Skip to main content

Mechanistic Insight into the Coagulation Efficiency of Polysaccharide-based Coagulants

  • Chapter
  • First Online:
Polysaccharides as a Green and Sustainable Resources for Water and Wastewater Treatment

Abstract

In order to optimise the coagulation efficiencies of polysaccharide-based coagulants (PBC), it is expedient that the underlying coagulation mechanism of this green resource should be elucidated to enable proper understanding of the process. Consequently, the present chapter provides an overview of the active coagulating species in PBCs that have been investigated in water and wastewater treatment operations. Based on the identities of the different active coagulating species in PBC, an insight into the underlying coagulation mechanisms of these varieties of coagulants are provided in this chapter.  

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. I. Simkovic, Review: What could be greener than composites made from polysaccharides? Carbohydr. Polym. 74, 759–762 (2008)

    Article  CAS  Google Scholar 

  2. A. Tiwari, Polysaccharides: Development, Properties and Applications (Nova Science Publisher Inc., New York, 2010)

    Google Scholar 

  3. E.V. Datskevich, V.V. Goncharuk, Perspectives for the use of polysaccharides in water treatment: a short review with examples. Appl. Res. Polysaccharides, 41–71 (2015)

    Google Scholar 

  4. M. Hossain Md, I.H. Mondal Md, Biodegradable surfactant from natural starch for the reduction of environmental pollution and safety for water living organism. Int. J. Innov. Res. Adv. Eng. 1, 424–433 (2014)

    Google Scholar 

  5. E.E. Haslan, Comprehensive Organic Chemistry: The Synthesis and Reactions of Organic Compounds, Biological Compounds, vol. 5 (Pergamon Press, Oxford, 1985)

    Google Scholar 

  6. J.F. Kennedy, Chemically reactive derivatives of polysaccharides. Adv. Carbohydr. Chem. Biochem. 29, 305–405 (1974)

    Article  CAS  Google Scholar 

  7. K. Lee, N. Morad, T. Teng, B.J. Poh, Development, characterization and the application of hybrid materials in coagulation/flocculation of wastewater: a review. Chem. Eng. J. 203, 370–386 (2012)

    Article  CAS  Google Scholar 

  8. G. Crini, Recent developments in polysaccharide-based materials used as adsorbents in wastewater treatment. Prog. Polym. Sci. 30, 38–70 (2005)

    Article  CAS  Google Scholar 

  9. L.S. Oliveira, A.S. Franca, Food Sciences and Technology, vol. 171 (Nova Publishers New Research, New York, 2008)

    Google Scholar 

  10. F. Renault, B. Sancey, P.M. Badot, G. Crini, Chitosan for coagulation/flocculation processes–an eco-friendly approach. Eur. Polym. J. 45, 1337–1348 (2009)

    Article  CAS  Google Scholar 

  11. A. Matilainen, M. Versalainen, N. Sillanpaa, Natural organic matter removal by coagulation during drinking water treatment: a review. Adv. Colloid Int. Sci. 159, 189–197 (2010)

    Article  CAS  Google Scholar 

  12. M.M. Kemp, R.J. Linhardt, Heparin based nanoparticles. WIREs Nanomed. Nanobiotechnol. 2, 77–87 (2010)

    Article  CAS  Google Scholar 

  13. T. Trindade, A.L. Daniel-Da-Silva, Biofunctional composites of polysaccharides containing inorganic nanoparticles, in Advances in Nanocomposite Technology, ed. by D.A. Hashim (InTech, 2011)

    Google Scholar 

  14. C. Corot, P. Robert, J.M. Idée, M. Port, Recent advances in iron oxide nanocrystal technology for medical imaging. Adv. Drug Deliv. Rev. 58, 1471–1504 (2006)

    Article  CAS  Google Scholar 

  15. S.E. Bailey, T.J. Olin, R.M. Bricka, D.D. Adrian, A review of potentially low-cost sorbents for heavy metals. Water Res. 33, 2469–2479 (1999)

    Article  CAS  Google Scholar 

  16. M.N.V.R. Kumar, A review of chitin and chitosan applications. React. Funct. Polym. 46, 1–27 (2000)

    Article  CAS  Google Scholar 

  17. J. Synowiecki, N.A. Al-Khateeb, Production, properties, and some new applications of chitin and its derivatives. Crit. Rev. Food Sci. Nutr. 43, 145–171 (2003)

    Article  CAS  Google Scholar 

  18. P.A. Sandford, J. Baird (eds.), Industrial Utilization of Polysaccharides (Academic Press, New York, 1983)

    Google Scholar 

  19. O.B. Wurzburg (ed.), Modified Starches: Properties and Uses (CRC Press, Boca Raton, 1986)

    Google Scholar 

  20. G. Crini, N. Morin, J.C. Rouland, L. Janus, M. Morcellet, S. Bertini, Adsorption de beta-naphtol sur des gels de cyclodextrine-carboxyme thylcellulose reticulés. Eur. Polym. J. 38, 1095–1103 (2002)

    Article  CAS  Google Scholar 

  21. M. Singh, R. Sharma, U.C. Banerjee, Biotechnological applications of cyclodextrins. Biotechnol. Adv. 20, 341–359 (2002)

    Article  CAS  Google Scholar 

  22. S. Babel, T.A. Kurniawan, Low-cost adsorbents for heavy metals uptake from contaminated water: a review. J. Hazard. Mater. 97, 219–243 (2003)

    Article  CAS  Google Scholar 

  23. A.J. Varma, S.V. Deshpande, J.F. Kennedy, Metal complexation by chitosan and its derivatives: a review. Carbohydr. Polym. 55, 77–93 (2004)

    Article  CAS  Google Scholar 

  24. E.M.M. Del-Valle, Cyclodextrins and their uses: a review. Proc. Biochem. 39, 1033–1046 (2004)

    Article  CAS  Google Scholar 

  25. E. Polaczek, F. Starzyk, K. Malenki, P. Tomasik, Inclusion complexes of starches with hydrocarbons. Carbohydr. Polym. 43, 291–297 (2000)

    Article  CAS  Google Scholar 

  26. W. Ciesielski, C.Y. Lii, M.T. Yen, P. Tomasik, Interactions of starch with salts of metals from the transition groups. Carbohydr. Polym. 51, 47–56 (2003)

    Article  CAS  Google Scholar 

  27. J. Bratby, Coagulation and Flocculation in Water and Wastewater Treatment, 2nd edn. (IWA Publishing, 2007)

    Google Scholar 

  28. M. Asrafuzzaman, A.N.M. Fakhruddin, M. Alamgir Hossain, Reduction of turbidity of water using locally available natural coagulants. ISRN Microbiol. (2011). http://dx.doi.org/10.5402/2011/632189

  29. C.C. Dorea, Use of Moringa spp. seeds for coagulation: a review of a sustainable option. Water Sci. Technol.: Water Supply 6, 219–227 (2006)

    Google Scholar 

  30. S.Y. Choy, K.M.N. Prasad, T.Y. Wu, M.E. Raghunandan, R.N. Ramanan, Utilization of plant-based natural coagulants as future alternatives towards sustainable water clarification. J. Environ. Sci. 26, 2178–2189 (2014)

    Article  Google Scholar 

  31. G.S. Simate, S.E. Iyuke, S. Ndlovu, M. Heydenrych, L.F. Walubita, Human health effects of residual carbon nanotubes and traditional water treatment chemicals in drinking water. Environ. Int. 39, 38–49 (2012)

    Article  CAS  Google Scholar 

  32. G. Vijayaraghavan, T. Sivakumar, A. Vimal Kumar, Application of plant based coagulants for wastewater treatment. Int. J. Adv. Eng. Res. Stud. 1 (2011)

    Google Scholar 

  33. C. Rudén, Acrylamide and cancer risk—expert risk assessments and the public debate. Food Chem. Toxicol. 42, 335–349 (2004)

    Article  CAS  Google Scholar 

  34. D. Nkhata, Moringa as an alternative to aluminium sulphate, in Procroceedings of People and Systems for Water, Sanitation and Health 27thWEDC Conference, Lusaka, Zambia, 236–238 (2001)

    Google Scholar 

  35. N.A. Oladoja, Headway on natural polymeric coagulants in water and wastewater treatment operations. J. Water Process Eng. 6, 174–192 (2015)

    Article  Google Scholar 

  36. T.K. Lim, Edible Medicinal and Non-medicinal Plants (Springer, New York, 2012)

    Book  Google Scholar 

  37. S.Z. Shaheen, K. Bolla, K. Vasu, M.A. SingaraCharya, Antimicrobial activity of the fruit extracts of Coccinia indica. Afr. J. Biotechnol. 8, 7073–7076 (2009)

    Google Scholar 

  38. E. Small, Top 100 Exotic Food Plants (CRC Press, Boca Raton, 2011)

    Book  Google Scholar 

  39. L. Boshou, H. Corley, Groundnut (CRC Press, Boca Raton, 2006)

    Google Scholar 

  40. N.K. Fageria, V.C. Baligar, C.A. Jones, Growth and Mineral Nutrition of Field Crops (CRC Press, Boca Raton, 2010)

    Book  Google Scholar 

  41. F. Ahmad, P.M. Gaur, J. Croser, Chickpea (Cicer arietinum L.), in Genetic Resources, Chromosome Engineering and Crop Improvement: Grain Legumes, ed. by R.J. Singh, P.P. Jauhar (CRC Press, Boca Raton, 2005), pp. 187–217

    Google Scholar 

  42. M. Brink, Macrotyloma uniflorum (Lam.) Verde, in Plant Resources of Tropical Africa 1. Cereals and Pulses, ed. by M. Brink, G. Belay (PROTA Foundation/Backhuys Publishers/CTA, Wageningen, 2006)

    Google Scholar 

  43. R.J. Frederic, The Book of Edible Nuts (Dover Publications, USA, 2004)

    Google Scholar 

  44. R.E. Peter, W. Qi, R. Phillippa, R. Yilong, R.-M. Simon, Guargum: agricultural and botanical aspects, physicochemical and nutritional properties, and its use in the development of functional foods, in Handbook of Dietary Fiber, ed. by S.S. Cho, M.L. Dreher (Marcel Dekker Inc., New York, 2001)

    Google Scholar 

  45. E. Small, Top 100 Food Plants (NRC Research Press, 2009)

    Google Scholar 

  46. P.C.M. Jansen, Vigna angularis (Willd.), in Plant Resources of Tropical Africa 1. Cereals and Pulses, ed. by M. Brink, G. Belay (PROTA Foundation/Backhuys Publishers/CTA, Wageningen, 2006)

    Google Scholar 

  47. A. Diaz, N. Rincon, A. Escorihuela, N. Fernandez, E. Chacin, C. Forster, A preliminary evaluation of turbidity removal by natural coagulants indigenous to Venezuela. Process Biochem. 35, 391–395 (1999)

    Article  CAS  Google Scholar 

  48. S.L.C. Fuentes, S.I.A. Mendoza, M.A.M. López, V.M.F. Castro, M.C.J. Urdaneta, Effectiveness of a coagulant extracted from Stenocereus griseus (Haw.) Buxb in water purification. Rev. Téc. Ing. Univ. Zulia 34, 48–56 (2011)

    Google Scholar 

  49. J.D. Zhang, F. Zhang, Y.H. Luo, H. Yang, A preliminary study on cactus as coagulant in water treatment. Process Biochem. 41, 730–733 (2006)

    Article  CAS  Google Scholar 

  50. S.M. Miller, E.J. Fugate, V.O. Craver, J.A. Smith, J.B. Zimmerman, Toward understanding the efficacy and mechanism of Opuntia spp. as a natural coagulant for potential application in water treatment. Environ. Sci. Technol. 42, 4274–4279 (2008)

    Article  CAS  Google Scholar 

  51. P.C. Mane, A.B. Bhosle, C.M. Jangam, S.V. Mukate, Heavy metal removal from aqueous solution by Opuntia: a natural polyelectrolyte. J. Nat. Prod. Plant Resour. 1, 75–80 (2011)

    CAS  Google Scholar 

  52. B.S. Shilpaa, K. Akankshaa, P. Girish, Evaluation of cactus and hyacinth bean peels as natural coagulants. Int. J. Chem. Environ. Eng. 3, 187–191 (2012)

    Google Scholar 

  53. V.B. Thakre, A.G. Bhole, Relative evaluation of a few natural coagulants. J Water Supply Res. Technol. 44, 89–92 (1985)

    Google Scholar 

  54. G. Crini, P.M. Badot, Application of chitosan, a natural aminopolysaccharide, for dye removal from aqueous solutions by adsorption processes using batch studies: a review of recent literature. Prog. Polym. Sci. 33, 399–447 (2008)

    Article  CAS  Google Scholar 

  55. E. Guibal, Interactions of metal ions with chitosan-based sorvents: a review. Sep. Purif. Technol. 38, 43–74 (2004)

    Article  CAS  Google Scholar 

  56. P. Sorlier, A. Denuzière, C. Viton, A. Domard, Relation between the degree of acetylation and the electrostatic properties of chitin and chitosan. Biomacromolecules 2, 765–772 (2001)

    Article  CAS  Google Scholar 

  57. E. Guibal, J. Roussy, Coagulation and flocculation of dye-containing solutions using a biopolymer (Chitosan). React. Funct. Polym. 67, 33–42 (2007)

    Article  CAS  Google Scholar 

  58. M.S. Otegui, Endosperm cell walls: formation, composition and functions. Plant Cell Monographies 8, 159–174 (2007)

    Article  CAS  Google Scholar 

  59. V. Singh, V. Srivastava, M. Pandey, R. Sethi, R. Sanghi, Ipomoea turpethum seeds: a potential source of commercial gum. Carbohydr. Polym. 51, 357–359 (2003)

    Article  CAS  Google Scholar 

  60. M. Buckeridge, V.R. Panagassi, D.C. Rocha, S.M.C. Dietrich, Seed galactomannan in the classification and evolution of the Leguminosae. Phytochemistry 34(4), 871–875 (1995)

    Article  Google Scholar 

  61. A.A. Mohamed, P. Yatas-Duarte, Nonstarchy polysaccharide analysis of cotyledon and hull of Lapinus albus. Ceral Chem. 72(6), 648–651 (1995)

    CAS  Google Scholar 

  62. Y.C. Ho, I.N. Abbas, F.M. Alkarkhi, N. Morad, New vegetal biopolymeric flocculant: a degradation and flocculation study. Iran. J. Energy Environ. 5(1), 26–33 (2014)

    CAS  Google Scholar 

  63. L. Saag, G. Sanderson, P. Moyna, G. Ramos, Cactaceae mucilage composition. J. Sci. Food Agric. 26, 993–1000 (1975)

    Article  Google Scholar 

  64. B. Matsuhiro, L. Lillo, C. Saıenz, C. Urzuıa, O. Zaırate, Chemical characterization of the mucilage from fruits of Opuntia ficus indica. Carbohydr. Polym. 63, 263–267 (2006)

    Article  CAS  Google Scholar 

  65. F. Goycoolea, A. Caırdenas, Pectins from Opuntia spp.: a short review. J. Prof. Assoc. Cactus Dev. 5, 17–29 (2004)

    Google Scholar 

  66. H. Majdoub, S. Roudesli, L. Picton, D. Le-Cerf, G. Muller, M. Grisel, Prickly pear nopals pectin from Opuntia ficus indica physicochemical study in dilute and semi-dilute solutions. Carbohydr. Polym. 46, 69–79 (2001)

    Article  CAS  Google Scholar 

  67. S.M. Miller, E.J. Fugate, V.O. Craver, J.A. Smith, J.B. Zimmerman, Toward understanding the efficacy and mechanism of Opuntia spp. as a natural coagulant for potential application in water treatment. Environ. Sci. Technol. 42, 4274–4279 (2008)

    Article  CAS  Google Scholar 

  68. P.K. Raghuwanshi, M. Mandloi, A.J. Sharma, H.S. Malviya, S. Chaudhari, Improving filtrate quality using agro-based materials as coagulant aid. Water Qual. Res. J. Can. 37, 745–756 (2002)

    CAS  Google Scholar 

  69. R. Sanghi, B. Bhatttacharya, V. Singh, Cassia angustifolia seed gum as an effective natural coagulant for decolourisation of dye solutions. Green Chem. 4, 252–254 (2002)

    Google Scholar 

  70. M.B. Sciban, M.T. Klasnja, J.L. Stojimirovic, Investigation of coagulation activity of natural coagulants from seeds of different leguminose. Acta Period. Technol. 36, 81–87 (2005)

    Article  CAS  Google Scholar 

  71. M. Sciban, M. Klasnja, M. Antov, B. Skrbic, Removal of water turbidity by natural coagulants obtained from chestnut and acorn. Bioresour. Technol. 100, 6639–6643 (2009)

    Article  CAS  Google Scholar 

  72. S.Y. Choy, K.M.N. Prasad, T.Y. Wu, R.N. Ramanan, A review on common vegetables and legumes as promising plant-based natural coagulants in water clarification. Int. J. Environ. Sci. Technol. 12(1), 367–390 (2015)

    Google Scholar 

  73. A. Ndabigengesere, K.S. Narasiah, B.G. Talbot, Active agents and mechanism of coagulation of turbid waters using Moringa oleifera. Water Res. 29(2), 703–710 (1995)

    Article  CAS  Google Scholar 

  74. U. Gassenschmidt, K.D. Jany, B. Tauscher, H. Niebergall, Isolation and characterization of a flocculating protein from Moringa oleifera Lam. Biochem. Biophys. Acta 1243, 477–481 (1995)

    Article  Google Scholar 

  75. T. Okuda, A.U. Baes, W. Nishijima, M. Okada, Improvement of extraction method of coagulation active components from Moringa oleifera seed. Water Res. 33, 3373–3378 (1999)

    Article  CAS  Google Scholar 

  76. M. Broin, C. Santaella, S. Cuine, K. Kakou, G. Peltier, T. Joet, Flocculent activity of a recombinant protein from Moringa oleifera Lam. seeds. Appl. Microbiol. Biotechnol. 60, 114–119 (2002)

    Article  CAS  Google Scholar 

  77. T. Okuda, A.U. Baes, W. Nishijima, M. Okada, Coagulation mechanism of salt solution-extracted active component in Moringa oleifera seeds. Water Res. 35, 830–834 (2001)

    Article  CAS  Google Scholar 

  78. T. Okuda, A.U. Baes, W. Nishijima, M. Okada, Isolation and characterization of coagulant extracted from Moringa oleifera seed by salt solution. Water Res. 35, 405–410 (2001)

    Article  CAS  Google Scholar 

  79. H. Agrawal, C. Shee, A.K. Sharma, Isolation of a 66 kDa protein with coagulation activity from seeds of Moringa oleifera. Res. J. Agric. Biol. Sci. 3(5), 418–421 (2007)

    CAS  Google Scholar 

  80. J. Bratby, Coagulation and Flocculation (Uplands Press, England, 1980)

    Google Scholar 

  81. M. Ozacar, I.A. Sengil, Effectiveness of tannins obtained from valonia as a coagulant aid for dewatering of sludge. Water Res. 34, 1407–1412 (2000)

    Article  CAS  Google Scholar 

  82. M. Ozacar, I.A. Sengil, The use of tannins from Turkish acorns (valonia) in water treatment as a coagulant and coagulant aid. Turk. J. Eng. Environ. Sci. 26, 255–263 (2002)

    CAS  Google Scholar 

  83. M. Ozacar, I.A. Sengil, Evaluation of tannin biopolymer as a coagulant aid for coagulation of colloidal particles. Colloids Surf. A 229, 85–96 (2003)

    Article  CAS  Google Scholar 

  84. N.A. Oladoja, Y.B. Alliu, A.E. Ofomaja, I.E. Unuabonah, Synchronous attenuation of metal ions and colour in aqua stream using tannin–alum synergy. Desalination 271, 34–40 (2011)

    Article  CAS  Google Scholar 

  85. J.R. Jeon, E.J. Kim, Y.M. Kim, K. Murugesan, J.H. Kim, Y.S. Chang, Use of grape seed and its natural polyphenol extracts as a natural organic coagulant for removal of cationic dyes. Chemosphere 77, 1090–1098 (2009)

    Article  CAS  Google Scholar 

  86. C.Y. Yin, Emerging usage of plant-based coagulants for water and wastewater treatment. Process Biochem. 45, 1437–1444 (2010)

    Article  CAS  Google Scholar 

  87. N. Graham, F. Gang, J. Fowler, M. Watts, Characterisation and coagulation performance of a tannin-based cationic polymer: a preliminary assessment. Colloids Surf. A 327, 9–16 (2008)

    Article  CAS  Google Scholar 

  88. I. Dogu, A.I. Arol, Separation of dark-colored minerals from feldspar by selective flocculation using starch. Powder Technol. 139, 258–263 (2004)

    Article  CAS  Google Scholar 

  89. C.Y. Teh, T.Y. Wu, J.C. Juan, Optimization of agro-industrial wastewater treatment using unmodified rice starch as a natural coagulant. Ind. Crops Prod. 56, 17–26 (2014)

    Article  CAS  Google Scholar 

  90. N.A. Oladoja, Appraisal of cassava starch as coagulant aid in the alum coagulation of congo red from aqua system. Int. J. Environ. Pollut. Solut. 2(1), 47–58 (2014)

    Google Scholar 

  91. Y. Wei, F. Cheng, H. Zheng, Synthesis and flocculating properties of cationic starch derivatives. Carbohydr. Polym. 74, 673–679 (2008)

    Article  CAS  Google Scholar 

  92. S.K. Rath, R.P. Singh, Flocculation characteristics of grafted and ungrafted starch, amylose, and amylopectin. J. Appl. Polym. Sci. 66, 1721–1729 (1997)

    Article  CAS  Google Scholar 

  93. A.I. Zouboulis, X.L. Chai, I.A. Katsoyiannis, The application of the bioflocculant for the removal of humic acids from stabilized landfill leachates. J. Environ. Manag. 70, 35–41 (2004)

    Article  Google Scholar 

  94. Q. Yang, K. Luo, D. Liao, X. Li, D. Wang, X. Liu, G. Zeng, X. Li, A novel bioflocculant produced by Klebsiella sp. and its application to sludge dewatering. Water Environ. J. 26, 560–566 (2012)

    Article  CAS  Google Scholar 

  95. U.U. Nwodo, E. Green, L.V. Mabinya, K. Okaiyeto, K. Rumbold, L.C. Obi, A.I. Okoh, Bioflocculant production by a consortium of Streptomyces and Cellulomonas species and media optimization via surface response model. Colloids Surf. B: Biointerfaces 116, 257–264 (2014)

    Article  CAS  Google Scholar 

  96. K. Toeda, R. Kurane, Microbial flocculant from Alcaligenes cupidus KT 201. Agric. Biol. Chem. 55, 2793–2799 (1991)

    CAS  Google Scholar 

  97. R. Kurane, Y. Nohata, Microbial flocculation of waste liquids and oil emulsions by a bioflocculant from Alcaligenes latus. Agric. Biol. Chem. 55(4), 1127–1129 (1991)

    CAS  Google Scholar 

  98. H.H. Suh, G.S. Kwon, C.H. Lee, S.H. Kim, H.M. Oh, B.D. Yoon, Characterization of bioflocculant produced by Bacillus sp. DP-152. J. Ferment. Bioeng. 82(2), 108–112 (1997)

    Google Scholar 

  99. H. Salehizadeh, S.A. Shojaosadati, Isolation and characterisation of a bioflocculant produced by Bacillus firmus. Biotechnol. Lett. 24, 35–40 (2002)

    Article  CAS  Google Scholar 

  100. L.V. Mabinya, S. Cosa, U.U. Nwodo, A.I. Okoh, Studies on bioflocculant production by Arthrobacter sp. Raats, a freshwater bacteria isolated from Tyume River, South Africa. Int. J. Mol. Sci. 13, 1054–1065 (2012)

    Article  CAS  Google Scholar 

  101. P. Prasertsan, W. Dermlim, H. Doelle, J.F. Kennedy, Screening, characterization and flocculating property of carbohydrate polymer from newly isolated Enterobacter cloacae WD7. Carbohydr. Polym. 66, 289–297 (2006)

    Article  CAS  Google Scholar 

  102. N. Piyo, S. Cosa, V.L. Mabinya, A.I. Okoh, Assessment of bioflocculant production by Bacillus sp. Gilbert, a marine bacterium isolated from the bottom sediment of Algoa Bay. Mar. Drugs 9, 1232–1242 (2011)

    Article  CAS  Google Scholar 

  103. W.W. Li, W.Z. Zhou, Y.Z. Zhang, J. Wang, X.B. Zhu, Flocculation behaviour and mechanism of exopolysaccharide from deep-sea psychrophilic bacterium Pseudomonas sp. SM9913. Bioresour. Technol. 99, 6893–6899 (2008)

    Article  CAS  Google Scholar 

  104. J. He, Q. Zhen, N. Qiu, Z. Liu, B. Wang, Z. Shao, Z. Yu, Medium Optimization for the production of a novel bioflocculant from Halmonas sp. V3a using response surface methodology. Bioresour. Technol. 100, 5922–5927 (2009)

    Article  CAS  Google Scholar 

  105. U.U. Nwodo, A.I. Okoh, Characterization and flocculation properties of biopolymeric flocculant (glycosaminoglycan) produced by Cellulomonas sp. Okoh. J. Appl. Microbiol. 114, 1325–1337 (2012)

    Article  CAS  Google Scholar 

  106. D.T. Plummer, An Introduction to Practical Biochemistry, 2nd edn. (McCraw-Hill, London, 1978)

    Google Scholar 

  107. A. Margaritis, G.W. Pace, Microbial polysaccharides, in, Comprehensive Biotechnology, ed. by H.W. Blanch, S. Drew, D.I.C. Wang. The Practice of Biotechnology: Current Commodity Products, vol. 3 (Pergamon Press, Oxford, 1985), pp. 1006–1040

    Google Scholar 

  108. J.E. Scott, Fractionation by Precipitation with Quaternary Ammonium Salts (Academic Press, New York, 1965)

    Google Scholar 

  109. G.W. Pace, R.C. Righelato (eds.), Production of Extracellular Microbial Polysaccharides (Springer, Berlin, 1980)

    Google Scholar 

  110. I.W. Sutherland, Bacterial Exopolysaccharides—Their Nature and Production (Academic Press, London, 1977)

    Google Scholar 

  111. A. Ikeda, A. Takemura, H. Ono, Preparation of low-molecular weight alginic acid by acid hydrolysis. J. Carbohydr. Polym. 42, 421–425 (2000)

    Article  CAS  Google Scholar 

  112. A. Haug, B. Larsen, Study on the composition of alginic acid by partial acid hydrolysis. Proc. Int. Sea Weed Symp. 5, 271–277 (1966)

    Google Scholar 

  113. K.I. Draget, O. Smidsrod, G. Skjak-Break, Alginates from algae, in Polysaccharides and Polyamides in the Food Industry, Properties, Products and Patents (Wiley, Weinheim, 2005), pp. 1–30

    Google Scholar 

  114. A.H. King, Brown seaweed extracts (alginates), ed. by M. Glicksman (Elsevier, 1983)

    Google Scholar 

  115. G.T. Grant, E.R. Morris, D.A. Rees, P.J.C. Smith, D. Thom, Biological interactions between polysaccharides and divalent cations: the egg-box model. FEBS Lett. 32, 195–198 (1973)

    Article  CAS  Google Scholar 

  116. N.E. Simpson, C.L. Stabler, C.P. Simpson, A. Sambanis, The role of the CaCl2–guluronic acid interaction on alginate encapsulated βTC3 cells. J. Biomater. 25, 2603–2610 (2004)

    Google Scholar 

  117. J.C. Crittenden, R.R. Trussell, D.W. Hand, K.J. Howe, G. Tchobanoglous, Water Treatment—Principles and Design, 2nd edn. (Wiley, Hoboken, 2005)

    Google Scholar 

  118. J. Duan, A. Niu, D. Shi, F. Wilson, N.J.D. Graham, Factors affecting the coagulation of seawater by ferric chloride. Desalin. Water Treat. 11, 173–183 (2009)

    Article  CAS  Google Scholar 

  119. J. Duan, J. Gregory, Coagulation by hydrolysing metal salts. Adv. Colloid Interface Sci. 100–102, 475–502 (2003)

    Article  CAS  Google Scholar 

  120. J. Beltrán-Heredia, J. Sánchez-Martín, G. Frutos-Blanco, Schinopsis balansae tannin-based flocculant in removing sodium dodecyl benzene sulfonate. Sep. Purif. Technol. 67, 295–303 (2009)

    Article  CAS  Google Scholar 

  121. J. Beltrán-Heredia, J. Sánchez-Martín, C. Solera-Hernández, Removal of sodium dodecyl benzene sulfonate from water by means of a new tannin-based coagulant: optimisation studies through design of experiments. Chem. Eng. J. 153, 56–61 (2009)

    Article  CAS  Google Scholar 

  122. N. Chaibakhsh, N. Ahmadi, M.A. Zanjanchi, Use of Plantago major L. as a natural coagulant for optimized decolorization of dye-containing wastewater. Ind. Crops Prod. 61, 169–175 (2014)

    Article  CAS  Google Scholar 

  123. B. Bolto, J. Gregory, Organic polyelectrolytes in water treatment. Water Res. 41, 2301–2324 (2007)

    Article  CAS  Google Scholar 

  124. K. Muhle, Floc stability in laminar and turbulent flow, in Coagulation and Flocculation, ed. by B. Dobiás (Marcel Dekker, New York, 1993), pp. 355–390

    Google Scholar 

  125. S.Y. Yoon, Y.L. Deng, Flocculation and reflocculation of clay suspension by different polymer systems under turbulent conditions. J. Colloid Interface Sci. 278, 139–145 (2004)

    Article  CAS  Google Scholar 

  126. M.D. Sikora, R.A. Stratton, The shear stability of flocculated colloids. Tappi 64, 97–101 (1981)

    Google Scholar 

  127. J. Kleimann, C. Gehin-Delval, H. Auweter, M. Borkovec, Super-stoichiometric charge neutralization in particle-polyelectrolyte systems. Langmuir 21, 3688–3698 (2005)

    Article  CAS  Google Scholar 

  128. D.R. Kasper, Theoretical and Experimental Investigation of the Flocculation of Charged Particles in Aqueous Solution by Polyelectrolytes of Opposite Charge (California Institute of Technology, Pasadena, 1971)

    Google Scholar 

  129. J. Gregory, Rates of flocculation of latex particles by cationic polymers. J. Colloid Interface Sci. 42, 448–456 (1973)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nurudeen A. Oladoja Ph.D. .

Rights and permissions

Reprints and permissions

Copyright information

© 2017 The Author(s)

About this chapter

Cite this chapter

Oladoja, N.A., Unuabonah, E.I., Amuda, O.S., Kolawole, O.M. (2017). Mechanistic Insight into the Coagulation Efficiency of Polysaccharide-based Coagulants. In: Polysaccharides as a Green and Sustainable Resources for Water and Wastewater Treatment. SpringerBriefs in Molecular Science(). Springer, Cham. https://doi.org/10.1007/978-3-319-56599-6_2

Download citation

Publish with us

Policies and ethics