Skip to main content

Comparative Analysis of Existing Technologies for Composite Repair Systems

  • Chapter
  • First Online:
  • 1539 Accesses

Part of the book series: Engineering Materials ((ENG.MAT.))

Abstract

The given chapter presents a comparative analysis of the technologies presently employed for the repair, using reinforcing wraps/sleeves made of polymeric composite materials, of the areas with volumetric surface defects (also named local metal loss defects) of the transmission pipelines intended for hydrocarbons (petroleum, liquid petroleum products, natural gas, etc.) or other fluids. The above-mentioned technologies are also compared with other pipeline repair technologies (using metallic components and eventually requiring welding operations to be performed) in order to underline their advantages especially in the conditions in which it is preferable, due to the economic benefits, to perform the repair works on the in-service pipeline (without stopping the fluid supply). In addition, the technologies used to apply coating systems (containing polymeric composite materials) intended for the corrosion protection of the transmission pipelines or for the repair of such protection system are also compared and analysed.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. An Advanced Method of Pipeline Repair. http://www.to-inform.ru/index.php/articles/64

  2. G. Zecheru, G. Draghici, E.I. Lata, A. Dinita, in Petroleum—Gas University of Ploieşti Bulletin, Technical Series, LXII(2), 9 (2010)

    Google Scholar 

  3. G. Zecheru, E.I. Lata, G. Draghici, A. Dinita, in Proceedings of the 2nd South East European IIW International Congress, Sofia (2010), p. 204

    Google Scholar 

  4. G. Zecheru, F.M. Birsan, A. Dumitrescu, G. Draghici, Sudura Rom. Weld. Soc. J. XXV(4), 20 (2015)

    Google Scholar 

  5. G. Zecheru, F.M. Birsan, A. Dumitrescu, G. Draghici, Sudura Rom. Weld. Soc. J. XXVI(1), 14 (2016)

    Google Scholar 

  6. L. Lenarde, Preparing for the Hydrogen Economy by Using the Existing Natural Gas System as a Catalyst, Naturally Project WP4, Operational Management of Integrity—Principles of Resource Allocation Relating to Pipeline Integrity Management (2008)

    Google Scholar 

  7. ASME PCC-2, Repair of Pressure Equipment and Piping, Part 4, Non-metallic and bonded repairs (2015)

    Google Scholar 

  8. DD ISO/TS 24817, Petroleum, Petrochemical and Natural Gas Industries—Composite Repairs for Pipework—Qualification and Design, Installation, Testing and Inspection (2006)

    Google Scholar 

  9. The Clock Spring Company. http://www.clockspring.com

  10. Rehabilitation of Corroded Pipelines and Pipes with Fiba Roll (Catalogue Fiba Roll, FTI Ltd., 2006)

    Google Scholar 

  11. Black Diamond by Citadel Technologies. http://cittech.com/portfolio/blackdiamond

  12. RES-Q Wrap Design & Installation of RES-QTM Composite Wrap on Pipelines. T.D. Williamson. http://www.tdwilliamson.com

  13. EP Patent No. 30181233

    Google Scholar 

  14. USA Patent No. 4213486

    Google Scholar 

  15. USA Patent No. 4510007

    Google Scholar 

  16. USA Patent No. 3502492

    Google Scholar 

  17. NPO Fiberglass, http://www.advtech.ru/npostekloplastik/prod7_pokritie_ap-1.php

  18. Repair of Defective Pipes of Gas Transmission Pipelines Using Polymer Composite Materials. http://www.remneftegaz.ru/info/708

  19. Composite Repair. http://www.belzona.com/ru/applications/valves.aspx

  20. I.N. Vorobyev, The advantage of using the composite materials for repairing pipelines. J. Oil Gas 32(7) (2013) (in Russian)

    Google Scholar 

  21. A.S. Milenin, Repair of trunk pipelines without decommissioning: practical recommendations of the Institute of Electric Welding E.O. Paton NAS Ukraine, in Non-destructive Testing and Technical Diagnostics: Materials 7 National Scientific and Engineering Conf. Exhibition, Kiev, p. 351 (2012) (in Russian)

    Google Scholar 

  22. R.R. Shafikov, Repair of trunk pipelines using welding and related technologies without stopping pumping gas. Territory Oil Gas 6, 80 (2009) (In Russian)

    Google Scholar 

  23. RU Patent No. 2314453 (in Russian)

    Google Scholar 

  24. RU Patent No. 2104439 (in Russian)

    Google Scholar 

  25. RU Patent No. 2134373 (in Russian)

    Google Scholar 

  26. RU Patent No. 2191317 (in Russian)

    Google Scholar 

  27. RU Patent No. 2213289 (in Russian)

    Google Scholar 

  28. V.A. Bobylev, V.I. Korolkov, Epoxide materials for trench-free repair of pipelines. Paint Varnish Industry, No. 5 (2010) http://www.chimexltd.com/content/data/store/images/f_603_48899_1.pdf (in Russian)

  29. USA Patent No. 4700752

    Google Scholar 

  30. RU Patent No. 2097646 (in Russian)

    Google Scholar 

  31. RU Patent No. 2162562 (in Russian)

    Google Scholar 

  32. RU Patent No. 2156398 (in Russian)

    Google Scholar 

  33. A.R. Bunsell, J. Renard, Fundamentals of Fibre Reinforced Composite Materials (Institute of Physics Publishing, Bristol, 2005)

    Book  Google Scholar 

  34. Z. Roslaniec, G. Broza, K. Schulte, Nanocomposites based on multiblock polyester elastomers (PEE) and carbon nanotubes (CNT). Compos. Interfaces 10, 95 (2003)

    Article  Google Scholar 

  35. S.A. Kumar, M. Alagar, V. Mohan, Studies on corrosion-resistant behavior of siliconized epoxy interpenetrating coatings over mild steel surface by electrochemical methods. J. Mater. Eng. Perform. 11, 123 (2002)

    Article  Google Scholar 

  36. A. Aglan, A. Allie, A. Ludwick, L. Koons, Formulation and evaluation of nano-structured polymeric coatings for corrosion protection. Surf. Coat. Technol. 202, 370 (2007)

    Article  Google Scholar 

  37. S.A. Kumar, T. Balakrishnan, M. Alagar, Z. Denchev, Development and characterization of silicone/phosphorus modified epoxy materials and their application as anticorrosion and antifouling coatings. Prog. Org. Coat. 55, 207 (2006)

    Article  Google Scholar 

  38. Protection of Pipelines Against Corrosion Using Modern Insulation Coatings. http://www.ankort.ru/story2.php

  39. Pipeline Corrosion Protection. http://www.arguslimited.com/ru/pipeline_corrosion_protection

  40. Insulation Systems for PipelinesPolyken”. http://arguslimited.com/public/upload/files/brochures/polyken.pdf (in Russian)

  41. Insulation Tape Material SystemPolyken”. http://www.ngscomplect.ru/poliken/poliken.html (in Russian)

  42. Heat-shrinkable Cuff and Kits. http://ehms.ru/corros_isol_fore_canusa.php

  43. New Insulation Technologies. http://www.ntiz.ru/pokritija_truboprovodov (in Russian)

  44. EP Patent No. 247877A

    Google Scholar 

  45. R.A. Kharisov, A.R. Habirova, F.M. Mustafin, R.A. Habirov, Current status of protecting pipelines from corrosion polymer coatings. Oil Gas Bus (2005) (in Russian)

    Google Scholar 

  46. F.M. Mustafin, Review of methods of protection of pipelines against corrosion insulation coatings. Oil Gas Bus (2003) (in Russian)

    Google Scholar 

  47. EP Patent No. 1049751A

    Google Scholar 

  48. RU Patent No. 2477299 (in Russian)

    Google Scholar 

  49. USA Patent No. 4455204

    Google Scholar 

  50. USA Patent No. 4287034

    Google Scholar 

  51. RU Patent No. 2132993 (in Russian)

    Google Scholar 

  52. USA Patent No. 5300336

    Google Scholar 

  53. RU Patent No. 2162562 (in Russian)

    Google Scholar 

  54. USA Patent No. 5415824

    Google Scholar 

  55. USA Patent No. 551868

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Kudina .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Cite this chapter

Kudina, E., Bukharov, S.N., Sergienko, V.P., Dumitrescu, A. (2018). Comparative Analysis of Existing Technologies for Composite Repair Systems. In: Barkanov, E., Dumitrescu, A., Parinov, I. (eds) Non-destructive Testing and Repair of Pipelines. Engineering Materials. Springer, Cham. https://doi.org/10.1007/978-3-319-56579-8_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-56579-8_16

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-56578-1

  • Online ISBN: 978-3-319-56579-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics