Skip to main content

Tapping into Microbial Polysaccharides for Water and Wastewater Purifications

  • Chapter
  • First Online:
Polysaccharides as a Green and Sustainable Resources for Water and Wastewater Treatment

Abstract

The critical need for water and wastewater treatment has become more crucial in recent years as a large portion of the world’s population do not have access to safe potable water sources. Currently, half a billion people worldwide do not have access to improved water sources especially in developing countries where recycling and reuse of wastewater is at its lowest ebb. This Chapter addresses the role microbial polysaccharides play in water and wastewater purification. Microbial polysaccharides are biopolymers produced by microorganisms through the utilization of simple to complex substrates. Their applications in water and wastewater treatments have made the processes of purification, less cumbersome, economical, less time consuming and ecofriendly. Microbial polysaccharides are effectively used in water purification via processes like biosorption, bioaccumulation and bioaggregation. Future developments in water and wastewater treatments will be largely intertwined with developments in microbial polysaccharides such as polysaccharide-based nanoadsorbents.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. U.U. Nwodo, E. Green, A.I. Okoh, Bacterial exopolysaccharides: functionality and prospects. Int. J. Mol. Sci. 13, 14002–14015 (2012)

    Article  CAS  Google Scholar 

  2. M. Indira, T.C. Venkateswarulu, K. Chakravarthy, R.A. Ranganadha, B.D. John, P.K. Vidya, Morphological and biochemical characterization of exopolysaccharide producing bacteria isolated from dairy effluent. J. Pharm. Sci. Res. 8, 88–91 (2016)

    CAS  Google Scholar 

  3. A. Poli, P. Donato, G.R. Abbamondi, B. Nicolaus, Synthesis, production, and biotechnological applications of exopolysaccharides and polyhydroxyalkanoates. Archaea (2011). doi:10.1155/2011/693253

    Google Scholar 

  4. E.T. Oner, Microbial production of extracellular polysaccharides from biomass (Springer, Berlin, 2013)

    Google Scholar 

  5. T. Liang, S. Wang, Recent advances in exopolysaccharides from paenibacillus spp.: production, isolation, structure, and bioactivities. Mar. Drugs 13, 1847–1863 (2015)

    Article  CAS  Google Scholar 

  6. K.V. Madhuri, K.V. Prabhakar, Recent trends in the characterization of microbial exopolysaccharides. Orient. J. Chem. 30, 895–904 (2014)

    Article  CAS  Google Scholar 

  7. R.S. Al-Wasify, A.A. Al-Sayed, S.M. Saleh, A.M. Aboelwafa, Bacterial exopolysaccharides as new natural coagulants for surface water treatment. Int. J. Pharm. Tech. Res. 8, 198–207 (2015)

    Article  CAS  Google Scholar 

  8. T.K. Singh, Microbial extracellular polymeric substances: production, isolation and applications. IOSR J. Pharm. 2, 276–281 (2012)

    Google Scholar 

  9. A. Becker, F. Katzen, A. Pühler, L. Ielpi, Xanthan gum biosynthesis and application: a biochemical/genetic perspective. Appl. Microbiol. Biotechnol. 50, 145–152 (1998)

    Article  CAS  Google Scholar 

  10. G. Morris, S. Harding, Polysaccharides, Microbial (Elsevier, 2009), pp. 482–494

    Google Scholar 

  11. A. Patel, J.B. Prajapati, Food and health applications of exopolysaccharides produced by lactic acid bacteria. Adv. Dairy Res. 1 (2013). doi:10.4172/2329-4888X.1000107

  12. J.W. Costerton, K.J. Cheng, G.G. Geesey, T.I. Ladd, J.C. Nickel, M. Dasgupta, T.J. Marrie, Bacterial biofilms in nature and disease. Annu. Rev. Microbiol. 41, 435–464 (1987)

    Article  CAS  Google Scholar 

  13. E. Tok, B. Aslim, Cholesterol removal by some lactic acid bacteria that can be used as probiotic. Microbiol. Immunol. 54, 257–264 (2010)

    CAS  Google Scholar 

  14. R.M. Jain, K. Mody, A. Mishra, B. Jha, Isolation and structural characterization of biosurfactant produced by an alkaliphilic bacterium Cronobacter sakazakii isolated from oil contaminated wastewater. Carbohydr. Polym. 87, 2320–2326 (2012)

