Skip to main content

Phase Field Models for Two-Phase Flow with Surfactants and Biomembranes

  • Chapter
  • First Online:
Transport Processes at Fluidic Interfaces

Part of the book series: Advances in Mathematical Fluid Mechanics ((AMFM))

Abstract

We give an overview on recent developments of phase field models for two-phase flows with surfactants and lipid bilayer membranes. Starting from the two-phase flow model of a clean fluid-fluid interface we discuss the time discretization and boundary conditions for dynamic and static contact angles. Using the adsorption models of Henry and Langmuir, soluble surfactants are included in the diffuse interface formulation. To consider lipid bilayer membranes the model is extended by membrane bending stiffness and membrane inextensibility. We present phase field models to include these elastic effects, with a particular focus on the inextensibility constraint for which we discuss different phase field variants from the literature and present numerical tests.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Abels, H., Garcke, H., GrĂĽn, G.: Thermodynamically consistent, frame indifferent diffuse interface models for incompressible two-phase flows with different densities. Math. Models Methods Appl. Sci. 22(3) (2012). doi:10.1142/S0218202511500138

    Google Scholar 

  2. Aland, S.: Modelling of two-phase flow with surface-active particles. Dissertation, TU Dresden (2012)

    Google Scholar 

  3. Aland, S.: Time integration for diffuse interface models for two-phase flow. J. Comput. Phys. 262, 58–71 (2014). doi:10.1016/j.jcp.2013.12.055

    Article  MathSciNet  MATH  Google Scholar 

  4. Aland, S.: Phase field modeling of inhomogeneous biomembranes in flow. In: Becker, S. (ed.) Microscale Transport Modelling in Biological Processes, chap. 9 Elsevier, Amsterdam (2016)

    Google Scholar 

  5. Aland, S., Chen, F.: An efficient and energy stable scheme for a phase-field model for the moving contact line problem. Int. J. Numer. Methods Fluids 81(11), 657–671 (2015). doi:10.1002/fld.4200

    Article  MathSciNet  Google Scholar 

  6. Aland, S., Voigt, A.: Benchmark computations of diffuse interface models for two-dimensional bubble dynamics. Int. J. Num. Meth Fluids 69, 747–761 (2012). doi:10.1002/fld.2611

    Article  MathSciNet  Google Scholar 

  7. Aland, S., Lowengrub, J.S., Voigt, A.: Two-phase flow in complex geometries: a diffuse domain approach. CMES 57(1), 77–106 (2010)

    MathSciNet  MATH  Google Scholar 

  8. Aland, S., Lowengrub, J., Voigt, A.: A continuum model of colloid-stabilized interfaces. Phys. Fluids 23(6), 062103 (2011). doi:10.1063/1.3584815

    Article  MATH  Google Scholar 

  9. Aland, S., Egerer, S., Lowengrub, J., Voigt, A.: Diffuse interface models of locally inextensible vesicles in a viscous fluid. J. Comput. Phys. 277, 32–47 (2014). doi:10.1016/j.jcp.2014.08.016

    Article  MathSciNet  MATH  Google Scholar 

  10. Aland, S., Hahn, A., Kahle, C., NĂĽrnberg, R.: Comparative simulations of Taylor-flow with surfactants based on sharp- and diffuse-interface methods. In: Reusken, A., Bothe, D. (eds.) Advances in Mathematical Fluid Mechanics. Springer, New York (2017)

    Google Scholar 

  11. Beaucourt, J., Rioual, F., SĂ©on, T., Biben, T., Misbah, C.: Steady to unsteady dynamics of a vesicle in a flow. Phys. Rev. E 69(1), 011906 (2004)

    Article  Google Scholar 

  12. Biben, T., Misbah, C.: Tumbling of vesicles under shear flow within an advected-field approach. Phys. Rev. E 67(3), 31908 (2003). doi:10.1103/PhysRevE.67.031908

    Article  Google Scholar 

  13. Biben, T., Kassner, K., Misbah, C.: Phase-field approach to three-dimensional vesicle dynamics. Phys. Rev. E 72(4), 41921 (2005). doi:10.1103/PhysRevE.72.041921

    Article  Google Scholar 

  14. Boyanova, P., Do-Quang, M., Neytcheva, M.: Efficient preconditioners for large scale binary Cahn-Hilliard models. Comput. Methods Appl. Math. 12(1), 1–22 (2012). doi:10.2478/cmam-2012-0001

    Article  MathSciNet  MATH  Google Scholar 

  15. Boyer, F.: A theoretical and numerical model for the study of incompressible mixture flows. Comput. Fluids 31(1), 41–68 (2002)

    Article  MATH  Google Scholar 

  16. Cahn, J.W., Hilliard, J.E.: Free energy of a nonuniform system. I. Interfacial free energy. J. Chem. Phys. 28(2), 258–267 (1958)

    Google Scholar 

  17. Canham, P.B.: The minimum energy of bending as a possible explanation of the biconcave shape of the human red blood cell. J. Theor. Biol. 26(1), 61–81 (1970)

    Article  Google Scholar 

  18. Du, Q.: Phase field calculus, curvature-dependent energies, and vesicle membranes. Philos. Mag. 91(1), 165–181 (2011)

    Article  Google Scholar 

  19. Du, Q., Zhu, L.: Analysis of a mixed finite element method for a phase field bending elasticity model of vesicle membrane deformation. J. Comput. Math. 24(3), 265–280 (2006)

    MathSciNet  MATH  Google Scholar 

  20. Du, Q., Liu, C., Wang, X.: A phase field approach in the numerical study of the elastic bending energy for vesicle membranes. J. Comput. Phys. 198(2), 450–468 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  21. Du, Q., Liu, C., Ryham, R., Wang, X.: Modeling the spontaneous curvature effects in static cell membrane deformations by a phase field formulation. Commun. Pure Appl. Anal. 4(3), 537–548 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  22. Du, Q., Liu, C., Ryham, R., Wang, X.: A phase field formulation of the Willmore problem. Nonlinearity 18, 1249–1267 (2005). doi:10.1088/0951-7715/18/3/016

    Article  MathSciNet  MATH  Google Scholar 

  23. Du, Q., Liu, C., Wang, X.: Simulating the deformation of vesicle membranes under elastic bending energy in three dimensions. J. Comput. Phys. 212(2), 757–777 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  24. Du, Q., Li, M., Liu, C.: Analysis of a phase field Navier-Stokes vesicle-fluid interaction model. Discrete Continuous Dyn. Syst. 8(3), 539–556 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  25. Esedoglu, S., Rätz, A., Röger, M.: Colliding interfaces in old and new diffuse-interface approximations of willmore-flow. Commun. Math. Sci. 12(1), 125–147 (2013). doi:10.4310/CMS.2014.v12.n1.a6

    Article  MathSciNet  MATH  Google Scholar 

  26. Feng, X.: Fully discrete finite element approximations of the Navier–Stokes–Cahn-Hilliard diffuse interface model for two-phase fluid flows. SIAM J. Numer. Anal. 44, 1049–1072 (2006). doi:10.1137/050638333

    Article  MathSciNet  MATH  Google Scholar 

  27. Garcke, H., Lam, K., Stinner, B.: Diffuse interface modelling of soluble surfactants in two-phase flow. Commun. Math. Sci. 12(8), 1475–1522 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  28. Garcke, H., Hinze, M., Kahle, C.: A stable and linear time discretization for a thermodynamically consistent model for two-phase incompressible flow. Appl. Numer. Math. 99, 151–171 (2016). doi:10.1016/j.apnum.2015.09.002

    Article  MathSciNet  MATH  Google Scholar 

  29. Grün, G.: On convergent schemes for diffuse interface models for two-phase flow of incompressible fluids with general mass densities. {SIAM} J. Numer. Anal. 51(6), 3036–3061 (2013). doi:10.1137/130908208

    Google Scholar 

  30. Grün, G., Klingbeil, F.: Two-phase flow with mass density contrast: stable schemes for a thermodynamic consistent and frame-indifferent diffuse-interface model. J. Comput. Phys. 257, 708–725 (2014). doi:10.1016/j.jcp.2013.10.028

    Article  MathSciNet  MATH  Google Scholar 

  31. Guillén-González, F., Tierra, G.: On linear schemes for a Cahn–Hilliard diffuse interface model. J. Comput. Phys. 234, 140–171 (2013). doi:10.1016/j.jcp.2012.09.020

    Article  MathSciNet  MATH  Google Scholar 

  32. Han, D., Wang, X.: A second order in time, uniquely solvable, unconditionally stable numerical scheme for Cahn–Hilliard–Navier–Stokes equation. J. Comput. Phys. 290, 139–156 (2015). doi:10.1016/j.jcp.2015.02.046

    Article  MathSciNet  MATH  Google Scholar 

  33. He, Q., Glowinski, R., Wang, X.P.P.: A least-squares/finite element method for the numerical solution of the {Navier-Stokes-Cahn-Hilliard} system modeling the motion of the contact line. J. Comput. Phys. 230(12), 4991–5009 (2011). doi:10.1016/j.jcp.2011.03.022

    Article  MathSciNet  MATH  Google Scholar 

  34. Helfrich, W.: Elastic properties of lipid bilayers: theory and possible experiments. Zeitschrift fur Naturforschung. Teil C: Biochemie, Biophysik, Biologie, Virologie 28(11), 693–703 (1973). doi;10.1002/mus.880040211

    Google Scholar 

  35. Henry, W.: Experiments on the quantity of gases absorbed by water, at different temperatures, and under different pressures. Philos. Trans. R. Soc. Lond. 93, 29–276 (1803)

    Article  Google Scholar 

  36. Hohenberg, P.C., Halperin, B.I.: Theory of dynamic critical phenomena. Rev. Mod. Phys. 49(3), 435 (1977)

    Article  Google Scholar 

  37. Jaqmin, D.: Calculation of two-phase Navier-Stokes flows using phase-field modelling. J. Comput. Phys. 155, 96–127 (1999). doi:10.1006/jcph.1999.6332

    Article  MathSciNet  Google Scholar 

  38. Kay, D., Loghin, D., Wathen, A.: A preconditioner for the steady-state navier–stokes equations. SIAM J. Sci. Comput. 24(1), 237–256 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  39. Kay, D., Welford, R.: Efficient numerical solution of Cahn-Hilliard-Navier-Stokes fluids in 2D. SIAM J. Sci. Comput. 29, 15–43 (2007). doi:10.1137/050648110

    Article  MathSciNet  MATH  Google Scholar 

  40. Kim, J.: A continuous surface tension force formulation for diffuse-interface models. J. Comput. Phys. 204(2), 784–804 (2005). doi:10.1016/j.jcp.2004.10.032. http://linkinghub.elsevier.com/retrieve/pii/S0021999104004383

    Article  MathSciNet  MATH  Google Scholar 

  41. Lázaro, G.R., Pagonabarraga, I., Hernández-Machado, A.: Phase-field theories for mathematical modeling of biological membranes. Chem. Phys. Lipids 185, 46–60 (2015)

    Article  Google Scholar 

  42. Li, X., Lowengrub, J., Rätz, A., Voigt, A.: Solving PDEs in complex geometries: a diffuse domain approach. Commun. Math. Sci. 7(1), 81–107 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  43. Liu, Y., Takahashi, T., Tucsnak, M.: Strong solutions for a phase field Navier–Stokes vesicle–fluid interaction model. J. Math. Fluid Mech. 14(1), 177–195 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  44. Liu, C., Shen, J., Yang, X.: Decoupled energy stable schemes for a phase-field model of two-phase incompressible flows with variable density. J. Sci. Comput. 62(2), 601–622 (2014). doi:10.1007/s10915-014-9867-4

    Article  MathSciNet  MATH  Google Scholar 

  45. Lowengrub, J., Truskinovsky, L.: Quasi-incompressible Cahn–Hilliard fluids and topological transitions. In: Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, vol. 454, pp. 2617–2654. The Royal Society, London (1998)

    Google Scholar 

  46. Lowengrub, J., Allard, J., Aland, S.: Numerical simulation of endocytosis: viscous flow driven by membranes with non-uniformly distributed curvature-inducing molecules. J. Comput. Phys. 309, 112–128 (2016). doi:10.1016/j.jcp.2015.12.055

    Article  MathSciNet  MATH  Google Scholar 

  47. Marth, W., Aland, S., Voigt, A.: Margination of white blood cells - a computational approach by a hydrodynamic phase field model. J. Fluid Mech. 790, 389–406 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  48. Muradoglu, M., Tryggvason, G.: A front-tracking method for computation of interfacial flows with soluble surfactants. J. Comput. Phys. 227(4), 2238–2262 (2008)

    Article  MATH  Google Scholar 

  49. Pozrikidis, C.: Boundary Integral and Singularity Methods for Linearized Viscous Flow. Cambridge University Press, Cambridge (1992)

    Book  MATH  Google Scholar 

  50. Qian, T., Wang, X.P., Sheng, P.: Molecular scale contact line hydrodynamics of immiscible flows. Phys. Rev. E 68(1), 016306 (2003)

    Article  Google Scholar 

  51. Rannacher, R.: Finite element methods for the incompressible Navier-Stokes equations. Ph.D. thesis (2000)

    Google Scholar 

  52. Rätz, A., Voigt, A.: PDE’s on surfaces—a diffuse interface approach. Commun. Math. Sci. 4(3), 575–590 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  53. Rowlinson, J.: Translation of J.D. van der Waals’ “The thermodynamik theory of capillarity under the hypothesis of a continuous variation of density”. J. Stat. Phys. 20(2), 197–200 (1979)

    Google Scholar 

  54. Schwarzenberger, K., Aland, S., Domnick, H., Odenbach, S., Eckert, K.: Relaxation oscillations of solutal Marangoni convection at curved interfaces. Colloids Surf. A 481, 633–643 (2015)

    Article  Google Scholar 

  55. Teigen, K.E., Song, P., Lowengrub, J., Voigt, A.: A diffuse-interface method for two-phase flows with soluble surfactants. J. Comput. Phys. 230, 375 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  56. Villanueva, W., Amberg, G.: Some generic capillary-driven flows. Int. J. Multiphase Flow 32(9), 1072–1086 (2006). doi:10.1016/j.ijmultiphaseflow.2006.05.003

    Article  MATH  Google Scholar 

  57. Wang, X.: Asymptotic analysis of phase field formulations of bending elasticity models. SIAM J. Math. Anal. 39(5), 1367–1401 (2008). doi:10.1137/060663519

    Article  MathSciNet  MATH  Google Scholar 

  58. Wise, S., Kim, J., Lowengrub, J.: Solving the regularized, strongly anisotropic cahn–hilliard equation by an adaptive nonlinear multigrid method. J. Comput. Phys. 226(1), 414–446 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  59. Xu, J.J., Li, Z., Lowengrub, J., Zhao, H.: A level-set method for interfacial flows with surfactant. J. Comput. Phys. 212(2), 590–616 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  60. Zhang, J., Johnson, P.C., Popel, A.S.: An immersed boundary lattice Boltzmann approach to simulate deformable liquid capsules and its application to microscopic blood flows. Phys. Biol. 4(4), 285 (2007)

    Article  Google Scholar 

Download references

Acknowledgements

The author acknowledges support from the German Science Foundation through grant SPP-1506 (AL 1705/1).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sebastian Aland .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Aland, S. (2017). Phase Field Models for Two-Phase Flow with Surfactants and Biomembranes. In: Bothe, D., Reusken, A. (eds) Transport Processes at Fluidic Interfaces. Advances in Mathematical Fluid Mechanics. Birkhäuser, Cham. https://doi.org/10.1007/978-3-319-56602-3_11

Download citation

Publish with us

Policies and ethics