Skip to main content

Problem Graph for Warehousing Design

  • Chapter
  • First Online:
TRIZ – The Theory of Inventive Problem Solving

Abstract

Warehousing plays a key role in supply chain performance (reactivity, flexibility, quality). In order to be competitive, reorganization of the warehouse is often required. The reorganization generally occurs via a design process based on two main stages. First, the designers have to precisely identify the design problems. Second, they have to design solutions to solve the problems. Academic researchers in warehousing design are used to studying all the different operations (receiving, storage, order picking, shipping) one by one while the warehouse design problems are linked together. As far as we know, the literature does not propose any model that capitalizes and links all the operations-related problems and solutions needed for warehouse designing. In this chapter, we propose a reference model as a graph including both the problems and the solutions advocated by a French third-party logistics (3PL) provider and quoted in the literature. The creation of such a model has been suggested in the state of the art in the literature. This model has been designed using a semantic and a syntax inspired by the TRIZ problem graph and with a taxonomy standardizing the vocabulary. The problem-solution graph is made up of 31 problems assessed by 31 evaluation parameters and 49 solutions defined by 73 action parameters. An industrial case study, in a French 3PL warehouse of 35,000 m2 and 45,805 locations, proves the value of such a graph.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Accorsi R, Manzini R, Bortolini M (2012) A hierarchical procedure for storage allocation and assignment within an order-picking system. A case study. Int J Logist Res Appl 15(6):351–364

    Article  Google Scholar 

  • Bartholdi JJ, Gue KR (2000) Reducing labor costs in an LTL crossdocking terminal. Oper Res 48(6):823–832

    Article  Google Scholar 

  • Bartholdi JJ, Hackman ST (2008) Allocating space in a forward pick area of a distribution center for small parts. IIE Trans 40(11):1046–1053

    Article  Google Scholar 

  • Bassan Y, Roll Y, Rosenblatt MJ (1980) Internal layout design of a warehouse. AIIE Trans 12(4):317–322

    Article  Google Scholar 

  • Battini D, Calzavara M, Persona A, Sgarbossa F (2015) Order picking system design: the storage assignment and travel distance estimation (SA&TDE) joint method. Int J Prod Res 53(4):1077–1093

    Article  Google Scholar 

  • Berglund P, Batta R (2012) Optimal placement of warehouse cross-aisles in a picker-to-part warehouse with class-based storage. IIE Trans 44(2):107–120

    Article  Google Scholar 

  • Berry JR (1968) Elements of warehouse layout. Int J Prod Res 7(2):105–121

    Article  Google Scholar 

  • Bindi F, Manzini R, Pareschi A, Regattieri A (2009) Similarity-based storage allocation rules in an order picking system: an application to the food service industry. Int J Logist Res Appl 12(4):233–247

    Article  Google Scholar 

  • Bottani E, Cecconi M, Vignali G, Montanari R (2012) Optimisation of storage allocation in order picking operations through a genetic algorithm. Int J Logist Res Appl 15(2):127–146

    Article  Google Scholar 

  • Boysen N, Stephan K (2013) The deterministic product location problem under a pick-by-order policy. Discrete Appl Math 161(18):2862–2875

    Article  MathSciNet  MATH  Google Scholar 

  • Bozer YA, Kile JW (2008) Order batching in walk-and-pick order picking systems. Int J Prod Res 46(7):1887–1909

    Article  MATH  Google Scholar 

  • Brynzér H, Johansson MI (1996) Storage location assignment: using the product structure to reduce order picking times. Int J Prod Econ 46–47:595–603

    Article  Google Scholar 

  • Cardona LF, Rivera L, Martínez HJ (2012) Analytical study of the Fishbone Warehouse layout. Int J Logist Res Appl 15(6):365–388

    Article  Google Scholar 

  • Cardona LF, Soto DF, Rivera L, Martínez HJ (2015) Detailed design of fishbone warehouse layouts with vertical travel. Int J Prod Econ 170C:825–837

    Article  Google Scholar 

  • Caron F, Marchet G, Perego A (1998) Routing policies and COI-based storage policies in picker-to-part systems. Int J Prod Res 36(3):713–732

    Article  MATH  Google Scholar 

  • Caron F, Marchet G, Perego A (2000a) Layout design in manual picking systems: a simulation approach. Integr Manuf Syst 11(2):94–104

    Article  MATH  Google Scholar 

  • Caron F, Marchet G, Perego A (2000b) Optimal layout in low-level picker-to-part systems. Int J Prod Res 38(1):101–117

    Article  MATH  Google Scholar 

  • Cavallucci D, Khomenko N (2007) From TRIZ to OTSM-TRIZ: addressing complexity challenges in inventive design. Int J Prod Dev. doi:10.1504/IJPD.2007.011530

    Google Scholar 

  • Cavallucci D, Rousselot F, Zanni C (2010) Initial situation analysis through problem graph. CIRP J Manuf Sci Technol 2(4):310–317

    Article  Google Scholar 

  • Çelk M, Süral H (2014) Order picking under random and turnover-based storage policies in fishbone aisle warehouses. IIE Trans 46(3):283–300

    Article  Google Scholar 

  • Chan FTS, Chan HK (2011) Improving the productivity of order picking of a manual-pick and multi-level rack distribution warehouse through the implementation of class-based storage. Expert Syst Appl 38(3):2686–2700

    Article  Google Scholar 

  • Chen M-C, Wu H-P (2005) An association-based clustering approach to order batching considering customer demand patterns. Omega 33(4):333–343

    Article  Google Scholar 

  • Chen C-M, Gong Y, De Koster RBM, Van Nunen JAEE (2010) A flexible evaluative framework for order picking systems production. Oper Manage 19(1):70–82

    Google Scholar 

  • Chen F, Wang H, Qi C, Xie Y (2013) An ant colony optimization routing algorithm for two order pickers with congestion consideration. Comput Ind Eng 66(1):77–85

    Article  Google Scholar 

  • Cheng C-Y, Chen Y-Y, Chen T-L, Yoo J-JW (2015) Using a hybrid approach based on the particle swarm optimization and ant colony optimization to solve a joint order batching and picker routing problem. Int J Prod Econ 170C:805–814

    Article  Google Scholar 

  • Chew EP, Tang LC (1999) Travel time analysis for general item location assignment in a rectangular warehouse. Eur J Oper Res 112(3):582–597

    Article  MATH  Google Scholar 

  • Chuang Y-F, Lee H-T, Lai Y-C (2012) Item-associated cluster assignment model on storage allocation problems. Comput Ind Eng 63(4):1171–1177

    Article  Google Scholar 

  • Cormier G, Gunn EA (1992) A review of warehouse models. Eur J Oper Res 58(1):3–13

    Article  Google Scholar 

  • Daniels RL, Rummel JL, Schantz R (1998) A model for warehouse order picking. Eur J Oper Res 105(1):1–17

    Article  MATH  Google Scholar 

  • De Koster R, Van Der Poort E (1998) Routing orderpickers in a warehouse: a comparison between optimal and heuristic solutions. IIE Trans 30(5):469–480

    Article  Google Scholar 

  • De Koster MBM, Van der Poort ES, Wolters M (1999) Efficient orderbatching methods in warehouses. Int J Prod Res 37(7):1479–1504

    Article  MATH  Google Scholar 

  • De Koster R, Le-Duc T, Roodbergen KJ (2007) Design and control of warehouse order picking: a literature review. Eur J Oper Res 182(2):481–501

    Article  MATH  Google Scholar 

  • Francis RL (1967) On some problems of rectangular warehouse design and layout. J Ind Eng 18(10):595–604