    Article  CAS  Google Scholar 

  15. C. Calvo, M. Manzanera, G.A. Silva-Castro, I. Uad, J. González-López, Application of bioemulsifiers in soil oil bioremediation processes. Future prospects. Sci. Total Environ. 407, 3634–3640 (2009)

    Article  CAS  Google Scholar 

  16. J.M. Campos, T.A. Lucia, L.A. Sarubbo, J.M. de Luna, R.D. Rufino, I.M. Banat, Microbial Biosurfactants as Additives for Food Industries. Biotechnol. Prog. 29, 1097–1108 (2013)

    Article  CAS  Google Scholar 

  17. I.M. Banat, A. Franzetti, I. Gandolfi, G. Bestetti, M.G. Martinotti, L. Fracchia, T.J. Smyth, R. Marchant, Microbial biosurfactants production, applications and future potential. Appl. Microbiol. Biotechnol. 87, 427–444 (2010)

    Article  CAS  Google Scholar 

  18. R. Kaur, J. Singh, R. Khare, A. Ali, Biosorption the possible alternative to existing conventional technologies for sequestering heavy metal ions from aqueous streams: a review. Univers. J. Environ. Res. Technol. 2, 325–335 (2012)

    CAS  Google Scholar 

  19. F. Fu, Q. Wang, Removal of heavy metal ions from wastewaters: a review. J. Environ. Management 92, 407–418 (2011)

    Article  CAS  Google Scholar 

  20. O. Abdi, M. Kazemia, A review study of biosorption of heavy metals and comparison between different biosorbents. J. Mater. Environ. Sci. 6, 1386–1399 (2015)

    Google Scholar 

  21. H. Khakpour, H. Younesi, M.M. Hosseini, Two-stage biosorption of selenium from aqueous solution using dried biomass of the baker’s yeast Saccharomyces cerevisiae. J. Environ. Chem. Eng. 2, 532–542 (2014)

    Article  CAS  Google Scholar 

  22. G.M. Gadd, Biosorption: critical review of scientific rationale, environmental importance and significance for pollution treatment. J. Chem. Technol. Biotechnol. 84, 13–28 (2009)

    Article  CAS  Google Scholar 

  23. S.S. Ahluwalia, D. Goyal, Microbial and plant derived biomass for removal of heavy metals from wastewater. Biores. Technol. 98, 2243–2257 (2007)

    Article  CAS  Google Scholar 

  24. N. Das, R. Vimala, P. Karthika, Biosorption of heavy metals- An overview. Indian J. Biotechnol. 7, 159–169 (2008)

    CAS  Google Scholar 

  25. G.Z. Kyzas, J. Fu, K.A. Matis, The change from past to future for adsorbent materials in treatment of dyeing wastewaters. Materials 6, 5131–5158 (2013)

    Article  Google Scholar 

  26. G. Crini, Recent developments in polysaccharide-based materials used as adsorbents in wastewater treatment. Prog. Polym. Sci. 30, 38–70 (2005)

    Article  CAS  Google Scholar 

  27. Z. Ding, I. Bourven, G. Guibaud, E.D. van Hullebusch, A. Panico, F. Pirozzi, G. Esposito, Role of extracellular polymeric substances (EPS) production in bioaggregation: application to wastewater treatment. Appl. Microbiol. Biotechnol. (2015). doi:10.1007/s00253-015-6964-8

    Google Scholar 

  28. S. Andersson, Characterization of bacterial biofilms for wastewater treatment, 2009, Printed by Universitets service US-AB, Drottning Kristinas väg 53B SE-100 44 Stockholm, Sweden

    Google Scholar 

  29. B. Vu, M. Chen, R.J. Crawford, E.P. Ivanova, Bacterial extracellular polysaccharides involved in biofilm formation. Molecules 14, 2535–2554 (2009). doi:10.3390/molecules14072535

  30. M.B.I. Kassim, Production and characterization of the polysaccharide “xanthan gum’’ by a local isolate of the bacterium Xanthomonas campestris. Afr. J. Biotechnol. 10, 16924–16928 (2011)

