Field Emission Cathode-Based Devices and Equipment

  • Nikolay EgorovEmail author
  • Evgeny Sheshin
Part of the Springer Series in Advanced Microelectronics book series (MICROELECTR., volume 60)


In this chapter the main features of field cathode-based devices are reviewed. Such devices include various lighting sources, microwave appliances, X-ray tubes and other electronic devices.


Electronic devices Light sources Screens Magnetrons Traveling-wave tubes X-ray tubes 


  1. 1.
    A.S. Bugaev, V.B. Kireev, E.P. Sheshin, A.Y. Kolodyzhnyj, Сathodoluminescent light sources: status and prospects. Physics-Uspekhi v 58(2), 792–818 (2015)ADSCrossRefGoogle Scholar
  2. 2.
    Y.B. Ayzenberg, Lighting Engineering (Energoatom, M., 1983)Google Scholar
  3. 3.
    E.P. Sheshin, Structure of a Surface and Field Emission Properties of Carbon Materials (MIPT, M., 2001)Google Scholar
  4. 4.
    E.P. Sheshin, A.L. Suvorov, A.F. Bobkov, D.E. Dolin, Light source on the basis of carbon field electron cathodes: design and parameter, in Abstract of 7th International Vacuum Microelectronics Conference, Grenoble, France (1994), pp. 423–426Google Scholar
  5. 5.
    A.S. Baturin, V.S. Kaftanov, S.G. Kyzmenko, E.P. Sheshin, Field emission device. Patent R.F. No. 2180145, Cl. H01J/28 of 15.02.2000Google Scholar
  6. 6.
    M.Y. Leshukov, A.S. Baturin, N.N. Chadaev, E.P. Sheshin, Characterizations of light sources with carbon fiber cathodes. Appl. Surf. Sci. 215, 260–264 (2003)Google Scholar
  7. 7.
    M.Y. Leshukov, N.N. Chadaev, A.S. Baturin, E.P. Sheshin, Vacuum cathode luminescence lamps for systems of display of information, in Proceedings of Conference on Modern Television of Moskow (2004), pp. 36–38Google Scholar
  8. 8.
    M.O. Popov, S.Y. Bulakhon, A.V. Karpov, S.A. Shiriaev, E.N. Skorokhodov, A.L. Suvorov, Influence of parameters of field emission cathodoluminescence light sources on their technical properties. Appl. Surf. Sci. 215, 253–259 (2003)Google Scholar
  9. 9.
    E.P. Sheshin, A.Y. Kolodyazhnyiy, A.S. Raufov, Sources of general lighting with field emission cathodes from carbon materials. Izvestiya Vysshikh Uchebnykh Zavedenii; Seriya Khimiya I Khimicheskaya Tekhnologiya 58(7), 69–73 (2015)Google Scholar
  10. 10.
    M.Y. Leshukov, E.P. Sheshin, Optimization of an electron-optical system of a cathode luminescent light source with the field emission from carbon fibers, in Proceedings of Conference on Stability and Management Processes, vol. 1, St. Petersburg (2005), pp. 202–208Google Scholar
  11. 11.
    M.Y. Leshukov, E.P. Sheshin, New design of electron gun for field emission light sources with carbon fibers cathode. Hydrogen Materials Science and Chemistry of Carbon Nanomaterials. NATO Security Through Science Series A: Chemistry and Biology, Special issue, XLI (Springer Science, 2007), pp. 255–258Google Scholar
  12. 12.
    M.Y. Leshukov, N.N. Chadaev, E.P. Sheshin, Field emission light source with carbon fibers bundle cathode. Technical Digest of IVNC, Oxford, UK (2005), pp. 340–341Google Scholar
  13. 13.
    W. Knapp, O.F. Kieler, D. Schleussner, E.P. Sheshin, I.N. Yeskin, Fieldemission von kohlenstoff-fasern und deren anwendung in einem CRT-lightelement. Konferenzband Electronic displays, Berlin (2000), pp. 92–98Google Scholar
  14. 14.
    W. Knapp, D. Schleussner, A.S. Baturin, I.N. Yeskin, E.P. Sheshin, CRT lighting element with carbon field emitters. Vacuum 69, 339–344 (2003)Google Scholar
  15. 15.
    H. Murakami, M. Hirakawa, C. Tanaka, H. Yamakawa, Field emission from well-aligned, patterned, carbon field emitters. Appl. Phys. Lett. 76(13), 1776–1778 (2000)Google Scholar
  16. 16.
    Y. Saito, K. Hamagychi, R. Mizushima, S. Uemura, T. Nagasako, J. Yotani, T. Shimojo, Field emission from carbon nanotubes and its application to cathode ray tube lighting elements. Appl. Surf. Sci. 146, 305–311 (1999)Google Scholar
  17. 17.
    Y. Saito, K. Hata, A. Takakura, J. Yotani, S. Uemura, Field emission of carbon nanotubes and its application as electron sources of ultra-high luminance light-sours devices. Physica B B323, 30–37 (2002)Google Scholar
  18. 18.
    Y.-C. Yang, J. Tang, L. Liu, S.S. Fan, Field emission device. Patent USA №US 2008/0007153 of 30.11.2006. Cl 313/497 (2006)Google Scholar
  19. 19.
    Y.-C. Yang, J. Tang, L. Liu, S.S. Fan, Field emission device. Patent USA №US 2008/0007153 of 30.11.2006. cl.313/496 (2006)Google Scholar
  20. 20.
    A.N. Obraztsov, V.J. Kleshch, E.A. Smolnikova, A nano-graphite cold cathode for an energy-efficient catholuminescent light source. Beilstein J. Nanotechnol. 4, 493–500 (2013)CrossRefGoogle Scholar
  21. 21.
    K.-J. Chung, N.N. Pu, M.J. Youh, Y.-M. Liu, M.-D. Ger, W.-K. Huang, Improvement of lighting uniformity and phosphor life in field emission lamps using carbon nanocoils. J. Nanomater. 2015, ID373549 (2015) 9 pGoogle Scholar
  22. 22.
    Y.-C. Yang, Y. Wei, L. Liu, K.-L. Jiang, S.S. Fan, Field emission device. Patent USA №US 2008/0012466 of 16.11.2006, cl 313/495 (2006)Google Scholar
  23. 23.
    Y.-C. Yang, Y. Wei, L. Liu, K.-L. Jiang, S.S. Fan, Pixel tube for field emission device. Patent USA № US 2008/0030123 of 12.07.2007, cl.313/495 (2007)Google Scholar
  24. 24.
  25. 25.
    Y. Kondo, J. Matsuura, H. Kimura, Characteristics of field emitter arrays for light source. Technical Digest IVMC 91, Nagahama (1991), pp. 56–57Google Scholar
  26. 26.
    Y.L. Ke, J. Zhou, J. Chen, S.Z. Deng, N.S. Xu, Luminescent tubes based on MoO2 nanowire cold cathode. Technical Digest JVNC, Oxford, UK (2005), pp. 362–363Google Scholar
  27. 27.
    V.S. Kaftanov, A.L. Suvorov, E.P. Sheshin, Field emission cathode and methods in the production thereof. Patent USA. №5588893 cl.445/6(H01 J 9/02) of 6.06.1995Google Scholar
  28. 28.
