  CAS  PubMed  Google Scholar 

  • Mo Y, Nagel C, Taylor LP (1992) Biochemical complementation of chalcone synthase mutants defines a role for flavonols in functional pollen. Proc Natl Acad Sci U S A 89:7213–7217

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Murase K, Hirano Y, T-p S, Hakoshima T (2008) Gibberellin-induced DELLA recognition by the gibberellin receptor GID1. Nature 456:459–463

    Article  CAS  PubMed  Google Scholar 

  • Murphy D (2006) The extracellular pollen coat in members of the Brassicaceae: composition, biosynthesis, and functions in pollination. Protoplasma 228:31–39

    Article  CAS  PubMed  Google Scholar 

  • Nägele T, Stutz S, Hörmiller I, Heyer AG (2012) Identification of a metabolic bottleneck for cold acclimation in Arabidopsis thaliana. Plant J 72:102–114

    Article  PubMed  CAS  Google Scholar 

  • Napoli CA, Fahy D, Wang H-Y, Taylor LP (1999) White anther: a petunia mutant that abolishes pollen flavonol accumulation, induces male sterility, and is complemented by a chalcone synthase transgene. Plant Physiol 120:615–622

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Obermeyer G, Fragner L, Lang V, Weckwerth W (2013) Dynamic adaption of metabolic pathways during germination and growth of lily pollen tubes after inhibition of the electron transport chain. Plant Physiol 162:1822–1833

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Oliver SN, Dennis ES, Dolferus R (2007) ABA regulates apoplastic sugar transport and is a potential signal for cold-induced pollen sterility in rice. Plant Cell Physiol 48:1319–1330

    Article  CAS  PubMed  Google Scholar 

  • Owen HA, Makaroff C (1995) Ultrastructure of microsporogenesis and microgametogenesis in Arabidopsis thaliana (L.) Heynh. ecotype Wassilewskija (Brassicaceae). Protoplasma 185:7–21

    Article  Google Scholar 

  • Pacini E (2000) From anther and pollen ripening to pollen presentation. In: Pollen and pollination. Springer, Wien, pp 19–43

    Chapter  Google Scholar 

  • Pacini E, Hesse M (2005) Pollenkitt–its composition, forms and functions. Flora 200:399–415

    Article  Google Scholar 

  • Pacini E, Guarnieri M, Nepi M (2006) Pollen carbohydrates and water content during development, presentation, and dispersal: a short review. Protoplasma 228:73–77

    Article  CAS  PubMed  Google Scholar 

  • Palanivelu R, Brass L, Edlund AF, Preuss D (2003) Pollen tube growth and guidance is regulated by POP2, an Arabidopsis gene that controls GABA levels. Cell 114:47–59

    Article  CAS  PubMed  Google Scholar 

  • Plackett AR, Ferguson AC, Powers SJ, Wanchoo-Kohli A, Phillips AL, Wilson ZA, Hedden P, Thomas SG (2014) DELLA activity is required for successful pollen development in the Columbia ecotype of Arabidopsis. New Phytol 201:825–836

    Article  CAS  PubMed  Google Scholar 

  • Qin P, Tu B, Wang Y, Deng L, Quilichini TD, Li T, Wang H, Ma B, Li S (2013) ABCG15 encodes an ABC transporter protein, and is essential for post-meiotic anther and pollen exine development in rice. Plant Cell Physiol 54:138–154

    Article  CAS  PubMed  Google Scholar 

  • Quilichini TD, Grienenberger E, Douglas CJ (2015) The biosynthesis, composition and assembly of the outer pollen wall: a tough case to crack. Phytochemistry 113:170–182

    Article  CAS  PubMed  Google Scholar 

  • Ramesh SA, Tyerman SD, Xu B, Bose J, Kaur S, Conn V, Domingos P, Ullah S, Wege S, Shabala S, Feijó JA, Ryan PR, Gilliham M (2015) GABA signalling modulates plant growth by directly regulating the activity of plant-specific anion transporters. Nat Commun 6:7879

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Reichler SA, Torres J, Rivera AL, Cintolesi VA, Clark G, Roux SJ (2009) Intersection of two signalling pathways: extracellular nucleotides regulate pollen germination and pollen tube growth via nitric oxide. J Exp Bot 60:2129–2138

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Reznickova S (1983) Metabolism of reserve substances in the developing anther. In: Erdelska O (ed) Fertilization and embryogenesis in ovulated plants. Veda, Bratislava, pp 57–62

    Google Scholar 

  • Reznickova S, Dickinson H (1982) Ultrastructural aspects of storage lipid mobilization in the tapetum of Lilium hybrida var. enchantment. Planta 155:400–408

    Article  CAS  PubMed  Google Scholar 

  • Reznickova S, Willemse M (1980) Formation of pollen in the anther of Lilium II. The function of the surrounding tissues in the formation of pollen and pollen wall. Acta Bot Neerl 29:141–156

    Article  Google Scholar 

  • Rottmann T, Zierer W, Subert C, Sauer N, Stadler R (2016) STP10 encodes a high-affinity monosaccharide transporter and is induced under low-glucose conditions in pollen tubes of Arabidopsis. J Exp Bot 67:2387–2399

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rutley N, Twell D (2015) A decade of pollen transcriptomics. Plant Reprod 28:73–89

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sakata T, Oda S, Tsunaga Y, Shomura H, Kawagishi-Kobayashi M, Aya K, Saeki K, Endo T, Nagano K, Kojima M (2014) Reduction of gibberellin by low temperature disrupts pollen development in rice. Plant Physiol 164:2011–2019

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Šamaj J, Müller J, Beck M, Böhm N, Menzel D (2006) Vesicular trafficking, cytoskeleton and signalling in root hairs and pollen tubes. Trends Plant Sci 11:594–600

    Article  PubMed  CAS  Google Scholar 

  • Scherling C, Roscher C, Giavalisco P, Schulze ED, Weckwerth W (2010) Metabolomics unravel contrasting effects of biodiversity on the performance of individual plant species. PLoS One 5:e12569. doi:10.1371/journal.pone.0012569

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Schijlen EG, de Vos CR, Martens S, Jonker HH, Rosin FM, Molthoff JW, Tikunov YM, Angenent GC, van Tunen AJ, Bovy AG (2007) RNA interference silencing of chalcone synthase, the first step in the flavonoid biosynthesis pathway, leads to parthenocarpic tomato fruits. Plant Physiol 144:1520–1530

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Scott RJ, Spielman M, Dickinson HG (2004) Stamen structure and function. Plant Cell 16(Suppl):S46–S60

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sekiguchi Y, Mitsuhashi N, Inoue Y, Yagisawa H, Mimura T (2004) Analysis of sugar phosphates in plants by ion chromatography on a titanium dioxide column with pulsed amperometric detection. J Chromatogr A 1039:71–76

    Article  CAS  PubMed  Google Scholar 

  • Sengupta A, Chakraborty M, Saha J, Gupta B, Gupta K (2016) Polyamines: osmoprotectants in plant abiotic stress adaptation. In: Osmolytes and plants acclimation to changing environment: emerging omics technologies. Springer, New Delhi, pp 97–127

    Chapter  Google Scholar 

  • Sharma KD, Nayyar H (2016) Regulatory networks in pollen development under cold stress. Front Plant Sci 7:402. doi:10.3389/fpls.2016.00402

    PubMed  PubMed Central  Google Scholar 

  • Shi J, Cui M, Yang L, Kim Y-J, Zhang D (2015) Genetic and biochemical mechanisms of pollen wall development. Trends Plant Sci 20:741–753

    Article  CAS  PubMed  Google Scholar 

  • Singh MB, Knox RB (1984) Invertases of Lilium pollen: characterization and activity during in vitro germination. Plant Physiol 74:510–515

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Singh DP, Jermakow AM, Swain SM (2002) Gibberellins are required for seed development and pollen tube growth in Arabidopsis. Plant Cell 14:3133–3147

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sivitz AB, Reinders A, Ward JM (2008) Arabidopsis sucrose transporter AtSUC1 is important for pollen germination and sucrose-induced anthocyanin accumulation. Plant Physiol 147:92–100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Speranza A, Calzoni G, Pacini E (1997) Occurrence of mono-or disaccharides and polysaccharide reserves in mature pollen grains. Sex Plant Reprod 10:110–115

    Article  CAS  Google Scholar 

  • Staiger D, Kappeler S, Müller M, Apel K (1994) The proteins encoded by two tapetum-specific transcripts, Satap35 and Satap44, from Sinapis alba L. are localized in the exine cell wall layer of developing microspores. Planta 192:221–231

    Article  CAS  PubMed  Google Scholar 

  • Steinhorst L, Kudla J (2013) Calcium – a central regulator of pollen germination and tube growth. Biochim Biophys Acta 1833:1573–1581

    Article  CAS  PubMed  Google Scholar 

  • Stobiecki M, Kachlicki P (2013) Liquid chromatographic–mass spectrometric analysis of flavonoids. In: The handbook of plant metabolomics. Wiley-VCH, Weinheim, pp 197–213

    Chapter  Google Scholar 

  • Sturm A (1996) Molecular characterization and functional analysis of sucrose-cleaving enzymes in carrot (Daucus carota L.) J Exp Bot 47:1187–1192

    Article  CAS  PubMed  Google Scholar 

  • Sturm A (1999) Invertases. Primary structures, functions, and roles in plant development and sucrose partitioning. Plant Physiol 121:1–8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Székely G, Ábrahám E, Cséplő Á, Rigó G, Zsigmond L, Csiszár J, Ayaydin F, Strizhov N, Jásik J, Schmelzer E (2008) Duplicated P5CS genes of Arabidopsis play distinct roles in stress regulation and developmental control of proline biosynthesis. Plant J 53:11–28

    Article  PubMed  CAS  Google Scholar 

  • Tang R-S, Zheng J-C, Jin Z-Q, Zhang D-D, Huang Y-H, Chen L-G (2008) Possible correlation between high temperature-induced floret sterility and endogenous levels of IAA, GAs and ABA in rice (Oryza sativa L.). Plant Growth Regul 54:37–43

    Google Scholar 

  • Taylor LP, Grotewold E (2005) Flavonoids as developmental regulators. Curr Opin Plant Biol 8:317–323

    Article  CAS  PubMed  Google Scholar 

  • Tymowska-Lalanne Z, Kreis M (1998) The plant invertases: physiology, biochemistry and molecular biology. Adv Bot Res 28:71–117

    Article  CAS  Google Scholar 

  • Valledor L, Escandón M, Meijón M, Nukarinen E, Cañal MJ, Weckwerth W (2014) A universal protocol for the combined isolation of metabolites, DNA, long RNAs, small RNAs, and proteins from plants and microorganisms. Plant J 79:173–180

    Article  CAS  PubMed  Google Scholar 

  • Vogler F, Schmalzl C, Englhart M, Bircheneder M, Sprunck S (2014) Brassinosteroids promote Arabidopsis pollen germination and growth. Plant Reprod 27:153–167

    Article  CAS  PubMed  Google Scholar 

  • Vu JCV, Yelenosky G, Bausher MG (1985) Photosynthetic activity in the flower buds of Valencia orange (Citrus sinensis [L.] Osbeck). Plant Physiol 78:420–423

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Weckwerth W (2003) Metabolomics in systems biology. Annu Rev Plant Biol 54:669–689

    Article  CAS  PubMed  Google Scholar 

  • Weckwerth W (2011) Green systems biology – from single genomes, proteomes and metabolomes to ecosystems research and biotechnology. J Proteomics 75:284–305

    Article  CAS  PubMed  Google Scholar 

  • Weckwerth W, Wenzel K, Fiehn O (2004) Process for the integrated extraction, identification and quantification of metabolites, proteins and RNA to reveal their co-regulation in biochemical networks. Proteomics 4:78–83

    Article  CAS  PubMed  Google Scholar 

  • Wilhelmi LK, Preuss D (1996) Self-sterility in Arabidopsis due to defective pollen tube guidance. Science 274:1535–1537

    Article  CAS  PubMed  Google Scholar 

  • Winkel-Shirley B (2001) Flavonoid biosynthesis. A colorful model for genetics, biochemistry, cell biology, and biotechnology. Plant Physiol 126:485–493

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Winkel-Shirley B (2002) Biosynthesis of flavonoids and effects of stress. Curr Opin Plant Biol 5:218–223

    Article  CAS  PubMed  Google Scholar 

  • Wolters-Arts M, Lush WM, Mariani C (1998) Lipids are required for directional pollen-tube growth. Nature 392:818–821

    Article  CAS  PubMed  Google Scholar 

  • Wu J-Z, Lin Y, Zhang X-L, Pang D-W, Zhao J (2008) IAA stimulates pollen tube growth and mediates the modification of its wall composition and structure in Torenia fournieri. J Exp Bot 59:2529–2543

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu J, Shang Z, Wu J, Jiang X, Moschou PN, Sun W, Roubelakis-Angelakis KA, Zhang S (2010) Spermidine oxidase-derived H2O2 regulates pollen plasma membrane hyperpolarization-activated Ca2+-permeable channels and pollen tube growth. Plant J 63:1042–1053

    Article  CAS  PubMed  Google Scholar 

  • Wu L, Guan Y, Wu Z, Yang K, Lv J, Converse R, Huang Y, Mao J, Zhao Y, Wang Z (2014) OsABCG15 encodes a membrane protein that plays an important role in anther cuticle and pollen exine formation in rice. Plant Cell Rep 33:1881–1899

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ylstra B, Busscher J, Franken J, Hollman PC, Mol JN, Tunen AJ (1994) Flavonols and fertilization in Petunia hybrida: localization and mode of action during pollen tube growth. Plant J 6:201–212

    Article  CAS  Google Scholar 

  • Ylstra B, Muskens M, Van Tunen AJ (1996) Flavonols are not essential for fertilization in Arabidopsis thaliana. Plant Mol Biol 32:1155–1158

    Article  CAS  PubMed  Google Scholar 

  • Ylstra B, Garrido D, Busscher J, van Tunen AJ (1998) Hexose transport in growing petunia pollen tubes and characterization of a pollen-specific, putative monosaccharide transporter. Plant Physiol 118:297–304

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yonekura-Sakakibara K, Nakabayashi R, Sugawara S, Tohge T, Ito T, Koyanagi M, Kitajima M, Takayama H, Saito K (2014) A flavonoid 3-O-glucoside: 2″-O-glucosyltransferase responsible for terminal modification of pollen-specific flavonols in Arabidopsis thaliana. Plant J 79:769–782

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yu GH, Zou J, Feng J, Peng XB, Wu JY, Wu YL, Palanivelu R, Sun MX (2014) Exogenous gamma-aminobutyric acid (GABA) affects pollen tube growth via modulating putative Ca2+-permeable membrane channels and is coupled to negative regulation on glutamate decarboxylase. J Exp Bot 65:3235–3248

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhu W, Ma S, Zhang G, Liu H, Ba Q, Li Z, Song Y, Zhang P, Niu N, Wang J (2015) Carbohydrate metabolism and gene regulation during anther development disturbed by chemical hybridizing agent in wheat. Crop Sci 55:868–876

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wolfram Weckwerth .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Nägele, T., Fragner, L., Chaturvedi, P., Ghatak, A., Weckwerth, W. (2017). Pollen Metabolome Dynamics: Biochemistry, Regulation and Analysis. In: Obermeyer, G., Feijó, J. (eds) Pollen Tip Growth. Springer, Cham. https://doi.org/10.1007/978-3-319-56645-0_12

Download citation

Publish with us

Policies and ethics