Skip to main content

Hybrid Positron Emission Tomography in Endocrinology

  • Chapter
  • First Online:
Nuclear Endocrinology
  • 1123 Accesses

Abstract

This chapter is focusing on the newest nuclear medicine procedure: the metabolic investigation of positron emission tomography and fusion images with computed tomography or magnetic resonance imaging (PET/CT and PET/MR).

The chapter underlines the utility of the method in the primary diagnosis of endocrinology diseases and in the follow-up of different endocrine tumors. The metabolic F18-fluoro-2-deoxy-d-glucose has already been accepted as an essential tool in staging, restaging, and therapy response assessment of many tumors. The use of PET/CT fusion scanners has been demonstrated to significantly increase accuracy of lesion detection, combining the high anatomical definition of CT with the high sensitivity of PET.

The PET/MRI technique is still under development, being unavailable yet in many countries, and the next years definitely will clarify its role and indications. PET/MR imaging modality enables simultaneous multifunctional and anatomical imaging in small animals, which greatly impacts biomedical imaging in research and clinical settings.

The chapter describes techniques and procedures useful in endocrine practice and has a part of clinical cases, interesting images, and key points.

“The eye sees only what the mind is prepared to comprehend”

Henri Bergson (Nobel prize awarded 1859–1941)

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Further Reading

  • Adams S, Baum RP, Hertel A et al (1998) Metabolic (PET) and receptor (SPET) imaging of well- and less well-differentiated tumours: comparison with the expression of the Ki-67 antigen. Nucl Med Commun 19(7):641–647

    Article  CAS  PubMed  Google Scholar 

  • Ambrosini V, Campana D, Nanni C et al (2012) Is Ga68-DOTA-NOC PET/CT indicated in patients with clinical, biochemical or radiological suspicion of neuroendocrine tumour? Eur J Nucl Med Mol Imaging 39(8):1278–1283

    Article  CAS  PubMed  Google Scholar 

  • Ambrosini V, Campana D, Tomassetti P et al (2012) Ga68-labelled peptides for diagnosis of gastroenteropancreatic NET. Eur J Nucl Med Mol Imaging 39 Suppl 1: S52–S60

    Article  PubMed  Google Scholar 

  • Ambrosini V, Nicolini S, Caroli P et al (2012) PET/CT imaging in different types of lung cancer: an overview. Eur J Radiol 81(5):988–1001.

    Article  PubMed  Google Scholar 

  • Archier A, Heimburger C, Guerin C et al (2016) (18) F-DOPA PET/CT in the diagnosis and localization of persistent medullary thyroid carcinoma. Eur J Nucl Med Mol Imaging 43(6):1027–1033

    Article  CAS  PubMed  Google Scholar 

  • Baras N, Dahm S, Haberland J et al (2017) Subsequent malignancies among long-term survivors of Hodgkin lymphoma and non-Hodgkin lymphoma: a pooled analysis of German cancer registry data (1990-2012). Br J Haematol. ;177(2):226–242 doi: 10.1111/bjh.14530. [Epub ahead of print]

    Article  PubMed  Google Scholar 

  • Basu S, Rubello D. (2008) PET imaging in the management of tumors of testis and ovary: current thinking and future directions. Minerva Endocrinol 33(3):229–256.

    CAS  PubMed  Google Scholar 

  • Bertagna F, Bosio G, Biasiotto G et al (2009) A- F-18 FDG-PET/CT evaluation of patients with differentiated thyroid cancer with negative I-131 total body scan and high thyroglobulin level. Clin Nucl Med 34(11):756–761

    Article  PubMed  Google Scholar 

  • Bertagna F, Treglia G, Piccardo A, Giubbini R (2012) Diagnostic and clinical significance of F-18-FDG-PET/CT thyroid incidentalomas J Clin Endocrinol Metab 97 (11): 3866–3875

    Article  CAS  PubMed  Google Scholar 

  • Bogsrud TV, Karantanis D, Nathan MA et al (2007) The value of quantifying 18F-FDG uptake in thyroid nodules found incidentally on whole-body PET-CT. Nucl Med Commun 28:373–381

    Article  PubMed  Google Scholar 

  • Caobelli F, Alongi P, Evangelista L et al (2016) Predictive value of (18) F-FDG PET/CT in restaging patients affected by ovarian carcinoma: a multicentre study. Eur J Nucl Med Mol Imaging 43(3):404–413

    Article  CAS  PubMed  Google Scholar 

  • Chang CA, Pattison DA, Tothill RW et al (2016) (68)Ga-DOTATATE and (18)F-FDG PET/CT in Paraganglioma and Pheochromocytoma: utility, patterns and heterogeneity Cancer Imaging;16(1):22

    Article  PubMed  PubMed Central  Google Scholar 

  • Chittiboina P, Montgomery BK, Millo C et al (2015) High-resolution (18)F-fluorodeoxyglucose positron emission tomography and magnetic resonance imaging for pituitary adenoma detection in Cushing disease. J Neurosurg 122(4):791–797

    Article  CAS  PubMed  Google Scholar 

  • Chin BB, Patel P, Cohade C et al (2004) Recombinant human thyrotropin stimulation of fluoro-D-glucose positron emission tomography uptake in well-differentiated thyroid carcinoma. J Clin Endocrinol Metab 89:91–95

    Article  CAS  PubMed  Google Scholar 

  • Choi JY, Lee KS, Kim HJ et al (2006) Focal thyroid lesions incidentally identified by integrated 18F-FDG PET/CT: clinical significance and improved characterization. J Nucl Med 47:609–615

    PubMed  Google Scholar 

  • Fahy FH. (2009) Dosimetry of pediatric PET/CT. J Nucl Med 50:1483–1491

    Article  Google Scholar 

  • Deppen SA, Liu E, Blume JD et al (2016) Safety and efficacy of 68Ga-DOTATATE PET/CT for diagnosis, staging, and treatment management of neuroendocrine tumors. J Nucl Med 57(5):708–714

    Article  PubMed  PubMed Central  Google Scholar 

  • Deppen SA, Blume J, Bobbey AJ et al (2016) 68Ga-DOTATATE compared with 111In-DTPA-Octreotide and conventional imaging for pulmonary and gastroenteropancreatic neuroendocrine tumors: a systematic review and meta-analysis. J Nucl Med 57(6):872–878

    Article  PubMed  PubMed Central  Google Scholar 

  • deGroot JW, Links TP, Jager PL (2004) Impact of 18F-fluoro-2-deoxy-D-glucose positron emission tomography (FDG-PET) in patients with biochemical evidence of recurrent or residual medullary thyroid cancer. Ann Surg Oncol 11:786–794

    Article  CAS  Google Scholar 

  • Giraudet AL, Taïeb D (2016) PET imaging for thyroid cancers: current status and future directions. Ann Endocrinol (Paris). doi:10.1016/j.ando.2016.10.002. pii:S0003-4266(16)31139-8 [Epub ahead of print]

    Google Scholar 

  • Perros P et al. (2014) Guidelines for the management of thyroid cancer in adults. 3rd ed. Publication unit of the Royal College of Physicians. British Thyroid Association and Royal College of Physicians, London. Clin Endocrinol 81 (Suppl. 1), 1–122

    Article  CAS  Google Scholar 

  • Haugen BR, Alexander EK, Bible KC et al (2016) American Thyroid Association management guidelines for adult patients with thyroid nodules and differentiated thyroid cancer: The American Thyroid Association guidelines task force on thyroid nodules and differentiated thyroid cancer. Thyroid 26(1):1–133

    Article  PubMed  PubMed Central  Google Scholar 

  • Iagaru A, Kalinyak JE, McDougall IR (2007) F-18 FDG PET/CT in the management of thyroid cancer. Clin Nucl Med 32(9):690–695

    Article  PubMed  Google Scholar 

  • Iagaru A, McDougall IR (2007) F-18 FDG PET/CT demonstration of an adrenal metastasis in a patient with anaplastic thyroid cancer. Clin Nucl Med 32(1):13–15

    Article  PubMed  Google Scholar 

  • Jeong SY, Lee SW, Lee HJ et al (2010) Incidental pituitary uptake on whole-body 18F-FDG PET/CT: a multicentre study. Eur J Nucl Med Mol Imaging 37(12):2334–2343

    Article  PubMed  Google Scholar 

  • Jindal T, Kumar A, Venkitaraman B et al (2011) Evaluation of the role of [18F] FDG-PET/CT and [68Ga] DOTATOC-PET/CT in differentiating typical and atypical pulmonary carcinoids. Cancer Imaging 15:70–75

    Google Scholar 

  • Kayani I, Conry BG, Groves AA et al (2009) A comparison of 68Ga-DOTATATE and 18F-FDG PET/CT in pulmonary neuroendocrine tumors. J Nucl Med 50(12):1927–1932

    Article  PubMed  Google Scholar 

  • Kang KW, Kim SK, Kang HS et al (2003) Prevalence and risk of cancer of focal thyroid incidentaloma identified by 18F-fluorodeoxyglucose positron emission tomography for metastasis evaluation and cancer screening in healthy subjects. J Clin Endocrinol Metab 88:4100–4104

    Article  CAS  PubMed  Google Scholar 

  • Kim C, Chung H, Oh SW et al (2013). Differential diagnosis of borderline ovarian tumors from stage I malignant ovarian tumors using FDG PET/CT Nucl Med Mol Imag 47(2), 81–88.

    Article  Google Scholar 

  • Komninos J, Vlassopoulou V, Protopapa D (2004) Tumors metastatic to the pituitary gland: case report and literature review 89 (2): 574–580

    CAS  Google Scholar 

  • Krenning EP, Kwekkeboom DJ, Bakker WH et al (1993) Somatostatin receptor scintigraphy with [111In- DTPA-D-Phe1]- and [123I-Tyr3]-octreotide: The Rotterdam experience with more than 1000 patients. Eur J Nucl Med 20:716–731.

    Article  CAS  PubMed  Google Scholar 

  • Kroiss A, Putzer D, Uprimny C et al (2011) Functional imaging in phaeochromocytoma and neuroblastoma with 68Ga-DOTA-Tyr 3-octreotide positron emission tomography and 123I-metaiodobenzylguanidine. Eur J Nucl Med Mol Imaging 38(5):865–873

    Article  CAS  PubMed  Google Scholar 

  • Maurice JB, Troke R, Win Z et al A comparison of the performance of Ga68-DOTATATE PET/CT and I123-MIBG SPECT in the diagnosis and follow-up of phaeochromocytoma and paraganglioma. Eur J Nucl Med Mol Imaging 2012;39:1266–1270.

    Article  CAS  PubMed  Google Scholar 

  • Michaud L, Burgess A, Huchet V et al (2014) Is 18F-fluorocholine-positron emission tomography/computerized tomography a new imaging tool for detecting hyperfunctioning parathyroid glands in primary or secondary hyperparathyroidism? J Clin Endocrinol Metab 99(12):4531–4536

    Article  CAS  PubMed  Google Scholar 

  • Michaud L, Balogova S, Burgess A et al (2015) A pilot comparison of 18F-fluorocholine PET/CT, ultrasonography and 123I/99mTc-sestaMIBI dual-phase dual-isotope scintigraphy in the preoperative localization of hyperfunctioning parathyroid glands in primary or secondary hyperparathyroidism: influence of thyroid anomalies Medicine 94(41):e1701

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McDougall IR, Davidson J, Segall GM (2001) Positron emission tomography of the thyroid, with an emphasis on thyroid cancer. Nucl Med Commun 22(5):485–492

    Article  CAS  PubMed  Google Scholar 

  • Nahas Z, Goldenberg D, Fakhry C et al (2005) The role of positron emission tomography/computed tomography in the management of recurrent papillary thyroid carcinoma. Laryngoscope 115:237–243

    Article  PubMed  Google Scholar 

  • National Comprehensive Cancer Network)(2016 National Comprehensive Cancer Network Clinical Practice Guidelines in Oncology. Thyroid carcinoma, vol 1. http://www.nccn.org/professionals/physician_gls/PDF/thyroid.pdf

  • Öberg K, Knigge U, Kwekkeboom D, Perren A, on behalf of the ESMO Guidelines Working Group (2012) Neuroendocrine gastro-entero-pancreatic tumors: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann Oncol 23 (suppl_7): vii124-vii130

    PubMed  Google Scholar 

  • Palmedo H, Bucerius J, Joe A et al (2006) Integrated PET/CT in differentiated thyroid cancer: diagnostic accuracy and impact on patient management. J Nucl Med 47(4):616–624

    PubMed  Google Scholar 

  • Petrich T, Borner AR, Otto D et al (2002) Influence of rhTSH on [(18)F] fluorodeoxyglucose uptake by differentiated thyroid carcinoma. Eur J Nucl Med Mol Imaging 29(5):641–647

    Article  CAS  PubMed  Google Scholar 

  • Piciu D (2016) Imagistica de fuziune PET/CT in oncologie. Editura Iuliu Hatieganu Cluj-Napoca

    Google Scholar 

  • Piciu D, Irimie A, Duncea I et al (2010) Positron emission tomography – computer tomography fusion image, with 18-fluoro-2-deoxyD-glucose in the follow-up of patients with differentiated thyroid carcinoma. Acta Endocrinol (Buc) 6:15–26. doi:10.4183/aeb.2010.15