    V.S. Kaftanov, A.L. Suvorov, E.P. Sheshin, A field emission cathode and methods in the production thereof. Patent RST № WO 96/25753 of 15.02.1995Google Scholar
  29. 29.
    V.S. Kaftanof, A.L. Suvorov, E.P. Sheshin, Metod vid tillverkning av en faltemissions cathode samt faltemissions cathode. Patent Sweden №504603 of 02.15.1995 cl.H01 J/30Google Scholar
  30. 30.
    V.S. Kaftanov, A.L. Suvorov, E.P. Sheshin, Field emission cathode and methods in the production thereof. Patent USA № 5973446 of 15.02.1999 cl.313/310 (H01 J 1/05)Google Scholar
  31. 31.
    G. Forsberg, C.-H. Andersson, Method of producing a field emission cathode and a light source. Patent RST WOOO/77813 A1 of 10.06.1999Google Scholar
  32. 32.
    W.-H. Tsai, M.-C. Fan, J.-C. Chang, Flat field emission illumination module. Patent USA № US 2008/0036361 of 14.02.2008 cl.313/496 (H01j 1/62)Google Scholar
  33. 33.
    W-H. Tsai, M.-C. Fan, J.-C. Chang, Flat field emission illumination module. Patent UK GB 2441618, of12.03.2008. cl. H01j 63/02Google Scholar
  34. 34.
    P.J. Chen, P. Liu, L.M. Sheng, Y. Wei, L. Liu, Z.F. Hu, C.L. Guo, S.S. Fan, Light source apparatus using field emission cathode. Patent USA US 2006/0022574 of 2.02.2006, cl.313/495 (H01J 9/02)Google Scholar
  35. 35.
    J.H. Choi, A.R. Zoulkarneev, Y.T. Park et al., Cathodoluminescent flat lamp using the suspend wire structure. Technical Digest of JVNC 2005, Oxford, UK (2005), pp. 350–35Google Scholar
  36. 36.
    K.W. Cheng, S.H. Lee, C.Y. Hsiao, Field emission type planar lamp and method for the same. Patent USA US 2008/0079348 of 3.04.2008 cl.313/495 (H01 J 1/02)Google Scholar
  37. 37.
    L. Qian, L. Lin, P. Liu, J. Tang, Y. Wei, S.S. Fan, Field emission double-plane light source and method for making the same. Patent USA US 2007/0222363 of 27.09.2007 cl.313/496 (H01 J 63/04)Google Scholar
  38. 38.
    A.N. Obraztsov, J.Y. Pavlovsky, A.P. Volkov, Prototype of light emitting device ith thin film cold cathode. Technical Digest of Euro Display 99, Berlin, Germany (1999), pp. 229–231Google Scholar
  39. 39.
    A. Gorecka-Drzazga, B.J. Cichy, P. Szczepanska, R. Walczak, J.A. Dziubun, Field emission light sources for lab-on-a-chip microdevices. Bull. Polish Acad. Sci. Techn. Sci. 60(1), 13–17 (2012)Google Scholar
  40. 40.
    Y. Kuroiwa, S. Narushima, S. Ito, Electron emitter, field emission display unit, cold cathode florescent tube, flat type lighting device, and electron emitting material. European patent EP 1876628 29.01.2008 H01 J 1/304 (2008)Google Scholar
  41. 41.
    V.B. Sharov, E.P. Sheshin, A.A. Shyka, Field emission cathodes from graphite for diode light sources. Nano Microsyst. Equip. 3, 17–19 (2005)Google Scholar
  42. 42.
    M.-J. Youh, C.-L. Tseng, M.-H. Jhuang, S.-C. Chiu, L.-H. Huang, J.-A. Gong, Y.-Y. Li, Flat panel light source with lateral gate structure based on SiC nanowire field emitters. Sci. Rep. 5, 10976, c1–34 (2015)Google Scholar
  43. 43.
    V.S. Kaftanov, A.L. Suvorov, E.P. Sheshin, J. Olsford, Field emission cathode and a light source including a field emission cathode. Patent USA №5877588 of 5.03.1999, cl.313/491 (H01 J 1/30)Google Scholar
  44. 44.
    V.S. Kaftanov, A.L. Suvorov, E.P. Sheshin, J. Olsford, Light source including a field emission cathode, and a field emission cathode. Patent USA 6008575 of 28.12.1999, cl. 313/484 (H01 J 1/30)Google Scholar
  45. 45.
    E.P. Sheshin, A.L. Suvorov, V.S. Kaftanov, J. Olstors, Field emission cathode and a light source including a field emission cathode. Patent Canada CA 2293269 cl, H01 J 001/30 of 17.12.1998Google Scholar
  46. 46.
    A.A. Blyablin, A.V. Kandidov, A.T. Rakhimov, V.A. Samorodov et al. Divergence of electrons emitted from a carbon cold cathode cold cathode. Technical Digest of IVMC 1999, Darmstadt, Germany (1999), pp. 346–347Google Scholar
  47. 47.
    J.-M. Bonard, T. Stockli, O. Noury, A. Chatelain, Field emission from cylindrical carbon nanotube cathodes: possibilities for luminescent tubes. Appl. Phys. Lett. 78(18), 2775–2777 (2001)Google Scholar
  48. 48.
    X.X. Zhang, C.C. Zhu, X. Li, W.Z. Cui, The fabrication of novel structure of field emitting light tube with carbon nanotubes as cathode. Technical Digest of IVNC, Oxford, UK (2005), pp. 342–343Google Scholar
  49. 49.
    J.X. Huang, J. Chen, S.Z. Deng, J.C. She, N.S. Xu, Optimization of carbon nanotube cathode for a fluorescent lamp. Technical digest of IVNC, Oxford, UK (2005), pp. 284–285Google Scholar
  50. 50.
    J. Kjellman, M. Lindmark, Light source, and a field emission cathode. Patent USA 6873095 of 29.03.2005 313.336 (H01 J 1/16)Google Scholar
  51. 51.
    Y. Yun, G. Tailiang, J. Yadong. Application of ZnO nanopillars and nanoflowers to field emission luminescent tubes. J. Semiconductors, 33(4), 043003, 1–5 (2012)Google Scholar
  52. 52.
    A.N. Obraztsov, A.P. Volkov, A.A. Zakhidov, D.A. Lyashenko, Y.V. Petrushenko, O.P. Satanovskaya, Field emission characteristics of nanostructured thin film carbon materials. Appl. Surf. Sci. 215, 214–221 (2003)Google Scholar
  53. 53.
    A.N. Obraztsov, Cathodoluminescent light source. Patent USA US 005/0174059 of 11.08.2005 cl. 313/634 (H01 J 63/04)Google Scholar
  54. 54.
    L. Qian, L. Lin, P. Liu, J. Tang, Y. Wei, S.S. Fan, Field emission lamp and method for making the same. Patent USA US 2007/0228919 of 4.10.2007, 313/310, (H01 J 9/02)Google Scholar
  55. 55.
    A.S. Leychenko, M.Y. Leshukov, N.N. Chadaev, E.P. Sheshin, Effective lamp for LCD-backlighting with the field emission cathode. Technical Digest IVNC IFEC, Guilin, China (2006), pp. 383–384Google Scholar
  56. 56.