    CAS  Google Scholar 

  31. A.K. Patel, P. Michaud, R.R. Singhania, Polysaccharides from probiotics as food additives. Food Technol. Biotechnol. 48, 451–463 (2010)

    CAS  Google Scholar 

  32. S. Meisen, J. Wingender, U. Telgheder, Analysis of microbial extracellular polysaccharides in biofilms by HPLC. Part I: development of the analytical method using two complementary stationary phases. Nal. Bioanal. Chem. 391, 993–1002 (2008)

    Google Scholar 

  33. S.R. Chowdhury, S. Manna, P. Saha, R.K. Basak, R. Sen, D. Roy, B. Adhikari, Composition analysis and material characterization of an emulsifying extracellular polysaccharide (EPS) produced by Bacillus megaterium RB-05: a hydrodynamic sediment-attached isolate of freshwater origin. J. Appl. Microbiol. 111, 1381–1393 (2011)

    Article  CAS  Google Scholar 

  34. A. Nanda, C.M. Raghavan, Production and characterization of exopolysacharides (EPS) from the bacteria isolated from Pharma lab sinks. Int. J. Pharm. Tech. Res. 6, 1301–1305 (2014)

    Google Scholar 

  35. M.B. Lilledahl, B.T. Stokke, Novel imaging technologies for characterization of microbial extracellular polysaccharides. Front. Microbiol. 6, 1–12 (2015)

    Article  Google Scholar 

  36. H. Su, Z. Chen, S. Liu, L. Qiao, X. Chen, H. He, X. Zhao, B. Zhou, Y. Zhang, Characterization of bacterial polysaccharide capsules and detection in the presence of deliquescent water by atomic force microscopy. Appl. Environ. Microbiol. 78 (2012)

    Google Scholar 

  37. G. Gonzalez-Gil, L. Thomas, A. Emwas, P.N.L. Lens, P.E. Saikaly, NMR and MALDI-TOF MS based characterization of exopolysaccharides in anaerobic microbial aggregates from full-scale reactors. Sci. Rep. 5 (2015) doi:10.1038/srep14316

  38. J. Allen, Microbial polysaccharides: application, production and features (2013), http://www.biologydiscussion.com Accessed 25 Apr 2016

  39. F. Donot, A. Fontana, J.C. Baccou, C. Schorr-Galindo, Microbial exopolysaccharides: main examples of synthesis, excretion, genetics and extraction. Carbohyd. Polym. 87, 951–962 (2012)

    Article  CAS  Google Scholar 

  40. S. Lee, R. John, F. Mei, C. Chong, A review on application of flocculants in wastewater treatment. Proc. Safety Environ. Protect. 92, 489–508 (2014)

    Article  CAS  Google Scholar 

  41. F. Freitas, V. Alves, A.M. Reis, Advances in bacterial exopolysaccharides: from production to biotechnological applications. Trends Biotechnol. 29, 388–398 (2011)

    Article  CAS  Google Scholar 

  42. O. Ates, Systems biology of microbial exopolysaccharides production. Front. Bioeng. biotechnol 3, 1–16 (2015). doi:10.3389/fbioe.2015.00200

    Article  Google Scholar 

  43. T. Todhanakasem, Microbial biofilm in the industry. Afr. J. Microbiol. Res. 7, 1625–1634 (2013)

    Article  CAS  Google Scholar 

  44. M.A. Kumar, K.T.K. Anandapandian, K. Parthiban, Production and characterization of exopolysaccharides(eps) from biofilm forming marine bacterium. Braz. Arch. Biol. Technol. 54, 259–265 (2011)

    Article  CAS  Google Scholar 

  45. I. Sutherland, Biofilm exopolysaccharides: a strong and sticky Framework. Microbiol. 147, 3–9 (2001)

    Article  CAS  Google Scholar 

  46. L. Pierre, L. Cécile, D.M. Patrick, Exopolysaccharides of the biofilm matrix: a complex biophysical world, 2012

    Google Scholar 

  47. V. Barbara, C. Miao, J. Russell, I. Elena, Xanthan gum biosynthesis and application: a biochemical/genetic perspective. Appl. Microbiol. Biotechnol. 50, 145–152 (1998)

    Article  Google Scholar 

  48. M. Kostakioti, M. Hadjifrangiskou, S. Hultgren, Bacterial biofilms: development, dispersal, and therapeutic strategies in the dawn of the postantibiotic era. Cold Spring Harb. Perspect. Med. 3 (2013) doi:10.1101/cshperspect.a010306

  49. M. Ciszek-Lenda, Biological functions of exopolysaccharidesfrom probiotic bacteria. Centr. Eur. J. Immunol. 36, 51–55 (2011)

    CAS  Google Scholar 

  50. K. Sugimoto, Biofilm as a new bio-material. Innovatie, in: https://www.rvo.nl/sites/default/files/Biofilm%20Japan.pdf, (Ed.), Attaché Tokio, (2013)

  51. Y.G. Maksimova, Microbial biofilms in biotechnological processes. Appl. Biochem. Microbiol. 50, 750–760 (2013)

    Article  Google Scholar 

  52. K. Sambanthamoorthy, F. X., R. Patel, S. Patel, C. Paranavitana, Antimicrobial and antibiofilm potential of biosurfactants isolated from lactobacilli against multi-drug-resistant pathogens. BMC Microbiol. 14 (2014). doi:10.1186/1471-2180-1114-1197

  53. R. Donlan, Biofilms: microbial life on surfaces. Emerg. Infect. Diseases 8, 881–889 (2002)

    Article  Google Scholar 

  54. J. Kloc, I. Gonzalez, The study of biological wastewater treatment through biofilm development on synthetic material vs. membranes, (Worcester Polytechnic Institute, Massachusetts, 2012)

    Google Scholar 

  55. N. Qureshi, B. Annous, T. Ezeji, Biofilm reactors for industrial bioconversion processes: employing potential of enhanced reaction rates. Microb. Cell Fact. 4, 24 (2005)

    Article  Google Scholar 

  56. G.M. Teitzel, M.R. Parsek, Heavy metal resistance of biofilm and planktonic Pseudomonas aeruginosa. Appl. Environ. Microbiol. 69, 2313–2320 (2003)

    Article  CAS  Google Scholar 

  57. S. Vijayakumar, V. Saravanan, Biosurfactants-types, sources and applications. Res. J. Microbiol. 10, 181–192 (2015)

    Article  CAS  Google Scholar 

  58. S. Andersson, Characterization of bacterial biofilms for wastewater treatment (Universitets service US-AB, Drottning Kristinas väg Stockholm, Sweden, 2009)

    Google Scholar 

  59. V. Sharma, A. Sharma, Nanotechnology: an emerging future trend in wastewater treatment with its innovative products and processes. Int J Enhanc. Res. Sci Technol. Eng. 1, 1–8 (2012)

    Article  Google Scholar 

  60. G.C. Delzer, S.W. McKenzie, Five-day biochemical oxygen demand: U.S. geological survey techniques of water-resources investigations, 2003, book 9, chap. A7, section 7.0, November, accessed last date from http://pubs.water.usgs.gov/twri9A/

  61. Environmental Protection Agency, Chemical Contaminant Rules. (2016) https://www.epa.gov/dwreginfo/chemical-contaminant-rules Accessed 12 Jan 2016

  62. T.B.S. Prakasam, R.C. Loehr, Author links open the overlay panel. Numbers correspond to the affiliation list which can be exposed by using the show more link. Water Res. 6, 859–869 (1972)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

I appreciate Dr. O. Osuolale and my postgraduates students, Jeremiah Ogah and Ifeoluwa Gbala for their contributions. My appreciation also goes to the University of Ilorin, Nigeria, which provided a good working environment to carry out my research works.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nurudeen A. Oladoja Ph.D. .

Rights and permissions

Reprints and permissions

Copyright information

© 2017 The Author(s)

About this chapter

Cite this chapter

Oladoja, N.A., Unuabonah, E.I., Amuda, O.S., Kolawole, O.M. (2017). Tapping into Microbial Polysaccharides for Water and Wastewater Purifications. In: Polysaccharides as a Green and Sustainable Resources for Water and Wastewater Treatment. SpringerBriefs in Molecular Science(). Springer, Cham. https://doi.org/10.1007/978-3-319-56599-6_5

Download citation

Publish with us

Policies and ethics