Skip to main content

Discrete Exterior Calculus (DEC) for the Surface Navier-Stokes Equation

  • Chapter
  • First Online:
Book cover Transport Processes at Fluidic Interfaces

Part of the book series: Advances in Mathematical Fluid Mechanics ((AMFM))

Abstract

We consider a numerical approach for the incompressible surface Navier-Stokes equation. The approach is based on the covariant form and uses discrete exterior calculus (DEC) in space and a semi-implicit discretization in time. The discretization is described in detail and related to finite difference schemes on staggered grids in flat space for which we demonstrate second order convergence. We compare computational results with a vorticity-stream function approach for surfaces with genus \(g(\mathcal{S}) = 0\) and demonstrate the interplay between topology, geometry and flow properties. Our discretization also allows to handle harmonic vector fields, which we demonstrate on a torus.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Abraham, R., Marsden, J., Ratiu, T.: Manifolds, Tensor Analysis, and Applications. Applied Mathematical Sciences, vol. 75. Springer, New York (1988)

    Google Scholar 

  2. Arakawa, A., Lamb, V.: Computational design of the basic dynamical processes of the UCLA general circulation model. In: General Circulation Models of the Atmosphere, pp. 173–265. Academic, New York (1977)

    Google Scholar 

  3. Arnold, D.N., Falk, R.S., Winther, R.: Finite element exterior calculus, homological techniques, and applications. Acta Numer. 15, 1–155 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  4. Arroyo, M., DeSimone, A.: Relaxation dynamics of fluid membranes. Phys. Rev. E 79, 031915 (2009)

    Article  MathSciNet  Google Scholar 

  5. Barrett, J., Garcke, H., Nürnberg, R.: Numerical computations of the dynamics of fluidic membranes and vesicles. Phys. Rev. E 92, 052704 (2015)

    Article  Google Scholar 

  6. Bothe, D., Prüss, J.: On the two-phase Navier-Stokes equations with Boussinesq-Scriven surface. J. Math. Fluid Mech. 12, 133–150 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  7. Crane, K., de Goes, F., Desbrun, M., Schröder, P.: Digital geometry processing with discrete exterior calculus. In: ACM SIGGRAPH Courses, pp. 1–126 (2013)

    Google Scholar 

  8. Desbrun, M., Hirani, A., Leok, M., Marsden, J.: Discrete exterior calculus. arXiv:math/0508341 (2005)

    Google Scholar 

  9. Dörries, G., Foltin, G.: Energy dissipation of fluid membranes. Phys. Rev. E 53, 2547–2550 (1996)

    Article  Google Scholar 

  10. Dritschel, D.G., Boatto, S.: The motion of point vortices on closed surfaces. Proc. R. Soc. A 471, 20140890 (2015)

    Article  MathSciNet  Google Scholar 

  11. Dziuk, G., Elliott, C.: Surface finite elements for parabolic equations. J. Comput. Math. 25, 385–407 (2007)

    MathSciNet  Google Scholar 

  12. Dziuk, G., Elliott, C.M.: Finite elements on evolving surfaces. IMA J. Numer. Anal. 27, 262–292 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  13. Ebin, D.G., Marsden, J.: Groups of diffeomorphisms and the motion of an incompressible fluid. Ann. Math. 92, 102–163 (1970)

    Article  MathSciNet  MATH  Google Scholar 

  14. Elcott, S., Tong, Y., Kanso, E., Schröder, P., Desbrun, M.: Stable, circulation-preserving, simplicial fluids. ACM Trans. Graph. 26, 4 (2007)

    Article  Google Scholar 

  15. Fan, J., Han, T., Haataja, M.: Hydrodynamic effects on spinodal decomposition kinetics in planar lipid bilayer membranes. J. Chem. Phys. 133, 235101 (2010)

    Article  Google Scholar 

  16. Fisher, M., Springborn, B., Bobenko, A., Schröder, P.: An algorithm for the construction of intrinsic Delaunay triangulations with applications to digital geometry processing. In: ACM SIGGRAPH Courses, pp. 69–74 (2006)

    Google Scholar 

  17. Gortler, S., Gotsman, C., Thurston, D.: Discrete one-forms on meshes and applications to 3D mesh parameterization. Comput. Aided Geom. Des. 33, 83–112 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  18. Griebel, M., Rieger, C., Schier, A.: Discrete exterior calculus (DEC) for the surface Navier-Stokes equation. In: Bothe, D., Reusken, A. (eds.) Transport Processes at Fluidic Interfaces. Advances in Mathematical Fluid Mechanics. Springer, Cham (2017). doi 10.1007/978-3-319-56602-3_7

    Google Scholar 

  19. Gu, X., Yau, S.T.: Global conformal surface parameterization. In: ACM/EG Symposium on Geometry Processing, pp. 127–137 (2003)

    Google Scholar 

  20. Hirani, A.N.: Discrete exterior calculus. Ph.D. thesis, California Institute of Technology, Pasadena, CA (2003)

    Google Scholar 

  21. Hu, D., Zhang, P., E, W.: Continuum theory of a moving membrane. Phys. Rev. E 75, 041605 (2007)

    Google Scholar 

  22. Mercat, C.: Discrete Riemann surfaces and the Ising model. Commun. Math. Phys. 218, 177–216 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  23. Mitrea, M., Taylor, M.: Navier-Stokes equations on Lipschitz domains in Riemannian manifolds. Math. Ann. 321, 955–987 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  24. Mohamed, M.S., Hirani, A.N., Samtaney, R.: Comparison of discrete hodge star operators for surfaces. Comput. Aided Des. (2016). doi:10.1016/j.cad.2016.05.002

    Google Scholar 

  25. Mohamed, M.S., Hirani, A.N., Samtaney, R.: Discrete exterior calculus discretization of incompressible Navier-Stokes equations over surface simplicial meshes. J. Comput. Phys. 312, 175–191 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  26. Mullen, P., Crane, K., Pavlov, D., Tong, Y., Desbrun, M.: Energy-preserving integrators for fluid animation. ACM Trans. Graph. 28, 38 (2009)

    Article  Google Scholar 

  27. Nestler, M., Nitschke, I., Praetorius, S., Voigt, A.: Orientational order on surfaces - the coupling of topology, geometry and dynamics. arXiv:1608.01343 (2016)

    Google Scholar 

  28. Nitschke, I., Voigt, A.: Curvature approximation of discrete surfaces - a discrete exterior calculus approach (in preparation)

    Google Scholar 

  29. Nitschke, I., Voigt, A., Wensch, J.: A finite element approach to incompressible two-phase flow on manifolds. J. Fluid Mech. 708, 418–438 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  30. Polthier, K., Preuß, E.: Identifying vector field singularities using a discrete Hodge decomposition. In: Hege, H., Polthier, K. (eds.) Visualization and Mathematics III, pp. 113–134. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  31. Rätz, A., Voigt, A.: PDE’s on surfaces: a diffuse interface approach. Commun. Math. Sci. 4, 575–590 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  32. Reuther, S., Voigt, A.: The interplay of curvature and vortices in flow on curved surfaces. Multiscale Model. Simul. 13, 632–643 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  33. Reuther, S., Voigt, A.: Incompressible two-phase flows with an inextensible Newtonian fluid interface. J. Comput. Phys. 322, 850–858 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  34. Sakajo, T., Shimizu, Y.: Point vortex interactions on a toroidal surface. Proc. R. Soc. A 472, 20160271 (2016)

    Article  MathSciNet  Google Scholar 

  35. Scriven, L.E.: Dynamics of a fluid interface equation of motion for Newtonian surface fluids. Chem. Eng. Sci. 12, 98–108 (1960)

    Article  Google Scholar 

  36. Secomb, T.W., Skalak, R.: Surface flow of viscoelastic membranes in viscous fluids. Q. J. Mech. Appl. Math. 35, 233–247 (1982)

    Article  MATH  Google Scholar 

  37. Tong, Y., Lombeyda, S., Hirani, A.N., Desbrun, M.: Discrete multiscale vector field decomposition. ACM Trans. Graph. 22, 445–452 (2003)

    Article  Google Scholar 

  38. Tong, Y., Alliez, P., Cohen-Steiner, D., Desbrun, M.: Designing quadrangulations with discrete harmonic forms. In: ACM/EG Symposium on Geometry Processing, pp. 201–210 (2006)

    Google Scholar 

  39. VanderZee, E., Hirani, A.N., Guoy, D., Ramos, E.A.: Well-centered triangulation. SIAM J. Sci. Comput. 31, 4497–4523 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  40. Vaxman, A., Campen, M., Diamanti, O., Panozzo, D., Bommes, D., Hildebrandt, K., Ben-Chen, M.: Directional field synthesis, design and processing. In: EUROGRAPHICS - STAR, vol. 35, pp. 1–28 (2016)

    Google Scholar 

  41. Vey, S., Voigt, A.: AMDiS: adaptive multidimensional simulations. Comput. Vis. Sci. 10, 57–67 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  42. Witkowski, T., Ling, S., Praetorius, S., Voigt, A.: Software concepts and numerical algorithms for a scalable adaptive parallel finite element method. Adv. Comput. Math. 41, 1145–1177 (2015)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This work is partially supported by the German Research Foundation through grant Vo899/11. We further acknowledge computing resources provided at JSC under grant HDR06.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Axel Voigt .

Editor information

Editors and Affiliations

Appendices

Appendix 1: Notation for DEC

We often use the strict order relation \(\succ\) and \(\prec\) on simplices, where \(\succ\) is proverbial the “contains” relation, i.e. \(e \succ v\) means: the edge \(e\) contains the vertex \(v\). Correspondingly \(\prec\) is the “part of” relation, i.e. \(v \prec T\) means: the vertex \(v\) is part of the face \(T\). Hence, we can use this notation also for sums, like \(\sum _{f\succ e}\), i.e. the sum over all faces \(T\) containing the edge \(e\), or \(\sum _{v\prec e}\), i.e. the sum over all vertices \(v\) being part of the edge \(e\). Sometimes we need to determine this relation for edges more precisely with respect to the orientation. Therefore, sign functions are introduced,

$$ \displaystyle\begin{array}{rcl} s_{T,e}&:=& \left \{\begin{array}{@{}l@{\quad }l@{}} +1\quad &\text{if }e \prec T\mbox{ and $T$ is on the left side of $e$}\\ -1\quad &\text{if } e \prec T\mbox{ and $T$ is on the right side of $e$}\,\text{,} \end{array} \right. {}\\ s_{e,\tilde{e}}&:=& \left \{\begin{array}{@{}l@{\quad }l@{}} +1\quad &\text{if }\measuredangle (\mathbf{e},\tilde{\mathbf{e}}) <\pi \\ -1\quad &\text{if } \measuredangle (\mathbf{e},\tilde{ \mathbf{e} })>\pi \end{array} \right. {}\\ s_{v,e}&:=& \left \{\begin{array}{@{}l@{\quad }l@{}} +1\quad &\text{if }v \prec e\mbox{ and $e$ points to $v$}\\ -1\quad &\text{if } v \prec e\mbox{ and $e$ points away from $v$}\,\text{,} \end{array} \right.{}\\ \end{array} $$

to describe such relations between faces and edges, edges and edges or vertices and edges, respectively. Figure 7.9 gives a schematic illustration.

Fig. 7.9
figure 9

These formations always yield positive signs \(+1\) for \(s_{T,e}\) (top left), \(s_{v,e}\) (bottom left) and \(s_{e,\tilde{e}_{i}}\) (right) for \(i \in \left \{1,2,3,4\right \}\), respectively. Every odd-numbered change in edge orientations results in a change of the sign \(s_{\cdot,\cdot }\)

The property of a primal mesh to be well-centered ensures the existence of a Voronoi mesh (dual mesh), which is also an orientable manifold-like simplicial complex, but not well-centered. The basis of the Voronoi mesh are not simplices, but chains of them. To identify these basic chains, we apply the (geometrical) star operator \(\star\) on the primal simplices, i.e. \(\star v\) is the Voronoi cell corresponding to the vertex \(v\) and inherits its orientation from the orientation of the polyhedron \(\left \vert \mathcal{K}\right \vert\). From a geometric point of view, \(\star v\) is the convex hull of circumcenters \(c(T)\) of all triangles \(T \succ v\). The Voronoi edge \(\star e\) of an edge \(e\) is a connection of the right face \(T_{2} \succ e\) with the left face \(T_{1} \succ e\) over the midpoint \(c(e)\). The Voronoi vertex \(\star T\) of a face \(T\) is simply its circumcenter \(c(T)\), cf. Fig. 7.1. For a more detailed mathematical discussion see e.g. [20, 39].

The boundary operator \(\partial\) maps simplices (or chains of them) to the chain of simplices that describes its boundary with respect to its orientation (see [20]), e.g. \(\partial (\star v) = -\sum _{e\succ v}s_{v,e}(\star e)\) (formal sum for chains) and \(\partial e =\sum _{v\prec e}s_{v,e}v\).

The expression \(\left \vert \cdot \right \vert\) measures the volume of a simplex, i.e. \(\left \vert T\right \vert\) the area of the face \(T\), \(\left \vert e\right \vert\) the length of the edge \(e\) and the 0-dimensional volume \(\left \vert v\right \vert\) is set to be 1. Therefore, the volume is also defined for chains and the dual mesh, since the integral is a linear functional.

Appendix 2: Second Order Convergence

In this section we show that the discretization equation (7.14) of \(\boldsymbol{\varDelta }^{\text{RR}}\), defined in Eq. (7.13) on a staggered grid, has a truncation error of order two. Without loss of generality, by a quarter turn of the difference scheme in Fig. 7.3 (left), we only elaborate on the discretization of \((\boldsymbol{\varDelta }^{\text{RR}}u)^{x}\) along the horizontal x-direction. The first three terms in Eq. (7.14) show the well-known second order central difference approximation in vertical direction of the first term in Eq. (7.13), i.e.

$$\displaystyle\begin{array}{rcl} \frac{1} {h^{2}}\left (u_{i,j+1}^{x} + u_{ i,j-1}^{x} - 2u_{ i,j}^{x}\right )& =& \left (\partial _{ y}^{2}u^{x}\right )_{ i,j}^{x} + \mathcal{O}(h^{2})\,. {}\\ \end{array}$$

For the remaining terms, we first carry out a Taylor expansion on central vertices \(v_{i+k,j} \in \mathcal{V}\) for \(k \in \left \{0,1\right \}\) in the vertical edge columns, i.e.

$$\displaystyle\begin{array}{rcl} u_{i+k,j-l}^{y}& =& \left (u^{y} + (-1)^{l}\frac{h} {2}\partial _{y}u^{y} + \frac{h^{2}} {8} \partial _{y}^{2}u^{y} + (-1)^{l}\frac{h^{3}} {48}\partial _{y}^{3}u^{y} + \frac{h^{4}} {384}\partial _{y}^{4}u^{y}\right )_{ i+k,j} {}\\ & & +\mathcal{O}(h^{5}) {}\\ \end{array}$$

for all \(l \in \left \{0,1\right \}\). An additional horizontal expansion of sufficient order at the edge midpoint \(c(e_{i,j}^{x})\) results in

$$\displaystyle\begin{array}{rcl} u_{i+k,j-l}^{y}& =& \Big(\!u^{y} +\! (-1)^{k+1}\frac{h} {2}\partial _{x}u^{y} + \frac{h^{2}} {8} \partial _{x}^{2}u^{y} +\! (-1)^{k+1}\frac{h^{3}} {48}\partial _{x}^{3}u^{y} + \frac{h^{4}} {384}\partial _{x}^{4}u^{y} {}\\ & & +\!(-1)^{l}\frac{h} {2}\partial _{y}u^{y} +\! (-1)^{l+k+1}\frac{h^{2}} {4} \partial _{x}\partial _{y}u^{y} +\! (-1)^{l}\frac{h^{3}} {16}\partial _{x}^{2}\partial _{ y}u^{y} {}\\ & & +\!(-1)^{l+k+1}\frac{h^{4}} {96}\partial _{x}^{3}\partial _{ y}u^{y} + \frac{h^{2}} {8} \partial _{y}^{2}u^{y} +\! (-1)^{k+1}\frac{h^{3}} {16}\partial _{x}\partial _{y}^{2}u^{y} {}\\ & & +\frac{h^{4}} {64}\partial _{x}^{2}\partial _{ y}^{2}u^{y} +\! (-1)^{l}\frac{h^{3}} {48}\partial _{y}^{3}u^{y} +\! (-1)^{l+k+1}\frac{h^{4}} {96}\partial _{x}\partial _{y}^{3}u^{y} + \frac{h^{4}} {384}\partial _{y}^{4}u^{y}\!\Big)_{ i,j}^{x} {}\\ & & +\mathcal{O}(h^{5}) {}\\ \end{array}$$

for all \(l,k \in \left \{0,1\right \}\). Finally, we obtain

$$\displaystyle\begin{array}{rcl} & & \frac{1} {h^{2}}\left (u_{i,j}^{y} - u_{ i+1,j}^{y} + u_{ i+1,j-1}^{y} - u_{ i,j-1}^{y}\right ) {}\\ & & \quad = -\left (\partial _{x}\partial _{y}u^{y} + \frac{h^{2}} {96}\partial _{x}\partial _{y}\left (\partial _{x}^{2}u^{y} + \partial _{ y}^{2}u^{y}\right )\right )_{ i,j}^{x} + \mathcal{O}(h^{3}) {}\\ \end{array}$$

and thus a truncation error at most \(\mathcal{O}(h^{2})\) regarding \((\boldsymbol{\varDelta }^{\text{RR}}u)_{i,j}^{x}\) generally.

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Nitschke, I., Reuther, S., Voigt, A. (2017). Discrete Exterior Calculus (DEC) for the Surface Navier-Stokes Equation. In: Bothe, D., Reusken, A. (eds) Transport Processes at Fluidic Interfaces. Advances in Mathematical Fluid Mechanics. Birkhäuser, Cham. https://doi.org/10.1007/978-3-319-56602-3_7

Download citation

Publish with us

Policies and ethics