    A.S. Leychenko, M.Y. Leshukov, N.N. Chadaev, E.P. Sheshin, Field emission lamp illuminations for l.c. displays, in Proceedings of Modern Television Conference, Moscow (2006), pp. 30–31Google Scholar
  57. 57.
    A.L. Suvorov, E.P. Sheshin, N.E. Lazarev, N.N. Chubun, Vacuum luminescent light source with carbon fibres field emission cathode. Technical Digest of IVMC, Portland USA (1995), pp. 516–521Google Scholar
  58. 58.
    P. Liu, Y. Wei, L.M. Sheng, L. Qian, J. Tang, L. Liu, C.L. Guo, C.L. Du, B.C. Du, S.S. Fan, Field emission luminescent light source. Patent USA US 2006/0091782, of 04.03.2006 cl.313–496 (H01 J 63/04)Google Scholar
  59. 59.
    K.J. Chung, C.C. Chiang, Y.M. Liu, N.W. Pu, M.D. Ger, The study of fabricating the field emission lamps with carbon nano materials. Int. J. Chem. Mol. Nucl. Mater. Metall. Eng. 6(5), 437–439 (2012)Google Scholar
  60. 60.
    L. Qian, L. Liu, P. Liu, J. Tang, Y. Wei, S.S. Fan, Field emission lamp and method for making the same. Patent USA US 2007/0247071 of 25.10.2007. cl.313/634 (H01 J 61/30)Google Scholar
  61. 61.
    C. Li, K. Song, C. Lan, Field emission excited UV light source structure and preparation method there of. Patent CN 103 400919 от 20.11.2013 кл.HOIj-063/06Google Scholar
  62. 62.
    S. Ono, T. Suyama, K. Fukura, S. Ishizu, N. Kawaguchi, T. Nagami, A. Yoshikawa, T. Yanagida, Y. Yokota, Device for emitting vacuum ultraviolet light. Patent W0201127881 от 10.03.2011,кл.Н01о-061/38,Н01j-063/00Google Scholar
  63. 63.
    M. Yanagihara, M.Z. Yusop, M. Tanemura, S. Ono, T. Nagami, K. Fukuda, T. Suyama, Y. Yokota, T. Yanagida, A. Yoshikawa, Vacuum ultraviolet field emission lamp utilizing KMgF3 thin film phosphor. APL Mater. 2, 046110 (2014)ADSCrossRefGoogle Scholar
  64. 64.
    V.D. Blank, S.G. Buga, I.V. Ekhmenina, N.N. Chadaev, E.P. Sheshin, Patent RF №2529014, kl.N01j 61/06, H05B33/12 ot 27.09.14. Lampa vakuumnaya ul’trafioletovogo diapazona spektraGoogle Scholar
  65. 65.
    I.V. Ekhmenina, E.P. Sheshin, N.N. Chadaev, Problemy sozdaniya ul’trafioletovyh istochnikov na osnove nanostrukturirovannyh avtoehmissionnyh katodov. ZHurnal «Nano- i mikrosistemnaya tekhnika» 2, str.39–45 (2010)Google Scholar
  66. 66.
    I.V. Ekhmenina, E.P. Sheshin, N.N. Chadaev, Istochniki izlucheniya na osnove nanostrukturirovannyh avtokatodov. Zhurnal «Nano- i mikrosistemnaya tekhnika» 4, str.45–48 (2010)Google Scholar
  67. 67.
    I.V. Ekhmenina, E.P. SHeshin, N.N. CHadaev, Avtoehmissionnyj istochnik ul’trafioletovogo izucheniya s avtokatodom iz nanostrukturirovannogo uglerodnogo materiala. Vestn. S.-Peterburg, un-ta. Ser.10. Prikl.matem. Inform.Proc.upr. 1, str.3–8 (2011)Google Scholar
  68. 68.
    I.V. Ekhmenina, E.P. SHeshin, Issledovanie vliyaniya razlichnyh faktorov na ehffektivnost’ katodolyuminescencii s cel’yu sozdaniya konkurentosposobnogo avtoehmissionnogo istochnika izlucheniya N ZHurnal «Trudy Moskovskogo fiziko-tekhnicheskogo instituta», tom 5, 1(17), str.36–43 (2013)Google Scholar
  69. 69.
    I.V. Ekhmenina, E.P. SHeshin, Issledovanie harakteristik izlucheniya avtoehmissionnyh lamp s avtokatodami iz nanostrukturirovannogo uglerodnogo materiala. Izvestiya vysshih uchebnyh zavedenij. Seriya: Himiya i himicheskaya tekhnologiya. T.56(5), S.74–76 (2013)Google Scholar
  70. 70.
    I.V. Ekhmenina, E.P. Sheshin, N.N. Chadaev, Source of ultraviolet radiation with field emission cathode made of nanostructured carbon materials. Springer_Book_BWF_2164446_Carbon Nanomaterials in Clean Energy Hydrogen System-II (2011), pp. 299–303Google Scholar
  71. 71.
    H.S. Kang, J.T. Han, Y.W. Jin, M.J. Bae, Y.J. Park, Field emission backlight unit, method of driving the backlight unit, and method of manufacturing lower panel. Patent USA US 2008/0106221 of 8.05.2008 cl.315/334 (H01 J 19/24)Google Scholar
  72. 72.
    B.N. Lin, C.H. Fu, Field emission backlight unit and scanning driving method. Patent USA US 2008/0100235 of 1.05.2008 cl.315–349 (H05B 37/02)Google Scholar
  73. 73.
    Y.J. Jung, J.H. Park, J.-S. Jeong, J.W. Nam, A.S. Berdinsky, J.B. Yoo, C.Y. Park, Fabrication and characteristics of flat lamp with CNT based triode structure for back light unit in LCD. Technical Digest of IVNC 2005, Oxford, UK (2005), pp. 202–203Google Scholar
  74. 74.
    S.H. Park, C.W. Baik, J.H. Lee, Y.W. Jin, Field emission type backlight unit and method of manufacturing the same. Patent USA US 2007/0229003 4.10.2007 315/324 (H01J 1/02)Google Scholar
  75. 75.
    J.H. Choi, B.G. Song, M.J. Shin, A. Zoulkarneev, D.S. Chung, M.J. Bae, Field emission backlight device and method of fabricating. Patent USA US 2005/0179363 of 18.08.2005 cl.313/497 (H01J 1/62)Google Scholar
  76. 76.
    A.S. Batyrin, N.N. Chadaev, E.P. Sheshin, N.A. Duzhev, Y.I. Tishin, Development of a lamp of illumination for liquid crystal screens, in Proceedings of Conference on “Modern Television” Moscow (2001), pp. 21–23Google Scholar
  77. 77.
    A.S. Baturin, N.N. Chadaev, M.Y. Leshukov, A.J. Trufanov, E.P. Sheshin, Cathodo-luminescent dynamic backlighting for color liquid crystal displays, in Proceeding of Conference on Displays and Vacuum Electronics, Garmisch-partenkirchen, Germany (2004), pp. 321–323Google Scholar
  78. 78.
    J. Gorog, P.M. Ritt, Liquid crystal display having a field emission backlight. Patent PCT WO 2008/002321of 03.01.2008 cl. (H01J 9/227)Google Scholar
  79. 79.
