Skip to main content

Formation of Cellulose and Protein Blend Biofibers

  • Chapter
  • First Online:
Polysaccharide-based Fibers and Composites

Abstract

Cellulose and proteins are potential polymers for developing biodegradable materials for high value-added applications. A combination with these natural polymers could be useful to enhance the properties of final materials and to extend their application areas. In particular, blend biofibers that are degradable and sustainable can be engineered from a mixture of cellulose and proteins, such as soy protein, silk fibroin, collagen, etc. In a binary polymeric blend, the compatibility of cellulose and proteins is influenced by the characteristics of each polymer in the employed solvent system as well as processing conditions. Therefore, utilizing solvents that can dissolve cellulose and proteins, and coagulants that are non-solvents for both polymers is of importance. In this book chapter, the formation and characteristics of blend biofibers from these polymers will be discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abe K, Murate H, Teramoto A, Nagasse Y (2002) Method for producing keratin-cellulose complex regenerated product and method for recycling keratin- containing fiber product. JP Patent 2002167401

    Google Scholar 

  • Akira H, Eisaku I, Rensuke K, Kenji K (2001) Molecularly composite polymeric material of fibroin/cellulose and process for producing the same. WO Patent 2001036531, 25 May 2001

    Google Scholar 

  • Aminuddin N (1998) Ammonia/ammonium thiocyanate - cellulose system: dissolution, viscoelastic behavior and fiber formation. Dissertation, North Carolina State University, Raleigh NC

    Google Scholar 

  • Amsaveni M, Anumary A, Ashokkumar M, Chandrasekaran B, Thanikaivelan P (2013) Green synthesis and characterization of hybrid collagen–cellulose–albumin biofibers from skin waste. Appl Biochem Biotechnol 171(6):1500–1512

    Article  CAS  Google Scholar 

  • Attwater R, Heinemann A (1926) Improved Artificial Textile Fibre and the Process of the Manufacturing of same. GB Patent 255,623, 29 Jul 1926

    Google Scholar 

  • Belgacem MN, Gandini A (2011) Production, chemistry and properties of cellulose-based materials. In: Plackett D (ed) Biopolymers-new materials for sustainable films and coatings. Wiley, West Sussex, UK, pp 151–178

    Chapter  Google Scholar 

  • Bettelheim FA, Brown WH, Campbell MK, Farrell SO, Torres OJ (2012) Introduction to general organic and biochemistry, 10th edn. Brooks/Cole Cengage Learning, Belmont, CA

    Google Scholar 

  • Biswas A, Shogren RL, Stevenson DG, Willett JL, Bhowmik PK (2006) Ionic liquids as solvents for biopolymers: Acylation of starch and zein protein. Carbohyd Polym 66(4):546–550

    Article  CAS  Google Scholar 

  • Börner K, Rossner E, Mahn H, Irion W (1934) Copper-ammonia-fibroin solutions. US Patent 1,955,221,

    Google Scholar 

  • Brauer S, Kosan B, Meister F, Bauer RU (2009) Method for producing molded bodies from proteins. US Patent 20090051068, 26 Feb 2009

    Google Scholar 

  • Browning BL, Sell LO, Abel W (1954) Cellulose solvents for viscosity measurement - The effect of copper and base concentrations in cuprammonium and cupriethylenediamine solutions. TAPPI 37(7):273–283

    CAS  Google Scholar 

  • Buerger H, Taeger E, Eilers M, Berghof K (2004) Protein shaped body and method for the production thereof according to the NMMO method. US Patent 20040046277, 11 Mar 2004

    Google Scholar 

  • Butler MM, McGrath KP (1998) Protein-based materials. In: Kaplan DL (ed) Biopolymers from renewable resources. Springer, New York, pp 177–194

    Chapter  Google Scholar 

  • Cai J, Zhang L (2005) Rapid dissolution of cellulose in LiOH/urea and NaOH/urea aqueous solutions. Macromol Biosci 5(6):539–548

    Article  CAS  Google Scholar 

  • Cai J, Zhang L (2006) Unique gelation behavior of cellulose in NaOH/urea aqueous solution. Biomacromol 7(1):183–189

    Article  CAS  Google Scholar 

  • Cai J, Zhang L, Zhou J, Li H, Chen H, Jin H (2004) Novel fibers prepared from cellulose in NaOH/urea aqueous solution. Macromol Rapid Commun 25(17):1558–1562

    Article  CAS  Google Scholar 

  • Cai J, Zhang L, Liu S, Liu Y, Xu X, Chen X, Chu B, Guo X, Xu J, Cheng H (2008) Dynamic self-assembly induced rapid dissolution of cellulose at low temperatures. Macromolecules 41(23):9345–9351

    Article  CAS  Google Scholar 

  • Chavassieu HLJ (1910) Process of obtaining proteo-cellulosic products. US Patent 950,435, 22 Feb 1910

    Google Scholar 

  • Choi H-M, Kwon I (2010) Dissolution of zein using protic ionic liquids: N-(2-hydroxyethyl) ammonium formate and N-(2-hydroxyethyl) ammonium acetate. Ind Eng Chem Res 50(4):2452–2454

    Article  CAS  Google Scholar 

  • Chua JM (2009) Uniqlo’s HeatTech Clothing Created Heat From Your Sweat. http://www.ecouterre.com/uniqlos-heattech-clothing-creates-heat-from-yoursweat/. Accessed 17 Jan 2016

  • Ciolacu D, Popa VI (2010) Cellulose allomorphs: Structure, accessibility and reactivity. Polymer science and technology. Nova Science Publishers, New York

    Google Scholar 

  • D’Ambrosio A, Corbellini A (1939) Improvements in or relating to the manufacture of artificial spinnable material from mixed solutions of protein and viscose. GB Patent 511,700, 23 Aug 1939

    Google Scholar 

  • Daiwabo Rayon Co. Ltd. (2016) MILEY “Milk-protein containing viscose rayon”. http://www.daiwabo.co.jp/en/products.html?crid=4. Accessed 17 Jan 2016

  • Dawsey TR, McCormick CL (1990) The lithium chloride/dimethylacetamide solvent for cellulose: a literature review. J Macromol Sci, Rev Macromol Chem Phys 30(3–4):405–440

    Article  Google Scholar 

  • Dupont A-L (2003) Cellulose in lithium chloride/N, N-dimethylacetamide, optimisation of a dissolution method using paper substrates and stability of the solutions. Polymer 44(15):4117–4126

    Article  CAS  Google Scholar 

  • Egal M, Budtova T, Navard P (2008) The dissolution of microcrystalline cellulose in sodium hydroxide-urea aqueous solutions. Cellulose 15(3):361–370

    Article  CAS  Google Scholar 

  • Esselmann P, Kosslinger K, Bitterfeld WK (1936) Manufacture of artificial silk. US Patent 2,059,632, 3 Nov 1936

    Google Scholar 

  • Feng L, Z-l Chen (2008) Research progress on dissolution and functional modification of cellulose in ionic liquids. J Mol Liq 142(1):1–5

    Article  CAS  Google Scholar 

  • Fink HP, Weigel P, Purz HJ, Ganster J (2001) Structure formation of regenerated cellulose materials from NMMO-solutions. Prog Polym Sci 26(9):1473–1524

    Article  CAS  Google Scholar 

  • Firgo H, Seidl S, Bartsch P, Koll B, Mulleder E (1998) Cellulose fibre. US Patent 5,795,522, 18 Aug 1998

    Google Scholar 

  • Franks NE, Varga JK (1979) Process for making precipitated cellulose. US Patent 4,145,532, 20 Mar 1979

    Google Scholar 

  • Freddi G, Pessina G, Tsukada M (1999) Swelling and dissolution of silk fibroin (bombyx mori) in N-methyl morpholine N-oxide. Int J Biol Macromol 24(2):251–263

    Article  CAS  Google Scholar 

  • French AD, Bertoniere NR, Brown RM, Chanzy H, Gray D, Hattori K, Glasser W (2002) Cellulose. In: Mark HF, Kroschwitz JI (eds) Encyclopedia of polymer science and technology, vol 5. 3rd edn. Wiley, Hoboken, NJ, p 473. doi:10.1002/0471440264.pst042

  • Fujita K, MacFarlane DR, Forsyth M (2005) Protein solubilising and stabilising ionic liquids. Chem Commun 38:4804–4806

    Article  CAS  Google Scholar 

  • Fukaya Y, Sugimoto A, Ohno H (2006) Superior solubility of polysaccharides in low viscosity, polar, and halogen-free 1, 3-dialkylimidazolium formates. Biomacromolecules 7(12):3295–3297

    Article  CAS  Google Scholar 

  • Fukaya Y, Hayashi K, Wada M, Ohno H (2008) Cellulose dissolution with polar ionic liquids under mild conditions: required factors for anions. Green Chem 10(1):44–46

    Article  CAS  Google Scholar 

  • Furuhata K, Okada A, Chen Y, Xu YY, Sakamoto M (1994) Dissolution of silk fibroin in lithium halide/organic amide solvent systems. J Seric Sci Jpn 63(4):315–322

    CAS  Google Scholar 

  • Gilbert RD, Kadla JF (1998) Polysaccharides - Cellulose. In: Kaplan DL (ed) Biopolymers from renewable resources. Springer, New York, pp 47–95

    Chapter  Google Scholar 

  • Gord H, Hammer KD, Neeff R, Berghof K, Eilers M, Taeger E, Buerger H (2004) Chewable film containing cellulose. US Patent 20040166209, 26 Aug 2004

    Google Scholar 

  • Gord H, Hammer KD, Melle J (2006) Collagen-based shaped body. WO Patent 2006131285, 14 Dec 2006

    Google Scholar 

  • Goujon N, Wang X, Rajkowa R, Byrne N (2012) Regenerated silk fibroin using protic ionic liquids solvents: towards an all-ionic-liquid process for producing silk with tunable properties. Chem Commun 48(9):1278–1280

    Article  CAS  Google Scholar 

  • Goujon N, Rajkhowa R, Wang X, Byrne N (2013) Effect of solvent on ionic liquid dissolved regenerated Antheraea assamensis silk fibroin. J Appl Polym Sci 128(6):4411–4416

    Article  CAS  Google Scholar 

  • Graenacher C (1934) Cellulose solution. US Patent 1,943,176,

    Google Scholar 

  • Guilbert S, Cuq B (2005) Material formed from proteins. In: Bastioli C (ed) Handbook of biodegradable polymers. Rapra Technology Limited, Shropshire, UK, p 339

    Google Scholar 

  • Happey F, Wormell RL (1949) Regenerated keratin fibres from wool. J Text Inst Trans 40(12):T855–T869

    Article  CAS  Google Scholar 

  • Heinemann K, Taeger E (2000) Production of solutions of fibrillar proteins, especially silk, comprises dissolving the protein in N-methylmorpholine N-oxide. DE Patent 19,841,649, 27 Apr 2000

    Google Scholar 

  • Heinze T, Schwikal K, Barthel S (2005) Ionic liquids as reaction medium in cellulose functionalization. Macromol Biosci 5(6):520–525

    Article  CAS  Google Scholar 

  • Hirano S, Nakahira T, Zhang M, Nakagawa M, Yoshikawa M, Midorikawa T (2002) Wet-spun blend biofibers of cellulose–silk fibroin and cellulose–chitin–silk fibroin. Carbohyd Polym 47(2):121–124

    Article  CAS  Google Scholar 

  • Holbrey J, Swatloski R, Chen J, Daly D, Rogers R (2005) Polymer dissolution and blend formation in ionic liquids. US Patent 20050288484, 29 Dec 2005

    Google Scholar 

  • Hon DNS (1994) Cellulose: a random walk along its historical path. Cellulose 1(1):1–25

    Article  CAS  Google Scholar 

  • Howitt FO (1955) Silk fibroin as a fibrous protein. Text Res J 25:242–246

    Article  Google Scholar 

  • Hu Y, Liu L, Dan W, Dan N, Gu Z (2013) Evaluation of 1-ethyl-3-methylimidazolium acetate based ionic liquid systems as a suitable solvent for collagen. J Appl Polym Sci 130(4):2245–2256

    Article  CAS  Google Scholar 

  • Hudson SM, Cuculo JA (1980) The solubility of unmodified cellulose: a critique of the literature. J Macromol Sci, Rev Macromol Chem Phys C18(1):1–82

    Article  CAS  Google Scholar 

  • Idris A, Vijayaraghavan R, Rana UA, Fredericks D, Patti AF, MacFarlane DR (2013) Dissolution of feather keratin in ionic liquids. Green Chem 15(2):525–534

    Article  CAS  Google Scholar 

  • Idris A, Vijayaraghavan R, Rana UA, Patti AF, MacFarlane DR (2014) Dissolution and regeneration of wool keratin in ionic liquids. Green Chem 16(5):2857–2864

    Article  CAS  Google Scholar 

  • Ikeda M, Mukoyama H (1997) Regenerated cellulosic fiber excellent in dyeability and its production. JP Patent 09-241920

    Google Scholar 

  • Isogai A (1994) Allomorphs of cellulose and other polysaccharides. In: Gilbert RD (ed) Cellulosic polymers, blends and composites. Hanser, Munich, Germany, pp 1–24

    Google Scholar 

  • Isogai A, Usuda M, Kato T, Uryu T, Atalla RH (1989) Solid-state CP/MAS carbon-13 NMR study of cellulose polymorphs. Macromolecules 22(7):3168–3172

    Article  CAS  Google Scholar 

  • Itaya M (1969) Study on the viscose fiber grafted with milk casein. Sen’i Gakkaishi 26(6):286–296

    Article  Google Scholar 

  • Jane J, Lim S, Paetau I, Spence K, Wang S Biodegradable plastics made from agricultural biopolymers. In: Fishman M, Friedman R, Huang S (eds) Symposium on Polymers from Agricultural Coproducts, at the 206th National Meeting of the American-Chemical-Society, Chicago, IL, 1994. ACS Symposium Series. American Chemical Society, pp 92–100

    Google Scholar 

  • Jayme G, Broschinski L (1976) Copper and nickel complex solutions as dissolving media for proteins and cellulose. Cell Chem Technol 10(6):655–672

    CAS  Google Scholar 

  • Jin H, Zha C, Gu L (2007) Direct dissolution of cellulose in NaOH/thiourea/urea aqueous solution. Carbohyd Res 342(6):851–858

    Article  CAS  Google Scholar 

  • Johnson DL (1969) Compounds dissolved in cyclic amine oxides. US Patent 3,447,939, 3 Jun 1969

    Google Scholar 

  • Johnson DL (1970) Method of preparing polymers from a mixture of cyclic amine oxides and polymers. US Patent 3,508,941, 28 Apr 1970

    Google Scholar 

  • Kamida K, Okajima K, Matsui T, Kowsaka K (1984) Study on the solubility of cellulose in aqueous alkali solution by deuteration IR and 13C NMR. Polym J 16(12):857–866

    Article  Google Scholar 

  • Kanegafuchi Spinning CL (1966) Method for producing composite protein-cellulose fibres. GB Patent 1,025,798, 14 Apr 1966

    Google Scholar 

  • Kelly RJ, Ali MA, Roddick-Lanzilotta AD, Worth G, Hassan MM, McLaughlin JR, McKinnon AJ (2008) Composite materials containing keratin. US Patent 7,767,756, 3 Jan 2008

    Google Scholar 

  • K-i Furuhata, Koganei K, Chang H-S, Aoki N, Sakamoto M (1992) Dissolution of cellulose in lithium bromide-organic solvent systems and homogeneous bromination of cellulose with N-bromosuccinimide-triphenylphosphine in lithium bromide-N N-dimethylacetamide. Carbohyd Res 230(1):165–177

    Article  Google Scholar 

  • Kiatyongchai T, Wongsasulak S, Yoovidhya T (2014) Coaxial Electrospinning and Release Characteristics of Cellulose Acetate-Gelatin Blend Encapsulating a Model Drug. J Appl Polym Sci 131 (8)

    Google Scholar 

  • Klemm D, Heublein B, Fink HP, Bohn A (2005) Cellulose: fascinating biopolymer and sustainable raw material. Angew Chem Int Ed Engl 44(22):3358–3393

    Article  CAS  Google Scholar 

  • Koch T (1944) Manufacture of rayon. US Patent 2,345,345, 28 Mar 1944

    Google Scholar 

  • Kotek R (2002) Regenerated cellulose fibers. In: Lewin M (ed) Handbook of fibre chemistry, vol 16. 3rd edn. CRC Press, Boca Raton, FL, pp 667–771

    Google Scholar 

  • Kruszewska I (1997) Clean production action report of greenpeace international toxic campaign. Greenpeace, Amsterdam, The Netherlands

    Google Scholar 

  • Lennox-Kerr P (2000) Milk protein improves rayon. Advances in Textiles Technology, vol October. International Newsletters Ltd, UK

    Google Scholar 

  • Li W, Ke G, Li G, Xu W (2015) Study on the structure and properties of viscose/wool powder blended fibre. Fibres Text East Eur 23 (1 (109)):26–29

    Google Scholar 

  • Libert TF (2010) Cellulose solvents-remarkable history, bright future. In: Libert TF, Heinze TJ, Edgar KJ (eds) 235th American-Chemical-Society National Meeting, New Orleans, LA. ACS Symposium Series. American Chemical Society, pp 3–54

    Google Scholar 

  • Mahomed RS (1966) Improvements in and relating to viscose rayon filaments. GB Patent 1,029,838, 18 May 1966

    Google Scholar 

  • Mantz RA, Fox DM, Green JM, Fylstra PA, De Long HC, Trulove PC (2007) Dissolution of biopolymers using ionic liquids. Z Naturforsc A 62(5–6):275–280

    CAS  Google Scholar 

  • Mao Y, Zhou J, Cai J, Zhang L (2006) Effects of coagulants on porous structure of membranes prepared from cellulose in NaOH/urea aqueous solution. J Membr Sci 279(1):246–255

    Article  CAS  Google Scholar 

  • Marsano E, Corsini P, Arosio C, Boschi A, Mormino M, Freddi G (2005) Wet spinning of bombyx mori silk fibroin dissolved in N-methyl morpholine N-oxide and properties of regenerated fibres. Int J Biol Macromol 37(4):179–188

    Article  CAS  Google Scholar 

  • Marsano E, Canetti M, Conio G, Corsini P, Freddi G (2007) Fibers based on cellulose–silk fibroin blend. J Appl Polym Sci 104(4):2187–2196

    Article  CAS  Google Scholar 

  • Marsano E, Corsini P, Canetti M, Freddi G (2008) Regenerated cellulose-silk fibroin blends fibers. Int J Biol Macromol 43(2):106–114

    Article  CAS  Google Scholar 

  • McCormick CL, Callais PA, Hutchinson BH Jr (1985) Solution studies of cellulose in lithium chloride and N. N-dimethylacetamide. Macromolecules 18(12):2394–2401

    Article  CAS  Google Scholar 

  • McMurry J (2007) Organic Chemistry, 7th edn. Cengage Learning, Belmont, CA

    Google Scholar 

  • Meng Z, Zheng X, Tang K, Liu J, Ma Z, Zhao Q (2012) Dissolution and regeneration of collagen fibers using ionic liquid. Int J Biol Macromol 51(4):440–448

    Article  CAS  Google Scholar 

  • Narayanan G (2014) Electrospinning of poly (epsilon-caprolactone) fibers functionalized with cyclodextrins and their inclusion complexes. North Carolina State University, Raleigh, NC, USA

    Google Scholar 

  • Narayanan G, Gupta BS, Tonelli AE (2014) Poly(ε-caprolactone) Nanowebs Functionalized with α- and γ-Cyclodextrins. Biomacromolecules 15(11):4122–4133

    Article  CAS  Google Scholar 

  • Narayanan G, Gupta BS, Tonelli AE (2015a) Enhanced mechanical properties of poly (ε-caprolactone) nanofibers produced by the addition of non-stoichiometric inclusion complexes of poly (ε-caprolactone) and α-cyclodextrin. Polymer 76:321–330

    Article  CAS  Google Scholar 

  • Narayanan G, Gupta BS, Tonelli AE (2015b) Estimation of the poly (ε-caprolactone) [PCL] and α-cyclodextrin [α-CD] stoichiometric ratios in their inclusion complexes [ICs], and evaluation of porosity and fiber alignment in PCL nanofibers containing these ICs. Data in Brief 5:1048–1055

    Article  Google Scholar 

  • Narayanan G, Ormond BR, Gupta BS, Tonelli AE (2015c) Efficient wound odor removal by β-cyclodextrin functionalized poly (ε-caprolactone) nanofibers. Journal of Applied Polymer Science 132 (45), DOI:10.1002/app.42782

  • Narayanan G, Aguda R, Hartman M, Chung C-C, Boy R, Gupta BS, Tonelli AE (2016a) Fabrication and characterization of poly(ε-caprolactone)/α-cyclodextrin pseudorotaxane nanofibers. Biomacromolecules 17(1):271–279

    Article  CAS  Google Scholar 

  • Narayanan G, Vernekar VN, Kuyinu EL, Laurencin CT (2016b) Poly (lactic acid)-based biomaterials for orthopaedic regenerative engineering. Adv Drug Deliv Rev. doi:10.1016/j.addr.2016.04.015

    Google Scholar 

  • Narayanan G, Chung CC, Aguda RM, Boy R, Hartman M, Mehraban N, Gupta BS, Tonelli AE (2016c) Correlation of the stoichiometries of poly (ε-caprolactone) and α-cyclodextrin pseudorotaxanes with their solution rheology and the molecular orientation, crystallite size, and thermomechanical properties of their nanofibers. RSC Adv

    Google Scholar 

  • Nevell TP, Zeronian SH (1985) Cellulose chemistry fundamentals. In: Nevell TP, Zeronian SH (eds) Cellulose chemistry and its applications. Halsted Press, New York, pp 15–29

    Google Scholar 

  • Nicoll WD (1950) Process for producing artificial filaments. US Patent 2,515,889, 18 Jul 1950

    Google Scholar 

  • Olsson C, Wesman G (2013) Direct dissolution of cellulose: background, means and applications. Cellulose - Fundamental aspects, InTech, Online

    Google Scholar 

  • Phillips DM, Drummy LF, Conrady DG, Fox DM, Naik RR, Stone MO, Trulove PC, De Long HC, Mantz RA (2004) Dissolution and regeneration of bombyx mori silk fibroin using ionic liquids. J Am Chem Soc 126(44):14350–14351

    Article  CAS  Google Scholar 

  • Pinkert A, Marsh KN, Pang S, Staiger MP (2009) Ionic liquids and their interaction with cellulose. Chem Rev 109(12):6712–6728

    Article  CAS  Google Scholar 

  • Qi H, Chang C, Zhang L (2008) Effects of temperature and molecular weight on dissolution of cellulose in NaOH/urea aqueous solution. Cellulose 15(6):779–787

    Article  CAS  Google Scholar 

  • Qi H, Yang Q, Zhang L, Liebert T, Heinze T (2011) The dissolution of cellulose in NaOH-based aqueous system by two-step process. Cellulose 18(2):237–245

    Article  CAS  Google Scholar 

  • Rowland SP, Bertoniere NR (1985) Chemical methods of studying supramolecular structure. In: Nevell TP, Zeronian SH (eds) Cellulose chemistry and its applications. Ellis Horwood Limited, West Sussex, England, pp 112–137

    Google Scholar 

  • Saechtling H (1995) Saechtling international plastics handbook: For the technologist, engineer, and user, 3rd edn. Hanser, Munich, Germany

    Google Scholar 

  • Saleh MS (2014) Fibrous protein processing method. US Patent 20140326165, 6 Nov 2014

    Google Scholar 

  • Sangwatanaroj U (1995) The mechanism of dissolution of cellulose in the ammonia/ammonium thiocyanate solvent. Dissertation/Thesis, North Carolina State University, Raleigh NC

    Google Scholar 

  • Sashina ES, Novoselov NP, Heinemann K (2003) Dissolution of silk fibroin in N-methylmorpholine-N-oxide and its mixtures with organic solvents. Russ J Appl Chem 76(1):128–131

    Article  CAS  Google Scholar 

  • Sashina ES, Bochek AM, Novoselov NP, Kirichenko DA (2006) Structure and solubility of natural silk fibroin. Russ J Appl Chem 79(6):869–876

    Article  CAS  Google Scholar 

  • Sashina ES, Janowska G, Zaborski M, Vnuchkin AV (2007) Compatibility of fibroin/chitosan and fibroin/cellulose blends studied by thermal analysis. J Therm Anal Calorim 89(3):887–891

    Article  CAS  Google Scholar 

  • Schuster KC, Rous MA, Hainbucher KM, Richardt D, Redlinger S, Firgo H, Kroner G (2012) Functionalized molded cellulose body and method for producing the same. US Patent 20120318169, 20 Dec 2012

    Google Scholar 

  • Schweizer E (1857) Das kupferoxyd-ammoniak, ein auflösungsmittel für die pflanzenfaser. J Prakt Chem 72(1):109–111

    Article  Google Scholar 

  • Sionkowska A, Lewandowska K, Planecka A, Szarszewska P, Krasinska K, Kaczmarek B, Kozlowska J (2014) Biopolymer blends as potential biomaterials and cosmetic materials. Key Eng Mater 583:95–100

    Article  CAS  Google Scholar 

  • Stall AD, Turbak AF (1999) Slowing and controlling the rapid precipitation of cellulose from tertiary amine oxide solutions by adding a water soluble polymer having a high molecular weight. US Patent 5,951,933, 14 Sep 1999

    Google Scholar 

  • Stevens MP (1999) Polymer chemistry: An introduction, 3rd edn. Oxford University Press, New York

    Google Scholar 

  • Striegel AM (2003) Advances in the understanding of the dissolution mechanism of cellulose in DMAc/LiCl. J Chil Chem Soc 48(1):73–77

    Article  CAS  Google Scholar 

  • Strobin G, Wawro D, Stęplewski W, Ciechańska D, Jóźwicka J, Sobczak S, Haga A (2006) Formation of cellulose/silk-fibroin blended fibres. Fibres Text East Eur 14 (4 (58)):32–35

    Google Scholar 

  • Swatloski RP, Spear SK, Holbrey JD, Rogers RD (2002) Dissolution of cellulose with ionic liquids. J Am Chem Soc 124(18):4974–4975

    Article  CAS  Google Scholar 

  • Tomczyńska-Mleko M, Terpiłowski K, Mleko S (2015a) New product development: Cellulose/egg white protein blend fibers. Carbohyd Poly 126:168–174

    Article  CAS  Google Scholar 

  • Tomczyńska-Mleko M, Terpiłowski K, Mleko S (2015b) Physicochemical properties of cellulose/whey protein fibers as a potential material for active ingredients release. Food Hydrocolloids 49:232–239

    Article  CAS  Google Scholar 

  • Tomlinson SR, Kehr CW, Lopez MS, Schlup JR, Anthony JL (2014) Solubility of the corn protein zein in imidazolium-based ionic liquids. Ind Eng Chem Res 53(6):2293–2298

    Article  CAS  Google Scholar 

  • Tosh B, Saikia CN, Dass NN (2000) Homogeneous esterification of cellulose in the lithium chloride–N, N-dimethylacetamide solvent system: effect of temperature and catalyst. Carbohyd Res 327(3):345–352

    Article  CAS  Google Scholar 

  • Turbak AF, Hammer RB, Davies RE, Portnoy NA (1977) A critical review of cellulose solvent systems. In: Turbak AF (ed) Solvent spun rayon, modified cellulose fibers and derivatives, vol 58. ACS Symposium Series. American Chemical Society, Washington, D.C., pp 12–24

    Chapter  Google Scholar 

  • Vaz CM, Cunha AM (2007) Soy-based materials for drug release applications. In: Fakirov S, Bhattacharyya D (eds) Handbook of engineering biopolymers: homopolymers, blends and composites. Hanser, Munich, Germany, p 465

    Chapter  Google Scholar 

  • Vincent JFV, Shewry PR, Tatham AS, Bailey AJ (2003) Mechanical applications of elastomeric proteins -A biomimetic approach. In: Shewry PR, Tatham AS, Bailey AJ (eds) Elastomeric proteins: structures, biomechanical properties, and biological roles. Cambridge University Press, New York, pp 352–365

    Chapter  Google Scholar 

  • Wakeham H, Toner RK, Jolley HR, Taylor HS (1951) The technical possibilities for a regenerated silk. Text Res J 21(2):110–115

    Article  CAS  Google Scholar 

  • Wang Y, Zhang L, Yu L (2009) Blends and composites based on cellulose and natural polymers. In: Yu L (ed) Biodegradable polymer blends and composites from renewable resources. Wiley, Hoboken, NJ, pp 129–161

    Chapter  Google Scholar 

  • Wang Q, Yang Y, Chen X, Shao Z (2012) Investigation of rheological properties and conformation of silk fibroin in the solution of AMImCl. Biomacromolecules 13(6):1875–1881

    Article  CAS  Google Scholar 

  • Wang H, Gurau G, Rogers RD (2014) Dissolution of biomass using ionic liquids. In: Zhang S, Wang J, Lu X, Zhou Q (eds) Structures and interactions of ionic liquids. Springer, Berlin, pp 79–105

    Chapter  Google Scholar 

  • Wawro D, Stęplewski W (2010) Producing of continuous cellulose fibres modified with plant proteins. Fibres Text East Eur 18(6):83

    Google Scholar 

  • Weigel P, Fink HP, Doss M, Beckers S, Hendrikx R (2003) Tubular films formed from cellulose/protein blends. US Patent 20030062648, 3 Apr 2003

    Google Scholar 

  • Wertz J-L, Bédué O, Mercier JP (2010) Cellulose science and technology. EPFL Press, Lausanne, Switzerland

    Google Scholar 

  • Wilkes AG, Woodings C (2001) The viscose process. Regenerated cellulose fibres. Woodhead Publishing Limited, Cambridge, England, pp 37–61

    Chapter  Google Scholar 

  • Winkworth-Smith C, Foster TJ (2013) General overview of biopolymers: structure, properties, and applications. In: Thomas S, Durand D, Chassenieux C, Jyotishkumar P (eds) Handbook of biopolymer-based materials: from blends and composites to gels and complex networks. Wiley-VCH, Weinheim, Germany, pp 7–36

    Chapter  Google Scholar 

  • Wongsasulak S, Patapeejumruswong M, Weiss J, Supaphol P, Yoovidhya T (2010) Electrospinning of food-grade nanofibers from cellulose acetate and egg albumen blends. J Food Eng 98(3):370–376

    Article  CAS  Google Scholar 

  • Woodings C (2002) Cellulose fibers, regenerated. In: Mark HF, Kroschwitz JI (eds) Encyclopedia of polymer science and technology, vol 5. 3rd edn. Wiley, Hoboken. NJ, p 532

    Google Scholar 

  • Wormell RL, Happey F (1949) Regenerated keratin fibres. Nature 163(4131):18

    Article  CAS  Google Scholar 

  • Wrzesniewska-Tosik K, Wawro D, Ratajska M, Steplewski W (2007) Novel biocomposites with feather keratin. Fibres Text East Eur 15(5–6):157–162

    CAS  Google Scholar 

  • Wu R-L, Wang X-L, Wang Y-Z, Bian X-C, Li F (2009) Cellulose/soy protein isolate blend films prepared via room-temperature ionic liquid. Ind Eng Chem Res 48(15):7132–7136

    Article  CAS  Google Scholar 

  • Xie H, Li S, Zhang S (2005) Ionic liquids as novel solvents for the dissolution and blending of wool keratin fibers. Green Chem 7(8):606–608

    Article  CAS  Google Scholar 

  • Xu Y, Zhang Y, Shao H, Hu X (2005) Solubility and rheological behavior of silk fibroin (bombyx mori) in N-methyl morpholine N-oxide. Int J Biol Macromol 35(3):155–161

    Article  CAS  Google Scholar 

  • Yamada M, Ohshima K (2009) Method of manufacturing cellulose-gelatin composite viscose rayon filament. US Patent 20090166919, 2 Jul 2009

    Google Scholar 

  • Yamada M, Ohshima K, Arimochi M, Nakajima K (2004) Spinning dope for cellulose/protein compound fiber and cellulose/protein compound fiber. JP Patent 2004-149953, 24 May 2004

    Google Scholar 

  • Yamazaki F (2001a) Antibacterial viscose rayon and its production. JP Patent 2001-003223, 09 Jan 2001

    Google Scholar 

  • Yamazaki F (2001b) Viscose rayon having modified feeling. JP Patent 2001-003224, 09 Jan 2001

    Google Scholar 

  • Yang Q, Fukuzumi H, Saito T, Isogai A, Zhang L (2011) Transparent cellulose films with high gas barrier properties fabricated from aqueous alkali/urea solutions. Biomacromolecules 12(7):2766–2771

    Article  CAS  Google Scholar 

  • Yao Y, Zhang E, Xia X, Yu J, Wu K, Zhang Y, Wang H (2015) Morphology and properties of cellulose/silk fibroin blend fiber prepared with 1-butyl-3-methylimidazolium chloride as solvent. Cellulose 22(1):625–635

    Article  CAS  Google Scholar 

  • Zhang L, Ruan D, Zhou J (2001) Structure and properties of regenerated cellulose films prepared from cotton linters in NaOH/urea aqueous solution. Ind Eng Chem Res 40(25):5923–5928

    Article  CAS  Google Scholar 

  • Zhang L, Ruan D, Gao S (2002) Dissolution and regeneration of cellulose in NaOH/thiourea aqueous solution. J Polym Sci B Polym Phys 40(14):1521–1529

    Article  CAS  Google Scholar 

  • Zhang H, Wu J, Zhang J, He J (2005) 1-Allyl-3-methylimidazolium chloride room temperature ionic liquid: a new and powerful nonderivatizing solvent for cellulose. Macromolecules 38(20):8272–8277

    Article  CAS  Google Scholar 

  • Zhang SA, Li FX, Yu JY (2011) Novel Cellulose/SPI blend bio-fibers prepared via direct dissolving approach. J Eng Fibers Fabr 6(1):31–37

    CAS  Google Scholar 

  • Zhang L, Qiao C, Ding Y, Cheng J, Li T (2012) Rheological behavior of gelatin/1-allyl-3-methylimidazolium chloride solutions. J Macromol Sci B 51(4):747–755

    Article  CAS  Google Scholar 

  • Zhou Z, Zheng H, Wei M, Huang J, Chen Y (2008) Structure and mechanical properties of cellulose derivatives/soy protein isolate blends. J Appl Polym Sci 107(5):3267–3274

    Article  CAS  Google Scholar 

  • Zhou Z, Weiren B, Youbo D, Jinming D (2015) Preparation and characterization of cyclotriphosphazenekeratin/viscose fibers. Fiber Polym 16(3):560–564

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richard Kotek .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Cite this chapter

Boy, R., Narayanan, G., Kotek, R. (2018). Formation of Cellulose and Protein Blend Biofibers. In: Lucia, L., Ayoub, A. (eds) Polysaccharide-based Fibers and Composites. Springer, Cham. https://doi.org/10.1007/978-3-319-56596-5_5

Download citation

Publish with us

Policies and ethics