    Article  CAS  Google Scholar 

  • Piciu D, Pestean C, Barbus E et al (2016) Second malignancies in patients with differentiated thyroid carcinoma treated with low and medium activities of radioactive I-131. Clujul Med 89(3):384–389

    Article  PubMed  PubMed Central  Google Scholar 

  • Prasad V, Ambrosini V, Hommann M et al (2010) Detection of unknown primary neuroendocrine tumors (CUP-NET) using 68Ga-DOTANOC receptor PET-CT. Eur J Nucl Med Mol Imaging 37:67–77

    Article  CAS  PubMed  Google Scholar 

  • Putzer D, Gabriel M, Kendler D et al (2010) Comparison of (68)Ga-DOTA-Tyr(3)-octreotide and (18)F-fluoro-L-dihydroxyphenylalanine positron emission tomography in neuroendocrine tumor patients. Q J Nucl Med Mol Imaging 54(1):68–75

    CAS  PubMed  Google Scholar 

  • Robbins RJ, Wan Q, Grewal RK et al (2006) Real-time prognosis for metastatic thyroid carcinoma based on FDG-PET scanning. J Clin Endocrinol Metab 91:498–505

    Article  CAS  PubMed  Google Scholar 

  • Sandeep TC, Strachan MW, Reynolds RM et al (2006) Second primary cancers in thyroid cancer patients: a multinational record linkage study. J Clin Endocrinol Metab 91:1819–1825

    Article  CAS  PubMed  Google Scholar 

  • Schluter B, Bohuslavizki KH, Beyer W et al (2001) Impact of FDG PET on patients with differentiated thyroid cancer who present with elevated thyroglobulin and negative 131- I scan. J Nucl Med 42(1):71–76

    CAS  PubMed  Google Scholar 

  • Seong Bae J, Chae BJ, Park CW et al (2009) Incidental thyroid lesions detected by FDG PET/CT: prevalence and risk of thyroid cancer. World J Surg Oncol 7(1):63–69

    Article  Google Scholar 

  • Singh I, Bikas A, Garcia CA et al (2017) (18)F-FDG-PET SUV as a prognostic marker of increasing size in thyroid cancer tumors. Endocr Pract 23(2):182–189

    Article  PubMed  Google Scholar 

  • Sharma P, Singh H, Bal C, Kumar R (2014) PET/CT imaging of neuroendocrine tumors with (68)Gallium-labeled somatostatin analogues: an overview and single institutional experience from India. Indian J Nucl Med 29(1):2–12

    Article  PubMed  PubMed Central  Google Scholar 

  • Sollini M, Erba PA, Fraternali A et al (2014) PET and PET/CT with 68gallium-labeled somatostatin analogues in NonGEP-NETs tumors Scientific World J 13;194123

    Google Scholar 

  • Soelberg KK, Bonnema SJ, Brix TH, Hegedüs L (2012) Risk of malignancy in thyroid incidentalomas detected by 18F-fluorodeoxyglucose positron emission tomography: a systematic review. Thyroid 22(9):918–925

    Article  CAS  PubMed  Google Scholar 

  • Sundin A. Adrenal (2016) Molecular imaging Front Horm Res 45:70–79

    Article  Google Scholar 

  • The American Thyroid Association (ATA). Guidelines Taskforce on Thyroid Nodules and Differentiated Thyroid Cancer (2009) Revised American Thyroid Association Management Guidelines for patients with thyroid nodules and differentiated thyroid cancer. Thyroid 19(11):1195–1214

    Google Scholar 

  • Treglia G, Castaldi P, Rindi G et al (2012) Diagnostic performance of Gallium-68 somatostatin receptor PET and PET/CT in patients with thoracic and gastroenteropancreatic neuroendocrine tumors: a meta-analysis. Endocrine 42:80–87.

    Article  CAS  PubMed  Google Scholar 

  • Verkooijen RB, Smit JW, Romijn JA et al (2006) The incidence of second primary tumours in thyroid cancer patients is increased, but not related to treatment of thyroid cancer. Eur J Endocrinol 155:801–806

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Piciu, D. (2017). Hybrid Positron Emission Tomography in Endocrinology. In: Nuclear Endocrinology. Springer, Cham. https://doi.org/10.1007/978-3-319-56582-8_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-56582-8_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-56581-1

  • Online ISBN: 978-3-319-56582-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics