Skip to main content

One Step Dissolution, Extrusion, and Fiber Spinning of Chitin Using Ionic Liquid Solvents

  • Chapter
  • First Online:

Abstract

In this chapter we will discuss a one-step dissolution and fibre spinning method for chitin using ionic liquid 1-Ethyl-3-Methylimidazolium Acetate (EMImAc) as an environmentally benign solvent. A temperature-sensitive behaviour of chitin/EMImAc solution was observed during the fibre extrusion process. The regenerated chitin fibres were characterised through Fourier Transform Infrared Spectroscopy (FTIR), tensile testing, Scanning Electron Microscopy (SEM) and Wide Angle X-ray Diffraction (WAXD). Both molecular alignment and mechanical properties of chitin fibre increased as the draw ratio increased, confirmed by tensile testing results and the full width at half maximum (FWHM) of WAXD azimuthal scans. The regenerated chitin fibres with well controlled length, and good mechanical properties reported in this work could be potentially useful to explore the second most widely available polymer in nature for engineering and biomedical applications.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Al-Sawalmih A, Li C, Siegel S, Fabritius H, Yi S, Raabe D, Fratzl P, Paris O (2008) Microtexture and chitin/calcite orientation relationship in the mineralized exoskeleton of the American lobster. Adv Funct Mater 18(20):3307–3314

    Article  CAS  Google Scholar 

  • Barber PS, Griggs CS, Bonner JR, Rogers RD (2013) Electrospinning of chitin nanofibers directly from an ionic liquid extract of shrimp shells. Green Chem 15(3):601–607

    Article  CAS  Google Scholar 

  • Cárdenas G, Cabrera G, Taboada E, Miranda SP (2004) Chitin characterization by SEM, FTIR, XRD, and 13C cross polarization/mass angle spinning NMR. J Appl Polym Sci 93(4):1876–1885

    Article  Google Scholar 

  • Ding BB, Cai J, Huang JC, Zhang LN, Chen Y, Shi XW, Du YM, Kuga S (2012) Facile preparation of robust and biocompatible chitin aerogels. J Mater Chem 22(12):5801–5809

    Article  CAS  Google Scholar 

  • Dutkiewicz JK (2002) Superabsorbent materials from shellfish waste—a review. J Biomed Mater Res 63(3):373–381

    Article  CAS  Google Scholar 

  • Einbu A, Naess SN, Elgsaeter A, Vårum KM (2004) Solution properties of chitin in alkali. Biomacromolecules 5(5):2048–2054

    Article  CAS  Google Scholar 

  • Fink HP, Weigel P, Purz HJ, Ganster J (2001) Structure formation of regenerated cellulose materials from NMMO-solutions. Prog Polym Sci 26(9):1473–1524

    Article  CAS  Google Scholar 

  • FitzPatrick M, Champagne P, Cunningham MF (2012) Quantitative determination of cellulose dissolved in 1-ethyl-3-methylimidazolium acetate using partial least squares regression on FTIR spectra. Carbohyd Polym 87(2):1124–1130

    Article  CAS  Google Scholar 

  • Fox DM, Awad WH, Gilman JW, Maupin, PH, De Long HC, Trulove PC 92003) Flammability, thermal stability, and phase change characteristics of several trialkylimidazolium salts. Green Chem 5(6):724–727

    Google Scholar 

  • Green JM III, Fox DM, De Long HC, Trulove PC (2006) Using well known methods in unprecedented ways: The dissolution/reconstitution of chitin and chitosan using room temperature ionic liquids. Abstracts of Papers of the American Chemical Society, p 231

    Google Scholar 

  • Hermanutz F, Gaehr F, Uerdingen E, Meister F, Kosan B (2008) New developments in dissolving and processing of cellulose in ionic liquids. Macromol Symposia 262:23–27

    Article  CAS  Google Scholar 

  • Jaworska MM, Kozlecki T, Gorak A (2012) Review of the application of ionic liquids as solvents for chitin. J Polym Eng 32(2):67–69

    Article  CAS  Google Scholar 

  • Kittur FS, Kumar KR, Tharanathan RN (1998) Functional packaging properties of chitosan films. Zeitschrift Fur Lebensmittel-Untersuchung Und-Forschung a-Food Res Technol 206(1):44–47

    Article  CAS  Google Scholar 

  • Krajewska B (2004) Application of chitin- and chitosan-based materials for enzyme immobilizations: a review. Enzyme Microb Technol 35(2–3):126–139

    Article  CAS  Google Scholar 

  • Min BM, Lee SW, Lim JN, You Y, Lee TS, Kang PH, Park WH (2004) Chitin and chitosan nanofibers: electrospinning of chitin and deacetylation of chitin nanofibers. Polymer 45(21):7137–7142

    Article  CAS  Google Scholar 

  • Miya M, Iwamoto R, Yoshikawa S, Mima S (1980) I.r. spectroscopic determination of CONH content in highly deacylated chitosan. Int J Biol Macromol 2(5):323–324

    Article  CAS  Google Scholar 

  • Muzzarelli RAA (1977) Chitin. Pergamon Press, Oxford

    Google Scholar 

  • Nishi N, Noguchi J, Tokura S, Shiota H (1979) Studies on chitin. I. Acetylation of chitin. Polym J 11(1):27–32

    Article  CAS  Google Scholar 

  • Ogawa Y, Kimura S, Wada M, Kuga S (2010) Crystal analysis and high-resolution imaging of microfibrillar α-chitin from Phaeocystis. J Struct Biol 171(1):111–116

    Article  CAS  Google Scholar 

  • Oh DX, Shin S, Lim C, Hwang DS (2013) Dopamine-mediated sclerotization of regenerated chitin in ionic liquid. Materials 6(9):3826–3839

    Article  CAS  Google Scholar 

  • Peter MG (1995) Applications and environmental aspects of chitin and chitosan. J Macromol Sci-Pure Appl Chem A 32(4):629–640

    Google Scholar 

  • Poirier M, Charlet G (2002) Chitin fractionation and characterization in N N-dimethylacetamide/lithium chloride solvent system. Carbohydr Polym 50(4):363–370

    Article  CAS  Google Scholar 

  • Qin Y, Lu XM, Sun N, Rogers RD (2010) Dissolution or extraction of crustacean shells using ionic liquids to obtain high molecular weight purified chitin and direct production of chitin films and fibers. Green Chem 12(6):968–971

    Article  CAS  Google Scholar 

  • Ramos VM, Heras NM, Rodrı A, Agulló E (2003) Modified chitosan carrying phosphonic and alkyl groups. Carbohyd Polym 51(4):425–429

    Article  CAS  Google Scholar 

  • Revahmoiseev S, Carroad PA (1981) Conversion of the enzymatic hydrolysate of shellfish waste chitin to single-cell protein. Biotechnol Bioeng 23(5):1067–1078

    Article  CAS  Google Scholar 

  • Rinaudo M (2006) Chitin and chitosan: Properties and applications. Prog Polym Sci 31(7):603–632

    Article  CAS  Google Scholar 

  • Rudall KM (1963) The chitin/protein complexes of insect cuticles. In: Beament JWL, Wigglesworth JET, VB (eds) Advances in insect physiology. Academic Press: pp 257–313

    Google Scholar 

  • Sato T, Ishii T, Okahata Y (2001) In vitro gene delivery mediated by chitosan. Effect of pH, serum, and molecular mass of chitosan on the transfection efficiency. Biomaterials 22(15):2075–2080

    Article  CAS  Google Scholar 

  • Shahidi F, Arachchi JKV, Jeon YJ (1999) Food applications of chitin and chitosans. Trends Food Sci Technol 10(2):37–51

    Article  CAS  Google Scholar 

  • Singh N, Koziol KKK, Chen J, Patil AJ, Gilman JW, Trulove PC, Kafienah W, Rahatekar SS (2013a) Ionic liquids-based processing of electrically conducting chitin nanocomposite scaffolds for stem cell growth. Green Chem 15(5):1192–1202

    Article  CAS  Google Scholar 

  • Singh N, Rahatekar SS, Koziol KKK, Ng TS, Patil AJ, Mann S, Hollander AP, Kafienah W (2013b) Directing chondrogenesis of stem cells with specific blends of cellulose and silk. Biomacromolecules 14(5):1287–98

    Article  CAS  Google Scholar 

  • Synowiecki J, Al-Khateeb NA (2003) Production, properties, and some new applications of chitin and its derivatives. Crit Rev Food Sci Nutr 43(2):145–171

    Article  CAS  Google Scholar 

  • Tanner SF, Chanzy H, Vincendon M, Roux JC, Gaill F (1990) High-resolution solid-state carbon-13 nuclear magnetic resonance study of chitin. Macromolecules 23(15):3576–3583

    Article  CAS  Google Scholar 

  • Tamura H, Nagahama H, Tokura S (2006) Preparation of chitin hydrogel under mild conditions. Cellulose 13(4):357–364

    Article  CAS  Google Scholar 

  • Tokura S, Nishi N, Noguchi J (1979) Studies on chitin. III. Preparation of chitin fibers. Polym J 11(10):781–786

    Article  CAS  Google Scholar 

  • Wang WT, Zhu J, Wang XL, Huang Y, Wang YZ (2010) Dissolution behavior of chitin in ionic liquids. J Macromol Sci Part B-Phys 49(3):528–541

    Article  CAS  Google Scholar 

  • Wu Y, Sasaki T, Irie S, Sakurai K (2008) A novel biomass-ionic liquid platform for the utilization of native chitin. Polymer 49(9):2321–2327

    Article  CAS  Google Scholar 

  • Yang A, Wu RJ (2001) Mechanical properties and interfacial interaction of a novel bioabsorbable chitin fiber reinforced poly(epsilon-caprolactone) composite. J Mater Sci Lett 20(11):977–979

    Article  CAS  Google Scholar 

  • Yudin VE, Dobrovolskaya IP, Neelov IM, Dresvyanina EN, Popryadukhin PV, Ivan’kova EM, Elokhovskii VY, Kasatkin IA, Okrugin BM, Morganti P (2014) Wet spinning of fibers made of chitosan and chitin nanofibrils. Carbohyd Polym 108:176–182

    Article  CAS  Google Scholar 

  • Zhu SD, Wu YX, Chen QM, Yu ZN, Wang CW, Jin SW, Ding YG, Wu G (2006) Dissolution of cellulose with ionic liquids and its application: a mini-review. Green Chem 8(4):325–327

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by Faculty of Engineering, Centre for Nanoscience and Quantum Information (NSQI) and School of Physics at University of Bristol. The Ganesha X-ray scattering apparatus used for this research was purchased under EPSRC Grant “Atoms to Applications” Grant ref. EP/K035746/1.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sameer Sharad Rahatekar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Cite this chapter

Zhu, C., Richardson, R.M., Song, Y., Rahatekar, S.S. (2018). One Step Dissolution, Extrusion, and Fiber Spinning of Chitin Using Ionic Liquid Solvents. In: Lucia, L., Ayoub, A. (eds) Polysaccharide-based Fibers and Composites. Springer, Cham. https://doi.org/10.1007/978-3-319-56596-5_2

Download citation

Publish with us

Policies and ethics