    Google Scholar 

  • Frazele EA, Sharp GP (1989) Correlated assignment strategy can improve any order-picking operation. Ind Eng 21(4):33–37

    Google Scholar 

  • Gademann N, Velde S (2005) Order batching to minimize total travel time in a parallel-aisle warehouse. IIE Trans 37(1):63–75

    Article  Google Scholar 

  • Gademann AJRM, Van Den Berg JP, Van Der Hoff HH (2001) An order batching algorithm for wave picking in a parallel-aisle warehouse. IIE Trans 33(5):385–398

    Article  Google Scholar 

  • Gibson DR, Sharp GP (1992) Order batching procedures. Eur J Oper Res 58(1):57–67

    Article  Google Scholar 

  • Goetschalckx M, Ratliff HD (1988a) Order picking in an aisle. IIE Trans 20(1):53–62

    Article  Google Scholar 

  • Goetschalckx M, Ratliff HD (1988b) An efficient algorithm to cluster order picking items in a wide aisle. Eng Costs Prod Econ 13(4):263–271

    Article  Google Scholar 

  • Goetschalckx M, Ratliff HD (1991) Optimal lane depths for single and multiple products in block stacking storage systems. IIE Trans 23(3):245–258

    Article  Google Scholar 

  • Gray AE, Karmarkar US, Seidmann A (1992) Design and operation of an order-consolidation warehouse: models and application. Eur J Oper Res 58(1):14–36

    Article  Google Scholar 

  • Gu J, Goetschalckx M, McGinnis LF (2007) Research on warehouse operation: a comprehensive review. Eur J Oper Res 177(1):1–21

    Article  MATH  Google Scholar 

  • Gu J, Goetschalckx M, McGinnis LF (2010) Research on Warehouse design and performance evaluation: a comprehensive review. Eur J Oper Res 203(3):539–549

    Article  MATH  Google Scholar 

  • Gue KR (1999) The effects of trailer scheduling on the layout of freight terminals. Transp Sci 33(4):419–428

    Article  MATH  Google Scholar 

  • Gue KR, Meller RD (2009) Aisle configurations for unit-load warehouses. IIE Trans 41(3):171–182

    Article  Google Scholar 

  • Gue KR, Ivanović G, Meller RD (2012) A unit-load warehouse with multiple pickup and deposit points and non-traditional aisles. Transp Res Part E Logist Transp Rev 48(4):795–806

    Article  Google Scholar 

  • Hall RW (1993) Distance approximations for routing manual pickers in a warehouse. IIE Trans 25(4):76–87

    Article  Google Scholar 

  • Harmatuck DJ (1976) A comparison of two approaches to stock location. Logist Transp Rev 12(4):282–284

    Google Scholar 

  • Heragu SS, Du L, Mantel RJ, Schuur PC (2005) Mathematical model for warehouse design and product allocation. J Prod Res 43(2):327–338

    Article  MATH  Google Scholar 

  • Ho Y-C, Tseng Y-Y (2006) A study on order-batching methods of order-picking in a distribution centre with two cross-aisles. Int J Prod Res 44(17):3391–3417

    Article  MATH  Google Scholar 

  • Ho Y-C, Su T-S, Shi Z-B (2008) Order-batching methods for an order-picking warehouse with two cross aisles. Comput Ind Eng 55(2):321–347

    Article  Google Scholar 

  • Hong S, Johnson AL, Peters BA (2012a) Batch picking in narrow-aisle order picking systems with consideration for picker blocking. Eur J Oper Res 221(3):557–570

    Article  MATH  Google Scholar 

  • Hong S, Johnson AL, Peters BA (2012b) Large-scale order batching in parallel-aisle picking systems. IIE Trans 44(2):88–106

    Article  Google Scholar 

  • Hong S, Johnson AL, Peters BA (2013) A note on picker blocking models in a parallel-aisle order picking system. IIE Trans 45(12):1345–1355

    Article  Google Scholar 

  • Hsieh L, Tsai L (2006) The optimum design of a warehouse system on order picking efficiency. Int J Adv Manuf Technol 28(5–6):626–637

    Article  Google Scholar 

  • Hsu C-M, Chen K-Y, Chen M-C (2005) Batching orders in warehouses by minimizing travel distance with genetic algorithms. Comput Ind 56(2):169–178

    Article  MathSciNet  Google Scholar 

  • Hung MS, Fisk JC (1984) Economic sizing of warehouses: a linear programming approach. Comput Oper Res 11(1):13–18

    Article  Google Scholar 

  • Hwang H, Oh YH, Lee YK (2004) An evaluation of routing policies for order-picking operations in low-level picker-to-part system. Int J Prod Res 42(18):3873–3889

    Article  MATH  Google Scholar 

  • Jane CC (2000) Storage location assignment in a distribution center. Int J Phys Distrib Logist Manag 30(1):55–71

    Article  Google Scholar 

  • Jane C-C, Laih Y-W (2005) A clustering algorithm for item assignment in a synchronized zone order picking system. Eur J Oper Res 166(2):489–496

    Article  MathSciNet  MATH  Google Scholar 

  • Jarvis JM, McDowell ED (1991) Optimal product layout in an order picking warehouse. IIE Trans 23(1):93–102

    Article  Google Scholar 

  • Kallina C, Lynn J (1976) Application of the cube-per-order index rule for stock location in a distribution warehouse. Interfaces 7(1):37–46

    Article  Google Scholar 

  • Khomenko N, Ashtiani M (2007) Classical TRIZ and OTSM as scientific theoretical background for non-typical problem solving instruments. In: Abstracts of the ETRIA “TRIZ future 2007”, Frankfurt am Main, 6–8 November 2007

    Google Scholar 

  • Kulak O, Sahin Y, Taner ME (2012) Joint order batching and picker routing in single and multiple-cross-aisle warehouses using cluster-based tabu search algorithms. Flex Serv Manuf J 24(1):52–80

    Article  Google Scholar 

  • Lai K, Xue J, Zhang G (2002) Layout design for a paper reel warehouse: a two-stage heuristic approach. Int J Prod Econ 75(3):231–243

    Article  Google Scholar 

  • Larson TN, March H, Kusiak A (1997) A heuristic approach to warehouse layout with class-based storage. IIE Trans 29(4):337–348

    Google Scholar 

  • Le-Duc T, De Koster RMBM (2005) Travel distance estimation and storage zone optimization in a 2-block class-based storage strategy warehouse. Int J Prod Res 43(17):3561–3581

    Article  MATH  Google Scholar 

  • Le-Duc T, De Koster RMBM (2007) Travel time estimation and order batching in a 2-block warehouse. Eur J Oper Res 176(1):374–388

    Article  MATH  Google Scholar 

  • Lin C-H, Lu I-Y (1999) The procedure of determining the order picking strategies in distribution center. Int J Prod Econ 60–61:301–307

    Article  Google Scholar 

  • Liu C-M (1999) Clustering techniques for stock location and order-picking in a distribution center. Comput Oper Res 26(10–11):989–1002

    Article  MATH  Google Scholar 

  • Mallette AJ, Francis RL (1972) A generalized assignment approach to optimal facility layout. AIIE Trans 4(2):144–147

    Article  Google Scholar 

  • Malmborg CJ, Bhaskaran K (1990) A revised proof of optimality for the cube-per-order index rule for stored item location. App Math Model 14(2):87–95

    Article  MathSciNet  MATH  Google Scholar 

  • Malmborg CJ, Krishnakumar B (1987) On the optimality of the cube per order index for conventional warehouses with dual command cycles. Mater Flow 4(3):169–175

    Google Scholar 

  • Manzini R, Gamberi M, Persona A, Regattieri A (2007) Design of a class based storage picker to product order picking system. Int J Adv Manuf Technol 32(7–8):811–821

    Article  Google Scholar 

  • Manzini R, Accorsi R, Gamberi M, Penazzi S (2015) Modeling class-based storage assignment over life cycle picking patterns. Int J Prod Econ 170C:790–800

    Article  Google Scholar 

  • Marsh WH (1979) Elements of block storage design. Int J Prod Res 17(4):377

    Article  Google Scholar 

  • Matusiak M, De Koster R, Kroon L, Saarinen J (2014) A fast simulated annealing method for batching precedence-constrained customer orders in a warehouse. Eur J Oper Res 236(3):968–977

    Article  MathSciNet  MATH  Google Scholar 

  • Moder J, Thornton HM (1965) Quantitative analysis of the factors affecting floor space utilization of palletized storage. J Ind Eng 16(1):8–18

    Google Scholar 

  • Mowrey CH, Parikh PJ (2014) Mixed-width aisle configurations for order picking in distribution centers. Eur J Oper Res 232(1):87–97

    Article  MathSciNet  MATH  Google Scholar 

  • Muppani VR, Adil GK (2008) A branch and bound algorithm for class based storage location assignment. Eur J Oper Res 189(2):492–507

    Article  MathSciNet  MATH  Google Scholar 

  • Oh Y, Hwang H, Cha CN, Lee S (2006) A dock-door assignment problem for the Korean mail distribution center. Comput Ind Eng 51(2):288–296

    Article  Google Scholar 

  • Önüt S, Tuzkaya UR, Doğaç B (2008) A particle swarm optimization algorithm for the multiple-level warehouse layout design problem. Comput Ind Eng 54(4):783–799

    Article  Google Scholar 

  • Öztürkoğlu Ö, Gue KR, Meller RD (2012) Optimal unit-load warehouse designs for single-command operations. IIE Trans 44(6):459–475

    Article  Google Scholar 

  • Öztürkoğlu Ö, Gue KR, Meller RD (2014) A constructive aisle design model for unit-load warehouses with multiple pickup and deposit points. Eur J Oper Res 236(1):382–394

    Article  MathSciNet  MATH  Google Scholar 

  • Pan JC-H, Shih P-H (2008) Evaluation of the throughput of a multiple-picker order picking system with congestion consideration. Comput Ind Eng 55(2):379–389

    Article  Google Scholar 

  • Pan JC-H, Wu M-H (2012) Throughput analysis for order picking system with multiple pickers and aisle congestion considerations. Comput Oper Res 39:1661–1672

    Article  MATH  Google Scholar 

  • Pan JC-H, Shih P-H, Wu M-H (2012) Storage assignment problem with travel distance and blocking considerations for a picker-to-part order picking system. Comput Ind Eng 62(2):527–535

    Article  Google Scholar 

  • Pan JC-H, Wu M-H, Chang W-L (2014) A travel time estimation model for a high-level picker-to-part system with class-based storage policies. Eur J Oper Res 237(3):1054–1066

    Article  MathSciNet  MATH  Google Scholar 

  • Parikh PJ, Meller RD (2008) Selecting between batch and zone order picking strategies in a distribution center. Transp Res Part E Logist Transp Rev 44(5):696–719

    Article  Google Scholar 

  • Parikh PJ, Meller RD (2009) Estimating picker blocking in wide-aisle order picking systems. IIE Trans 41(3):232–246

    Article  Google Scholar 

  • Parikh PJ, Meller RD (2010) A note on worker blocking in narrow-aisle order picking systems when pick time is non-deterministic. IIE Trans 42(6):392–404

    Article  Google Scholar 

  • Petersen CG (1997) An evaluation of order picking routing policies. Int J Oper Prod Manag 17(11):1098–1111

    Article  MathSciNet  Google Scholar 

  • Petersen CG (1999) The impact of routing and storage policies on warehouse efficiency. Int J Oper Prod Manag 19(10):1053–1064

    Article  Google Scholar 

  • Petersen CG (2002) Considerations in order picking zone configuration. Int J Oper Prod Manag 22(7):793–805

    Article  Google Scholar 

  • Petersen CG, Aase G (2004) A comparison of picking storage and routing policies in manual order picking. Int J Prod Econ 92(1):11–19

    Article  Google Scholar 

  • Petersen CG, Schmenner RW (1999) An evaluation of routing and volume-based storage policies in an order picking. Oper Decis Sci 30(2):481–501

    Article  Google Scholar 

  • Petersen CG, Aase GR, Heiser DR (2004) Improving order-picking performance through the implementation of class-based storage. Int J Phys Distrib Logist Manag 34(7):534–544

    Article  Google Scholar 

  • Petersen CG, Siu C, Heiser DR (2005) Improving order picking performance utilizing slotting and golden zone storage. Int J Oper Prod Manag 25(10):997–1012

    Article  Google Scholar 

  • Pohl LM, Meller RD, Gue KR (2009) An analysis of dual-command operations in common warehouse designs. Transp Res Part E Logist Transp Rev 45(3):367–379

    Article  Google Scholar 

  • Pohl LM, Meller RD, Gue KR (2011) Turnover-based storage in non-traditional unit-load warehouse designs. IIE Trans 43(10):703–720

    Article  Google Scholar 

  • Rana K (1990) Order picking in narrow-aisle warehouses. Int J Phys Distrib Logist Manag 20(2):9–15

    Article  Google Scholar 

  • Rao SS, Adil GK (2013a) Class-based storage with exact S-shaped traversal routeing in low-level picker-to-part systems. Int J Prod Res 51(16):4979–4996

    Article  Google Scholar 

  • Rao SS, Adil GK (2013b) Optimal class boundaries number of aisles and pick list size for low-level order picking systems. IIE Trans 45(12):1309–1321

    Article  Google Scholar 

  • Rao AK, Rao MR (1998) Solution procedures for sizing of warehouses. Eur J Oper Res 108(1):16–25

    Article  MATH  Google Scholar 

  • Ratliff HD, Rosenthal AS (1983) Order-picking in a rectangular warehouse: a solvable case of the traveling salesman problem. Oper Res 31(3):507–521

    Article  MATH  Google Scholar 

  • Roberts SD, Reed R (1972) Optimal warehouse bay configurations. AIIE Trans 4(3):178–185

    Article  Google Scholar 

  • Roll Y, Rosenblatt MJ (1983) Random versus grouped storage policies and their effect on warehouse capacity. Mater Flow 1(3):199–205

    Google Scholar 

  • Roodbergen KJ, De Koster R (2001a) Routing order pickers in a warehouse with a middle aisle. Eur J Oper Res 133(1):32–43

    Article  MathSciNet  MATH  Google Scholar 

  • Roodbergen KJ, De Koster R (2001b) Routing methods for warehouses with multiple cross aisles. Int J Prod Res 39(9):1865–1883

    Article  MATH  Google Scholar 

  • Roodbergen KJ, Vis IFA (2006) A model for warehouse layout. IIE Trans 38(10):799–811

    Article  Google Scholar 

  • Roodbergen KJ, Sharp GP, Vis IFA (2008) Designing the layout structure of manual order picking areas in warehouses. IIE Trans 40(11):1032–1045

    Article  Google Scholar 

  • Roodbergen KJ, Vis IFA, Don Taylor G (2015) Simultaneous determination of warehouse layout and control policies. Int J Prod Res 53(11):3306–3326

    Article  Google Scholar 

  • Rosenblatt MJ, Roll Y (1984) Warehouse design with storage policy considerations. Int J Prod Res 22(5):809–821

    Article  Google Scholar 

  • Rosenwein MB (1994) An application of cluster analysis to the problem of locating items within a warehouse. IIE Trans 26(1):101–103

    Article  Google Scholar 

  • Rosenwein MB (1996) A comparison of heuristics for the problem of batching orders for warehouse selection. Int J Prod Res 34(3):657–664

    Article  MATH  Google Scholar 

  • Rouwenhorst BB, Reuter V, Stockrahm GJ, Van Houtum RJ, Mantel ZWHM (2000) Warehouse design and control: framework and literature review. Eur J Oper Res 122(3):515–533

    Article  MATH  Google Scholar 

  • Ruben RA, Jacobs FR (1999) Batch construction heuristics and storage assignment strategies for walk/ride and pick systems. Manag Sci 45(4):575–596

    Article  MATH  Google Scholar 

  • Sadiq M, Landers TL, Don Taylor G (1996) An assignment algorithm for dynamic picking systems. IIE Trans 28(8):607–616

    Article  Google Scholar 

  • Schleyer M, Gue K (2012) Throughput time distribution analysis for a one-block warehouse. Transp Res Part E Logist Transp Rev 48(3):652–666

    Article  Google Scholar 

  • Schuur PC (2015) The worst-case performance of the Cube per Order Index slotting strategy is infinitely bad – a technical note. Int J Prod Econ 170 Part C:801–804

    Article  Google Scholar 

  • Stadtler H (1996) An operational planning concept for deep lane storage systems. Prod Oper Manag 5(3):266–282

    Article  Google Scholar 

  • Tang LC, Chew E-P (1997) Order picking systems: batching and storage assignment strategies. Comput Ind Eng 33(3–4):817–820

    Article  Google Scholar 

  • Theys C, Bräysy O, Dullaert W, Raa B (2010) Using a TSP heuristic for routing order pickers in warehouses. Eur J Oper Res 200(3):755–763

    Article  MATH  Google Scholar 

  • Thomas LM, Meller RD (2015) Developing design guidelines for a case-picking warehouse. Int J Prod Econ 170 Part C 741–762

    Google Scholar 

  • Tsai C-Y, Liou JJH, Huang T-M (2008) Using a multiple-GA method to solve the batch picking problem: considering travel distance and order due time. Int J Prod Res 46(22):6533–6555

    Article  MATH  Google Scholar 

  • Tsui LY, Chang C-H (1990) A microcomputer based decision support tool for assigning dock doors in freight yards. Comput Ind Eng 19(1):309–312

    Article  Google Scholar 

  • Tsui LY, Chang C-H (1992) An optimal solution to a dock door assignment problem. Comput Ind Eng 23(1):283–286

    Article  Google Scholar 

  • Van Den Berg JP (1999) A literature survey on planning and control of warehousing systems. IIE Trans 31(8):751–762

    Google Scholar 

  • Van den Berg JP, Sharp GP, Gademann AJRM (Noud), Pochet Y (1998) Forward-reserve allocation in a warehouse with unit-load replenishments. Eur J Oper Res 111(1):98–113

    Google Scholar 

  • Van Nieuwenhuyse I, De Koster RBM (2009) Evaluating order throughput time in 2-block warehouses with time window batching. Int J Prod Econ 121(2):654–664

    Article  Google Scholar 

  • Vaughan TS, Petersen CG (1999) The effect of warehouse cross aisles on order picking efficiency. Int J Prod Res 37(4):881

    Article  MATH  Google Scholar 

  • Vis IFA, Roodbergen KJ (2011) Layout and control policies for cross docking operations. Comput Ind Eng 61(4):911–919

    Article  Google Scholar 

  • Walter R, Boysen N, Scholl A (2013) The discrete forward–reserve problem – allocating space selecting products and area sizing in forward order picking. Eur J Oper Res 229:585–594

    Article  MATH  Google Scholar 

  • White JA, Francis RL (1971) Normative models for some warehouse sizing problems. AIIE Trans 3(3):185–190

    Article  Google Scholar 

  • Won J, Olafsson S (2005) Joint order batching and order picking in warehouse operations. Int J Prod Res 43(7):1427–1442

    Article  MATH  Google Scholar 

  • Wutthisirisart P, Noble JS, Alec CC (2015) A two-phased heuristic for relation-based item location. Comput Ind Eng 82:94–102

    Article  Google Scholar 

  • Xu X, Liu T, Li K, Dong W (2014) Evaluating order throughput time with variable time window batching. Int J Prod Res 52(8):2232–2242

    Article  Google Scholar 

  • Zanni-Merk C, Cavallucci D, Rousselot F (2009) An ontological basis for computer aided innovation. Comput Ind 60:563–574

    Article  Google Scholar 

  • Zhang GQ, Lai KK (2006) Combining path relinking and genetic algorithms for the multiple-level warehouse layout problem. Eur J Oper Res 169(2):413–425

    Article  MathSciNet  MATH  Google Scholar 

  • Zhang GQ, Xue J, Lai KK (2000) A genetic algorithm based heuristic for adjacent paper-reel layout problem. Int J Prod Res 38(14):3343–3356

    Article  MATH  Google Scholar 

  • Zhang GQ, Xue J, Lai KK (2002) A class of genetic algorithms for multiple-level warehouse layout problems. Int J Prod Res 40(3):731–744

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Damand .

Editor information

Editors and Affiliations

Appendices

Appendix 1: Problems and Performance Metrics Extract

# Problems

Problems

Performance metrics

1

Time to retrieve and put away; fork-lift driver; retrieve or put away; pallets load; V m>V d

Time to retrieve and put away; fork-lift driver; (min)

Berry (1968)

2

Travel distance to retrieve and put away; fork-lift driver; retrieve or put away; pallets load; V m > V d

Travel distance to retrieve and put away; fork-lift driver (km)

Cardona et al. (2012), Oh et al. (2006), Gue and Meller (2009), Lai et al. (2002), Rosenblatt and Roll (1984), Berry (1968), Tsui and Chang (1990, 1992), Mallette and Francis (1972), Roberts and Reed (1972), Bassan et al. (1980), Larson et al. (1997) and Gue (1999)

31

Replenishment rate; replenisher fork-lift driver; replenish; full pallets load; V m > V d

Replenishment rate

Accorsi et al. (2012), Van den Berg et al. (1998), Bartholdi and Hackman (2008) and White and Francis (1971)

Appendix 2: Solutions and Action Parameters Extract

# Solutions

Solutions

Action parameters

1

[define; value; number; racks] & [define; value; groups number; racks] & [define; value; number; aisle] & [define; value; length; aisle] & [define; value; width; aisle] & [define; value; angle between cross-aisle; racks]

Number; racks

Groups number; racks

Number; aisle

Length; aisle

Width; aisle

Angle between cross-aisle; racks

Rao and Adil (2013a, b), Roodbergen and Vis (2006), Cardona et al. (2012) and Öztürkoğlu et al. (2012)

48

[Define with return (U), traversal (S), (N), midpoint, largest gap; value; sequence of picks; picker]

Sequence of picks; Picker

 

Theys et al. (2010), Hwang et al. (2004), De Koster and Van Der Poort (1998), Petersen and Schmenner (1999), Pan et al. (2014)

Appendix 3: Problems Generate Problems Extract

figure a

Appendix 4: Problems Solved by Solutions Extract

figure b

Appendix 5: Solutions Generate Problems Extract

figure c

Appendix 6: Taxonomy Extract, Protégé Screenshot

figure d

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Damand, D., Barth, M., Lepori, E. (2017). Problem Graph for Warehousing Design. In: Cavallucci, D. (eds) TRIZ – The Theory of Inventive Problem Solving. Springer, Cham. https://doi.org/10.1007/978-3-319-56593-4_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-56593-4_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-56592-7

  • Online ISBN: 978-3-319-56593-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics