Skip to main content

Operational Principles and Material Requirements for Coagulation/Flocculation and Adsorption-based Water Treatment Operations

  • Chapter
  • First Online:
Polysaccharides as a Green and Sustainable Resources for Water and Wastewater Treatment

Abstract

Coagulation/Flocculation (CF) and adsorption-based water treatment operations are important unit processes in water treatment systems. CF is used in any of the stages of the water treatment protocol while adsorption is used only at the tertiary stage of treatment. Adsorption enriches the surface of a liquid or a solid with chemical species from a fluid phase while CF agglomerates colloidal and suspended matters. In this treatise, the underlying operational mechanisms of these two water treatment unit processes are elucidated. Premised on the operational principles, the material requirements for each operation of coagulation and adsorption is also highlighted and discussed in this Chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. C.A. Zaror, Enhanced oxidation of toxic effluents using simultaneous ozonation and activated carbon treatment. J. Chem. Technol. Biotechnol. 70, 21–28 (1997)

    Article  CAS  Google Scholar 

  2. N.A. Oladoja, A critical review of the applicability of Avrami fractional kinetic equation in adsorption-based water treatment studies. Desalin. Water Treat. 1–13 (2015)

    Google Scholar 

  3. Y.-S. Ho, Review of second-order models for adsorption systems. J. Hazard. Mater. B136, 681–689 (2006)

    Article  Google Scholar 

  4. J.E. Saiers, G.M. Hornberger, L. Liang, First- and second-order kinetics approaches for modeling the transport of colloidal particles in porous media. Water Resour. Res. 30, 2499–2506 (1994)

    Article  CAS  Google Scholar 

  5. M.A. McCoy, A.I. Liapis, Evaluation of kinetic-models for biospecific adsorption and its implications for finite bath and column performance. J. Chromatogr. A 548, 25–60 (1991)

    Article  CAS  Google Scholar 

  6. S.V. Mohan, N.C. Rao, J. Karthikeyan, Adsorptive removal of direct azo dye from aqueous phase onto coal based sorbents: a kinetic and mechanistic study. J. Hazard. Mater. 90, 189–204 (2002)

    Article  Google Scholar 

  7. K. Chu, M. Hashim, Modeling batch equilibrium and kinetics of copper removal by crab shell. Sep. Sci. Technol. 38, 3927–3950 (2003)

    Article  CAS  Google Scholar 

  8. D.J. O’Shannessy, D.J. Winzor, Interpretation of deviations from pseudo-first-order kinetic-behavior in the characterization of ligand binding by biosensor technology. Anal. Biochem. 236, 275–283 (1996)

    Article  Google Scholar 

  9. S. Lagergren, Zur theorie der sogenannten adsorption gelöster stoffe. K. Sven. Vetenskapsakad. Handlingar 24, 1–39 (1898)

    Google Scholar 

  10. J. Zeldowitsch, Uber den mechanismus der katalytischen oxydation von CO an MnO2. Acta Physicochim. URSS 1, 364–449 (1934)

    Google Scholar 

  11. Y.S. Ho, Adsorption of heavy metals from waste streams, Ph.D. Thesis, University of Birmingham, Birmingham, U.K. (1995)

    Google Scholar 

  12. Y.S. Ho, G. McKay, Sorption of dye from aqueous solution by peat. Chem. Eng. J. 70, 115–124 (1998)

    Article  CAS  Google Scholar 

  13. Y.S. Ho, G. McKay, Pseudo-second order model for sorption processes. Process Biochem. 34, 451–465 (1999)

    Article  CAS  Google Scholar 

  14. Y.S. Ho, G. McKay, The kinetics of sorption of divalent metal ions onto sphagnum moss peat. Water Res. 34, 735–742 (2000)

    Article  CAS  Google Scholar 

  15. B.A. Bolto, Soluble polymers in water purification. Prog. Polym. Sci. 20, 987–1041 (1995)

    Article  CAS  Google Scholar 

  16. M.A. Yukselen, J. Gregory, The reversibility of floc breakage. Int. J. Min. Process. 73, 251–259 (2004)

    Article  CAS  Google Scholar 

  17. D.T. Ray, R. Hogg, Agglomerate breakage in polymer-flocculated suspensions. Colloid Interface Sci. 116, 256–268 (1987)

    Article  CAS  Google Scholar 

  18. A. Dabrowski, Adsorption—from theory to practice. Adv. Colloid Interface Sci. 93, 135–224 (2001)

    Article  CAS  Google Scholar 

  19. E. Worch, Adsorption Technology in Water Treatment- Fundamentals, Processes (Walter de Gruyter GmbH & Co. KG, Berlin/Boston, Goettingen, 2012)

    Book  Google Scholar 

  20. R.M. Barrer, Zeolites and Clay Minerals (Academic Press, London, 1978)

    Google Scholar 

  21. D.W. Breck, W.G. Eversole, R.M. Milton, T.B. Read, T.L. Thomas, Crystalline zeolites. I. The properties of a new synthetic zeolite, Type A. J. Am. Chem. Soc. 78, 5963–5972 (1956)

    Article  CAS  Google Scholar 

  22. S. Kawamura, Effectiveness of natural polyelectrolytes in water treatment. J. AWWA 88–91 (1991)

    Google Scholar 

  23. Y.S. Ho, W.T. Chiu, C.S. Hsu, C.T. Huang, Sorption of lead ions from aqueous solution using tree fern as a sorbent. Hydrometallurgy 73, 55–61 (2004)

    Article  CAS  Google Scholar 

  24. M. Horsfall Jr., A.A. Abia, A.I. Spiff, Kinetic studies on the adsorption of Cd2+, Cu2+ and Zn2+ ions from aqueous solutions by cassava (Manihot esculenta Cranz) tuber bark waste. Bioresour. Technol. 96(7), 782–789 (2005)

    Google Scholar 

  25. G. Crini, Recent developments in polysaccharide-based materials used as adsorbents in wastewater treatment. Prog. Polym. Sci. 30, 38–70 (2005)

    Article  CAS  Google Scholar 

  26. C. James, C.R. O’Melia, Considering sludge production in the selection of coagulants. J. Am. Water Works Assoc. 74, 158–251 (1982)

    Google Scholar 

  27. A. Ndabigengesere, K.S. Narasiah, B.G. Talbot, Active agents and mechanism of coagulation of turbid waters using Moringa oleifera. Water Res. 29(2), 703–710 (1995)

    Article  CAS  Google Scholar 

  28. A. Ndabigengesere, K.S. Narasiah, Quality of water treated by coagulation using Moringa oleifera seeds. Water Res. 32, 781–791 (1998)

    Article  CAS  Google Scholar 

  29. J. Haaroff, J.L. Cleasby, Comparing aluminum and iron coagulants for in-line filtration of cold waters. J. Am. Water Works Assoc. 80, 168–175 (1988)

    Google Scholar 

  30. WHO, Combating Waterborne Disease at the Household Level (WHO Press, Geneva, Switzerland, 2007)

    Google Scholar 

  31. C. Rudén, Acrylamide and cancer risk—expert risk assessments and the public debate. J. Food Chem. Toxicol. 42, 335–349 (2004)

    Article  Google Scholar 

  32. M. Sciban, M. Klašnja, M. Antov, B. Skrbic, Removal of water turbidity by natural coagulants obtained from chestnut and acorn. Bioresour. Technol. 100, 6639–6643 (2009)

    Article  CAS  Google Scholar 

  33. R. Sanghi, B. Bhattacharya, V. Dixit, V. Singh, Ipomoea dasysperma seed gum: an effective natural coagulant for the decolorization of textile dye solutions. J. Environ. Manage. 81, 36–41 (2006)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nurudeen A. Oladoja Ph.D. .

Rights and permissions

Reprints and permissions

Copyright information

© 2017 The Author(s)

About this chapter

Cite this chapter

Oladoja, N.A., Unuabonah, E.I., Amuda, O.S., Kolawole, O.M. (2017). Operational Principles and Material Requirements for Coagulation/Flocculation and Adsorption-based Water Treatment Operations. In: Polysaccharides as a Green and Sustainable Resources for Water and Wastewater Treatment. SpringerBriefs in Molecular Science(). Springer, Cham. https://doi.org/10.1007/978-3-319-56599-6_1

Download citation

Publish with us

Policies and ethics