    M.Y. Leshukov, N.N. Chadaev, E.P. Sheshin, Three-colored cathode luminescent lamp for systems of display of information, in Proceedings of Conference onModern Television”, Moscow (2005), pp. 37–38Google Scholar
  80. 80.
    M.Y. Leshukov, N.N. Chadaev, A.S. Baturin, K.H. Nikolskiy, R.G. Chesov, Illumination of liquid crystal screens cathode luminescent lamps with field emission cathodes from carbon fibers, in Proceedings of Modern Television Conference, Moscow (2002), pp. 30–31Google Scholar
  81. 81.
    N. Abanshin, A. Ezhkov, P. Ivashkin, S. Kashyrin, A. Vrotov, Y. Timofeev, Cathode luminescent radiators for display units of collective use. Electron. Compon. 4, 114–116 (2007)Google Scholar
  82. 82.
    A.I. Tryfanov, A.S. Batyrin, M.Y. Leshukov, N.N. Chadaev, E.P. Sheshin, Emission characteristics of a light source with field emission cathode on the basis of a bunch carbon fibers. Microsyst. Equip. 3, 32–35 (2004)Google Scholar
  83. 83.
    A.S. Leychenko, M.Y. Leshukov, N.V. Luparev, P.A. Starikov, N.N. Chadaev, E.P. Sheshin, Element of the big video screen with field emission cathode luminescent light sources as pixels, in Proceedings of “Modern Television” Conferences, Moscow (2007), pp. 45–46Google Scholar
  84. 84.
    A.V. Kudryashov, E.P. Sheshin, N.N. Chadaev, M.M. Kustikov, The element of a big size screen based on light emitters with field emission cathodes, in Abstract of International Vacuum Electron Sources Conference (IVESC), London (2008)Google Scholar
  85. 85.
    D.S. Strebkov, V.Z. Trubnikov, A.V. Pastuhov, E.P. SHeshin, N.N. CHadaev, Sistema ehlektricheskogo osveshcheniya (varianty). Patent RF №2505 744, ot 27.01.2014, kl.F2159/00Google Scholar
  86. 86.
    S. Groznov, A.S. Leychenko, E.P. Sheshin, A. Shyka, Flat display screens on a basis the field emission cathodes. Chip News 7, 21–25 (2008)Google Scholar
  87. 87.
    K.R. Shoulders, Microelectronics using electron-beam-activated machining techniques, in Advances in Computers, vz, (1961), pp. 135–197Google Scholar
  88. 88.
    S.A. Spindt, A thin film field emission cathode. J. Appl. Phys. 39(7), 3504–3505 (1968)Google Scholar
  89. 89.
    C.A. Spindt, J. Brodie, L. Humphrey, E.R. Westarber, Physical properties of thin film field emission cathode with molybdenum cones. J. Appl. Phys. 47(12) (1976)Google Scholar
  90. 90.
    R. Meyer, Recent development on «microtips» display at LETI. Technical Digest of IVMC 1999, Hagahama, Sapan (1999), pp. 6–9Google Scholar
  91. 91.
    S. Jtoh, T. Watanabe, T. Yamaura, K. Yano, A challenge to field emission displays. Asia Displays 95, 617–620 (1995)Google Scholar
  92. 92.
    S. Jtoh, Current status of the field emission display. ASET International Forum on Low Power Displays, Shinagawa (2000), pp. 59–68Google Scholar
  93. 93.
    S. Stoh, M. Tanaka, T. Tonegawa, Development of field emission display. Technical Digest of IVMC 2003, Osaka, Japan (2003), pp. 19–20Google Scholar
  94. 94.
    B.E. Russ, J. Barger, J. Wang, Field emission cathode structure using perforated gate. Patent USA US 2003/0193297 of 16.10.2003, cl.315/169 (H05B 39/04)Google Scholar
  95. 95.
    S. Kubota, K. Kikuchi, H. Sata, Cold cathode field emission device, process for the production there of, and cold cathode field emission display. Patent USA US 2002/0050776, of 2.05.2002, cl.313/309 (H01J 9/02)Google Scholar
  96. 96.
    Y. Kamide, S. Kubota, H. Sata, K. Kikuchi, Cathode panel for a cold cathode field emission display, and cold cathode field emission display, and method of producing cathode panel for a cold cathode field emission display. Patent USA US 6917155 of 15.07.2005, cl.313/495 (H01J 1/62)Google Scholar
  97. 97.
    Y. Kamide, S. Kubota, H. Sata, K. Kikuchi, Cathode panel for a cold cathode field emission display and cold cathode field emission display, and method of producing cathode panel for a cold cathode field emission display. Patent USA US 2005/0236964 of 27.10.2005, cl.313/495(H01J 1/62)Google Scholar
  98. 98.
    M. Konishi, K. Jida, Cold cathode electric field electron emission display device. Patent USA US 2006/0087248 of 27.04.2006, cl.315/169, 3 (G09G 3/10)Google Scholar
  99. 99.
    E. Negishi, Method for treating a cathode panel, cold cathode field emission display device, and method for producing the same. Patent USA US 2008/0012467 of 17.01.2008, cl.313/495 (H01J 1/62)Google Scholar
  100. 100.
    M. Konishi, Cold cathode electric field electron emission display device. Patent USA US 2005/0082964 of 21.04.2005, cl.313/497 (H01J 31/12)Google Scholar
  101. 101.
    D. Sarrasin, Method of driving a matrix display device having an electron source with reduced capacitive consumption. Patent USA, 8477156B2, 2.07.2013, cl.345/690 (G09G5/10)Google Scholar
  102. 102.
    M. Yamamoto, K. Koga, A. Shiota, S. Kanemaru, M. Nagao, Field emission electron source. Patent USA US 2005/0001536 of 6.01.2005, cl.313/497, (H01J 1/02)Google Scholar
  103. 103.
    S.-T. Yan, Field emission display and method for manufacturing same. Patent USA US 2008/0074031 of 27.03.2008 cl.313/496, (H01J 63/04)Google Scholar
  104. 104.
    G.-L. Chen, Field emission display device. Patent USA US 6646282 of 11.11.2003, cl.257/10 (H01L 29/06)Google Scholar
  105. 105.
    K.S. Choi, S.J. Lee, J.M. Kim et al., FED devices containing a novel graphite cathode prepared by a screen printing process, in Digest of 12th JVMC, Darmstadt, Germany (1999), pp. 32–33Google Scholar
  106. 106.
    K.S. Choi, S.J. Lee, J.M. Kim et al., Field emission display devices containing a novel graphite cathode prepared by a screen printing process. Digest SID 00 (2000), pp. 671–673Google Scholar
  107. 107.
    W.B. Choi, D.S. Chung, J.H. Kang, H.Y. Kim et al., Fully sealed, hight-brightness carbon-nanotube field emission display. Appl. Phys. Lett. 75(20), 3129–3131 (1999)Google Scholar
  108. 108.
    J.M. Kim, W.B. Choi, N.S. Lee, J.E. Jung, Field emission from carbon nanotubes for displays. Diam. Relat. Mater. 9, 1184–1189 (2000)Google Scholar
  109. 109.
    Q.H. Wang, A.A. Setlur, J.M. Lauerhaas, J.Y. Dai, E.W. Seelig, R.P.H. Chang, A nanotube-based field emission flat panel display. Appl. Phys. Lett. 72(22), 2912–2913 (1998)Google Scholar
  110. 110.
    Y. Nakayama, S. Akita, Field emission device with carbon nanotubes for a flat panel display. Synth. Metals 117, 207–210 (2001)Google Scholar
  111. 111.
    C.C. Kuo, W.S. Hsu, C.Y. Hsao, Sintering method for carbon nanotube cathode of field emission display. Patent USA US 2006/0009110 of 12.01.2006. cl.445/50 (H01J 9/12)Google Scholar
  112. 112.
    Y.H. Chien, C.P. Peng, C.H. Fu, W.Y. Lin, L.H. Chan, Field emission system and method for improving its vacuum. Patent USA US 2008/0042547 of 21.02.2008, cl.313/495 (H01J 63/04)Google Scholar
  113. 113.
    E.P. Sheshin, A.M. Kyrnosov, Flat field emission device to display the image. Patent PF ru 2178598 from 20.01.2002 CL.H01J 31/12Google Scholar
  114. 114.
    A.S. Baturin, N.N. Chadaev, K.N. Nikolski, R.G. Tchesov, E.P. Sheshin, I.N. Yeskin, Application of cathode materials for field mission display, in Proceedings of Conference Displays and Vacuum Electronics, Garmisch-partenkirchen, Germany (2004)Google Scholar
  115. 115.
    A.Y. Tcherepanov, A.G. Chakhovskoi, V.B. Sharov, Flat panel display prototype using low-voltage carbon field emitters. J. Vac. Sci. Technol. B 13(2), C.482–486 (1995)Google Scholar
  116. 116.
    Q.H. Wang, M. Yan, R.P.H. Chang, Flat panel display prototype using gated carbon nanotube field emitters. Appl. Phys. Lett. 78(9), 1294–1296 (2001)Google Scholar
  117. 117.
    L. Yukui, Z. Changchum, L. Xinghui, Field emission display with carbon nanotubes cathode prepared by a screen-printing process. Diam. Relat. Mater. 11, 1845–1847 (2002)ADSCrossRefGoogle Scholar
  118. 118.
    B.E. Russ, J. Barger, Field emission display using line cathode structure. Patent USA US 2003/0193296 of 16.10.2003 cl.315/169.3 (G09 G3/10)Google Scholar
  119. 119.
    A. Okamoto, K. Konuma, Y. Tomihari, F. Ito, Y. Okada, CNT film and field emission cold cathode comprising the same. Patent USA US 2004/0104660 of 3.01.2004 cl.313/346 R (H01j 19/06)Google Scholar
  120. 120.
    W.B. Choi, Y.W. Jin, H.Y. Kim, S.J. Lee et al., Electrophoresis deposition of carbon nanotubes for triode-type field emission display. Appl. Phys. Lett. 78(11), 1547–1549 (2001)Google Scholar
  121. 121.
    M. Nakamoto, Field emission type cold cathode device, manufacturing method thereof and vacuum micro device. Patent USA US 2004/0265592 of 30.12.2004 cl.428/408 (B32B 15/04)Google Scholar
  122. 122.
    X. Xu, C.P. Beetz, G.R. Brandes, R.W. Boerstler, J.W. Steinbeck, Carbon fiber-based field emission devices. Patent USA, №5973444 of 26.10.1999 cl.313/309 (H01J 1/30)Google Scholar
  123. 123.
    M.A. Gruillom, M.L. Simpson, V.J. Merkulov, A.V. Melechko, D.H. Lowndes, Gated fabrication of nanostructure field emission cathode material within a device. Patent USA US 6858455 of 22.02.2005. cl.438/20 (H011 21/00)Google Scholar
  124. 124.
    Z. Zheng, S.-S. Fan, Method for manufacturing cathode assembly of field emission display. Patent USA US 2007/0287350 of 13.12.2007 cl.445/24 (H0iJ 9/00)Google Scholar
  125. 125.
    H.J. Kim, J.T. Han, Y.C. Choi, K.S. Jeong, Method of forming a carbon nanotube structure and method of manufacturing field emission device using the method of forming a carbon nanotube structure. Patent USA US 2008/0003733 of 3.01.2008 cl.438/197 (H01L 21/8234)Google Scholar
  126. 126.
    M. Muroyama, T. Yagi, K. Jnoue, S. Saito, Electron emitter and its production method. Patent USA US 2004/0108515 of 10.06.2004, Cl.257/144 (H01L 21/00)Google Scholar
  127. 127.
    S. Kang, C. Bae, J. Kim, Barrier metal layer for a carbon nanotube flat panel display. Patent WO 2004/064099 of 29.07.2004Google Scholar
  128. 128.
    A.A. Blyablin, A.T. Rakhimov, V.A. Samorodov, N.V. Suetin, Method for producing an addressable field emission cathode and an associated display structure. Patent USA US 2003/0143321 of 31.07.2003. Cl 427/77 (B 05 D5/12)Google Scholar
  129. 129.
    Z. Sun, B.K. Tay, S.P. Lau, Y. Li, Field emission device and method of fabricating same. Patent USA US 2005/0077811 of 14.04.2005 Cl.313/495(H01j 1/62)Google Scholar
  130. 130.
    M. Okai, T. Muneyoshi, T. Yaguchi, N. Hayashi, Flat panel display. Patent USA US 2006/0049743 of 09.03.2006, cl. 313/496 (H01j 1/62)Google Scholar
  131. 131.
    F. Ito, Field emission type cold cathode and method for manufacturing the same and method for manufacturing flat display. Patent USA US 2003/0080663 of 1.05.2003. CL.313/336 (H01j 1/16)Google Scholar
  132. 132.
    H. Lee, S. Lee, S. Park, Triode structure field emission display device using carbon nanotubes and method of fabricating the same. Patent USA US 2005/040752 of 24.02.2005, Cl.313/495 (H01j 1/02)Google Scholar
  133. 133.
    K.A. Dean, B.F. Coll, E.M. Howard, L.L. Tisinger, Method for reducing leakage current in a vacuum field emission display. Patent USA US 2007/0097567 of 03.05.07, cl.361/42 (H02H9/08)Google Scholar
  134. 134.
    W. Gu, W. Lei, X. Zhang, Influence of the dielectric layer on the performance FED. Technical Digest of IVNC, Oxford, UK (2005), pp. 330–331Google Scholar
  135. 135.
    S.V. Johnson, Discharge of a field emission display based on charge accumulation. Patent USA US 2008/0048570 of 28.02.2008, cl.315/169.3 (G09 G3/10)Google Scholar
  136. 136.
    M.J. Youh, C.L. Tseng, Y.H.J. Huang, M. Liu, Triode field emission cold cathode device with random distribution and method. Patent USA US 2005/0104506 of 19.05.2005, cl.313/496 (Ho1j 1/62)Google Scholar
  137. 137.
    N.S. Xu, Z.S. Wu, S.Z. Deng, J. Chen, High-voltage triode flat-panel display using field emission nanotube-based thin films. J. Vac. Sci. Technol. B19(4), 1370–1372 (2001)CrossRefGoogle Scholar
  138. 138.
    T. Yaguchi, T. Muneyoshi, M. Okai, N. Hayashi, T. Nakamura, Flat panel display device. Patent USA US 2005/0057178 of 17.03.2005 of 315/169.4 (G 09 G 3/10)Google Scholar
  139. 139.
    T. Oh, Field emission display. Europatent EP 1542258 of 15.06.2005 cl.H01j 31/12Google Scholar
  140. 140.
    K. Oono, Field emission display device and method of manufacturing same. Patent USA US 2004/0239235 of 2.12.2004, cl.313/497 (H01j 1/62)Google Scholar
  141. 141.
    P.S. Ahn, H.W. Lee, Field emission device with focusing control electrode and field emission display. Patent USA US 2005/0189868 of 1.09.2005. Cl 313/497 (H01j 1/02)Google Scholar
  142. 142.
    J.T. Han, Field emission display and method of manufacturing the same. Patent USA US 2005/0110393 of 26.05.2005, cl.313/495 (H01j 1/62)Google Scholar
  143. 143.
    Y.H. Song, J.H. Lee, K.Y. Kang, Field emission device and field emission display device using the same. Patent USA US 2006/0290259 of 28.12.2006 cl.313/495 (H01j 63/04)Google Scholar
  144. 144.
    Y.H. Song, J.H. Lee, C.S. Hwang, Field emission display. Patent USA 2005/0248256 of 10.11.2005, cl 313/495 (H01j 1/62)Google Scholar
  145. 145.
    M. Nakamoto, Field emission cold cathode device of lateral type. Patent USA US 2004/0183421 of 23.09.2004 cl.313/309, (H01j 1/62)Google Scholar
  146. 146.
    M. Nakamoto, Field emission cold cathode device of lateral type. Patent USA US 2006/0061257 of 23.03.2006. Cl.313/496 (H01j 63/04)Google Scholar
  147. 147.
    Y. Takeuchi, T. Nanataki, J. Ohwada, T. Horiuchi, Electron-emitting device and field emission display using the same. Patent USA US 7088049 of 8.08.2006 cl.315/169.1 (G 09 G3/10)Google Scholar
  148. 148.
    H. Kawamura, S. Kafo, T. Maki, T. Kobayashi, Fabrication of planar diamond electron emitters for flat panel displays. Mat. Res. Soc. Symp. Proc. 558, 155–160 (2000)CrossRefGoogle Scholar
  149. 149.
    T.S. Oh, Field emission display. Patent USA US 2004/0222734 of 11.11.2004 cl.313/497 (H01j 1/62)Google Scholar
  150. 150.
    H. Moon, Field emission display device. Patent USA US 2005/0093424 of 5.05.2005 cl.313/495 (H01j 1/62)Google Scholar
  151. 151.
    J.H. Kang, Y.S. Choi, W.B. Choi, N.S. Lee et al., Under-gate triode type field emission displays with carbon nanotube emitters. Mat. Res. Soc. Symp. Proc. 621, P.R 5.2.1–R 5.2.5 (2000)Google Scholar
  152. 152.
    Y.S. Choi, J.H. Kang, Y.J. Park, W.B. Choi et al., An under-gate structure field emission display with carbon nanotube emitters. Diam. Relat. Mater. 10, 1705–1708 (2001)Google Scholar
  153. 153.
    Y.S. Choi, J.H. Kang, H.Y. Kim, B.G. Lee et l, A simple structure and fabrication of carbon-nanotube field emission display. Appl. Surf. Sci. 221, 370–374 (2004)Google Scholar
  154. 154.
    V.P. Mammana, G.E. Mc Guire, O.A. Shenderova, Back-gated field emission electron source. Patent USA, US 2005/0116214 of 02.06.2005 cl.257/10 (H01 L 29/06)Google Scholar
  155. 155.
    S.H. Ahn, S.J. Lee, Field emission display and method of manufacturing the same. Patent USA US 2005/0093426 of 05.05.2005 cl.313/496 (H01j 1/62)Google Scholar
  156. 156.
    S.H. Moon, Field emission display device. Patent USA US 2005/019 4880 of 08.09.2005 cl.313/311 (Ho 0j 1/02)Google Scholar
  157. 157.
    M. Taniguchi, M. Kitada, K. Nakamura, S. Kawata, Field emission element. Patent USA US 7067971 of 27.06.2006 cl.313/497 (H01j 1/62)Google Scholar
  158. 158.
    A. Kastalsky, S. Shokhor, F.J. Disanto, D.A. Krusos, B. Gorfinkel, N. Abanshin, Pixel structure for an edge-emitter field emission display. Patent USA US 2007/0046165 of (H01j 1/02)Google Scholar
  159. 159.
    B.I. Gorfinkel, N.P. Abanshin, Cathodoluminescent screen and its manufacturing method. Patent PF RU 2152662 of 10.07.2000. cl.H01j 1/62Google Scholar
  160. 160.
    N.P. Abanshin, B.J. Gorfinkel, Thin-film planar edge-emitter field emission flat panel display. Patent USA 6 590320 of 08.07.2003 cl.313/309 (H01j 1/02)Google Scholar
  161. 161.
    L.D. Karpov, Patent USA №5 965971 of 12.10.1999, cl.313/309 (H01j 01/02), Pat USA №6 023126 of 08.02.2000, cl.313/310 (H01j 1/05)Google Scholar
  162. 162.
    K.L. Jensen, Field emitter arrays for plasma and microwave source applications. Phys. Plasmas 6(5), 2241–2253 (1999)Google Scholar
  163. 163.
    S.P. Morev, N.P. Abanshin, B.J. Gorfinkel, A.N. Darmaev, D.A. Komarov, A.E. Makeev, A.N. Yakunin, Electron-optical systems with planar field emission cathode matrices for high-power microwave devices. J. Commun. Techn. Electron. 58(4), 357–365 (2013)Google Scholar
  164. 164.
    J.P. Calame, H.F. Gray, J.L. Shaw, Analysis and design of microwave amplifiers. J. Appl. Phys. 73(3), 1485–1504 (1993)Google Scholar
  165. 165.
    A.G. Rozhnev, N.M. Ryskin, D.V. Sokolov, D.J. Trubetskov, S.T. Han, J.I. Kim, G.S. Park, Novel concepts of vacuum microelectronic microwave devices with field emitter cathode arrays. Phys. Plasmas 2(2), 4020–4027 (2002)Google Scholar
  166. 166.
    J.C. She, O.H. Ha, N.S. Xu, S.Z. Deng, S. Chen, S.E. Hug, L. Wang, Arrays of vacuum microdiodes using uniform diamondlike carbon tip apexes. Appl. Phys. Lett. 89, 233518 (2006)Google Scholar
  167. 167.
    P.A. Ananiev, Y.V. Andrianov, V.A. Bashilov, M.M. Bogatskiy, D.A. Borisov, L.A. Kontonistov, G.N. Fursey, HFF-amplifier. Patent USSR №1072145, of 07.02.84. cl.H01j 25/00Google Scholar
  168. 168.
    V.I. Mahov, B.V. Bondarenko, M.F. Kopylov, SVCH-devices M-type. Patent RF №2040821 of 27.07.1995 cl.H01j 1/30Google Scholar
  169. 169.
    N.M. Ryskin, S.T. Han, K.H. Jang, G.S. Park, Theory of the microelectronic traveling wave klystron amplifier with field emission cathode array. Phys. Plasmas, 14, 093106 (2007)Google Scholar
  170. 170.
    J.E. Graebner, S. Jin, G.P. Kochanski, W. Zhu, Microwave vacuum tube devices employing electron sources comprising activated ultrafine diamonds. Patent USA, №5796211 of 18.08.1998. cl.315/3.5 (H01j 23/04)Google Scholar
  171. 171.
    J. Garcia-Garcia, F. Martin, R.E. Miles, D.P. Streenson, J.M. Chamberian, J.R. Fletcher, J.R. Thorpe, Parametric analysis of micromachined reflex klystrons for operation at millimeter and submillimeter wavelengths. J. Appl. Phys. 92(11), 6900–6904 (2002)Google Scholar
  172. 172.
    T.C. Cunningham, Field emission X-ray tube having a graphite fabric cathode. Patent USA №3883760, 313/55 (H01J 35/06) of 07.04.71Google Scholar
  173. 173.
    P.R. Schwoebel, Field emission arrays for medical X-ray imaging. Appl. Phys. Lett. 8, 113902 (2006)Google Scholar
  174. 174.
    C.A. Spindt, C.E. Holland, R.D. Stowell, Recent progress in low-voltage field emission cathode. J. Phys. t.45(Col.C9, suppl. 12), C9-9–C9-278 (1984)Google Scholar
  175. 175.
    B. Diop, V.T. Binh, Quasi-monochomatic field emission X-ray source. Rev. Sci. Instrum. 83, 094704 (2012). doi: 10.1063/1.4752406 ADSCrossRefGoogle Scholar
  176. 176.
    A.N. Bodrov, B.P. Merkulov, Y.V. Nikolyukin, Impul’snaya rentgenovskaya trubka, rat. RF № 2521436, ot 27.06.2014. kl.N01j 35/02Google Scholar
  177. 177.
    K. Kawakita, K. Hata, H. Sato, Y. Saito, Development of micro-focused X-ray source by using carbon nanotubes field emitter. Technical Digest 18th IVNC, Oxford, UK (2005), pp. 192–193Google Scholar
  178. 178.
    Z. Liu, O.Z. Zhou, S. Lu, Micro-field emission X-ray sources and related methods. Patent US 2008/0043920, of 21.02.2008, cl.378/138 (H01J 35/14)Google Scholar
  179. 179.
    J. Zhang, G. Yang, Y. Cheng, B. Gao, Q. Qiu, Y.Z. Lee, J.P. Lu, O. Zhou, Stationary scanning X-ray source based on carbon nanotube field emitters. Appl. Phys. Lett. 86,184104 (2005)Google Scholar
  180. 180.
    W. Knapp, D. Schleubner, S. Bjeoumikhov, H. Wolff, N. Langhoff, X-ray sources with carbon field emitter cathodes, in IVESC (2004), pp. 309–311Google Scholar
  181. 181.
    S.H. Heo, H.J. Kim, J.M. Ha, S.O. Cho, A vacuum-sealed miniature X-ray tube based on carbon nanotube field emitters. Nanoscale Res. Lett. 7, 258–265 (2012). doi: 10.1186/1556-276x-7-258 ADSCrossRefGoogle Scholar
  182. 182.
    Y. Sun, The design and fabrication of carbon-nanotube-based Field emission X-ray cathode with ballast resistor. JEEE Trans. Electr. Dev. 60(1), 464–470 (2012)Google Scholar
  183. 183.
    J.W. Hwang, C.B. Mo, H.K. Jung, S. Ryu, S.H. Hong, Field emission behavior of carbon nanotube yarn for micro-resolution X-ray tube cathode. J. Nanosci. Nanotechnol. 13(11), 7386–7390 (2013)Google Scholar
  184. 184.
    Y. Jwai, K. Muramatsu, S. Tsuboi, A. Jyouzuka, T. Nakamura, Y. Onizuka, H. Mimura, X-ray tube using a graphene flower cloth field emission cathode. J. Appl. Phys. Express 6, 105102 (2013)Google Scholar
  185. 185.
    J.-W. Jeong, J.-T. Kang, S. Choi, J.-W. Kim, S. Ahn, Y.H. Song, Digital miniature X-ray tube a high-density triode carbon nanotube field emitter. Appl. Phys. Lett. 102, 023504 (2013)Google Scholar
  186. 186.
    G. Phillip, K. Timothy, W. Scotta, A sealing cold cathode X-ray tube for use in small X-ray sources is provided. Patent USA 2014 0226791, от 14.08.2014. кл.Н01j-035/06Google Scholar
  187. 187.
    E.P. Sheshin, N.N. Chadaev, A.S. Baturin, A.I. Tryfanov, X-ray tube cathodes. Patent RF N 8248643,cl.Ho1J 35/02 of 35/02 of 20.03.05Google Scholar
  188. 188.
    A.S. Baturin, A.I. Trufanov, N.N. Chadaev, E.P. Sheshin, Field emission gun for X-ray tubes. Technical Digest of Display and Vacuum Electronics, Garmisch-Partenkirchen (2004), pp. 407–409Google Scholar
  189. 189.
    A.S. Baturin, A.I. Trufanov, N.N. Chadaev, E.P. Sheshin, Field emission gun for X-ray tubes. Nuclear Instrum. Methods Phys. Res. A, 558, 253–255 (2006)Google Scholar
  190. 190.
    J.W. Jeong, Y.-H. Song, J. Kang, J.-W. Kim, Field emission X-ray tube and method of operating the same. Patent US 2012/0148027, от 14.06.2012, кл.378/106 (Н05G 1/22)Google Scholar
  191. 191.
    A.S. Bugaev, P.A. Eroshkin, V.A. Romanko, E.P. Sheshin, Low-power X-ray tubes the current state. Physics-Uspekhi 56(7), 691–703 (2013)Google Scholar
  192. 192.
    A.V. Crewe, Electron gun using a field emission source. Rev. Sci. Jnsx. 39(4), 576 (1968)ADSCrossRefGoogle Scholar
  193. 193.
    G.N. Fursey, S.A. Shahirova, To the question of possible localization of the bodily field emission in small angles-ZhTF t.33(6), 1125 (1966)Google Scholar
  194. 194.
    S. Hosoki, S. Yamamoto, H. Todokoro, S. Kawasa, Y. Hirai, Field emission cathode and method of fabricating the same. Patent USA N 4379250, cl. 313/336 of 05.04.1983Google Scholar
  195. 195.
    L.W. Swanson, L.C. Grouser, Angular confinement of field electron and ion emission. J. Appl. Phys. 40(12), 4741 (1969)ADSCrossRefGoogle Scholar
  196. 196.
    Z.I. Dranova, V.A. Ksenofontov, V.B. Kylko, B.G. Lazarev, L.S. Lazarev, I.M. Mihaylovskiy, A method of manufacturing the tip emission field emitter with localized emission. USSR №828261 cl H01 J9/02 of 07.05.1981Google Scholar
  197. 197.
    V.A. Kyznetsov, B.N. Vasichev, Y.L. Rybakov, Field emitter with localized emission a.s. USSR №1069029 cl.Ho1J 1/30, 23.01.1984Google Scholar
  198. 198.
    T.A. Bakeer, M.M. Balsiger, K.T. Considine, H.E. Litsjo, Electron-beam tube including a thermonic field emission cathode for a scanning electron microscope. Patent №3809899 (USA)Google Scholar
  199. 199.
    B. Cho, K. Shigeru, C. Oshima, W(310) cold-field emission characteristics reflecting the vacuum states of an extreme high vacuum electron gun. Rev. Sci. Instrum. 84, 013305 (2013)Google Scholar
  200. 200.
    E.A. Litvinov, A.A. Starobinec, The limiting currents of field emission. ZhTF 47(10), c.2032 (1977)Google Scholar
  201. 201.
    A.D. Karpenko, Y.S. Lobachev, V.A. Shishkin, On the limiting current of field emission electronic cathode tip. Radio-electronics t.21(1), s.207 (1976)Google Scholar
  202. 202.
    M.I. Elinson, V.A. Gorkov, A.A. Yasnopolskaya, G.A. Kydinceva, A investigation of pulsed field emission at high density of currents. Radio Eng. Electron. 5(8), 1318 (1960)Google Scholar
  203. 203.
    J.P. Barbour, W.W. Dolan, J.K. Trolan, E.E. Martin, W.P. Dake, Space-charge effects in field emissionGoogle Scholar
  204. 204.
    Jeol. J. Electron MicroscopeGoogle Scholar
  205. 205.
  206. 206.
    Patent N3191028 (USA), Scanning Electron Microscope/Crewe A.VGoogle Scholar
  207. 207.
    J.W. Butler, Digital computer techniques in electron microscopy, in 6th International Congress Electron Microscopy (Kyoto) (1966), p. 191Google Scholar
  208. 208.
    M. Okai, K. Hidaka, M. Hayashibara, S. Watanabe, Field emission electron gun and electron beam applied device using the same. Patent USA US 2008/0029700 of 07.02.2008, 250/310 (Ho1J 37/073)Google Scholar
  209. 209.
    D.I. Swan, D. Kynastou, The development of a field Emission SEM, in Proceedings of the 6th Annual Scanning Electron Symposium, N 1 (1973), p. 57Google Scholar
  210. 210.
    K. Kuroda, T. Suzuki, High current efficiency accelerating lens system of field emission scanning electron microscope. J. Appl. Phys. 46, N1 (1975)Google Scholar
  211. 211.
    K. Kuroda, H. Ebisui, T. Suzuki, Three-anode accelerating lens system for the field emission scanning electron microscope. J. Appl. Phys. 45(N5) (1974)Google Scholar
  212. 212.
    R.J. Taylor, P.J. Swan, An experimental scanning electron microscope. In: Proceedings of the Scanning Electron Microscope System and Application Symposium (1973), p. 36Google Scholar
  213. 213.
    H.P. Kue, B.M. Siegel, A field emission probe forming system with magnetic pre-accelerator lens. In: Proceedings of Electron Microscope Society of America, 34th Annual Meeting (1976)Google Scholar
  214. 214.
    A.V. Crewe, Electron microscope using field emission source. Surf. Sci. 48(N1), 152–160 (1975)Google Scholar
  215. 215.
    R.I. Garber, A.K. Malik, I.M. Fishman, Use of needle emitters in electronic microscopy. PTE 4, 188–190 (1974)Google Scholar
  216. 216.
    A.K. Malik, I.M. Fishman, S.M. Hazan, A.c.№389564 (USSR). Cathodic unit for electronic gun. №29 (1973)Google Scholar
  217. 217.
    Pat.№1426509 (USSR), Improvements in field emission electron gunsGoogle Scholar
  218. 218.
    Y. Sakitani, Patent №4019077 (USA). Field emission gunGoogle Scholar
  219. 219.
    T.A. Baker, M.M. Balsiger, K.T. Considine, H.E. Litsjo, Separable-chamber electron-beam tube including means for puncturing. Pat.№3881125 (USA)Google Scholar
  220. 220.
    L.M. Welter, Field emission gun improvement. Pat №3946268 (USA)Google Scholar
  221. 221.
    V.A. Vasin, V.I. Zaporozhchenko, V.I. Rahovskiy, A.c. №594540 (SSSR). The device for stabilization of current of an field emission source, №7 (1978)Google Scholar
  222. 222.
    S. Nomura, Patent №3786268 (USA). Electron gun device of field emission typeGoogle Scholar
  223. 223.
    K.C.A. Smith, I.R.A. Cleaver, Electron gun. Patent №3872351 (USA)Google Scholar
  224. 224.
    T. Someya, M. Kobayshi, T. Goto, Feldemissions-Electronenguelle. Patent №2221138 (FRG)Google Scholar
  225. 225.
    R. Aihara, S. Ota, N. Kabayshi, Field emission type electron gun. Patent №3810025 (USA)Google Scholar
  226. 226.
    V.J. Coates, L.M. Welter, Patent №1355365 (England). Improvements in and relating to electron gunGoogle Scholar
  227. 227.
    Siemens atteiengesellschaft Co., Electron-beam microanalyzer apparatus. Patent №1389119 (England)Google Scholar
  228. 228.
    R.V. Latham, D.A. Wilson, The development of s high-definition cathoderay tube using a carbon-fibre field emission electron source. J. Phys. E: Sci. Instrum. 15(10), 1083–1092 (1982)Google Scholar
  229. 229.
    B.V. Bondarenko, V.A. Siliverstov, E.P. Sheshin, Use of field emission cathodes from carbon fibers in an electronic gun. Theses of Reports of the 5th Symposium to Not Heating Cathodes, Tomsk, pp. 81–83 (1985)Google Scholar
  230. 230.
    V.I. Tihtilo, E.P. Sheshin, Electrovacuum device. A.c. 1345935 SSSR, Cl.Ho1J 1/30 of 21.10.1985Google Scholar
  231. 231.
    F. Houdeller, L. Knoop, G. Gatel, A. Masseboeuf, S. Manishin, Y. Taniguchi, M. Delmas, M. Monthioux, M.J. Hytch, E. Snoeck, Development of TEM and SEM high brightness electron guns using cold-field emission from a carbon nanotip. Ultramicroscopy 151, 107–115 (2015)Google Scholar
  232. 232.
    Y.A. Grigoriev, A.I. Petrosya, V.V. Penzyakov, V.G. Pimenov, V.I. Rogovin, V.I. Shesterkin, V.P. Kudryashov, V.C. Semyonov, Experimental study of matrix carbon field emission cathodes and computer aided design of electron guns for microwave power devices, exploring these cathodes. J. Vac. Sci. Technol. B v 15(2), 503–506 (1997)CrossRefGoogle Scholar
  233. 233.
    A.S. Baturin, I.N. Yeskin, A.I. Trufanov, N.N. Chadaev, E.P. Sheshin, R.G. Tchesov, Electron gun with field emission cathode of carbon fiber bundle. J. Vac. Sci. Technol. B 21(1), 1–4 (2003)CrossRefGoogle Scholar
  234. 234.
    B.V. Bondarenko, V.I. Makyha, E.P. Sheshin, Y.V. Kydrashov, V.N. Ylacyuk, Y.V. Petryshenko, Field emission electronic gun. A.c. 1294188 SSSR,Cl.H01J 1/30 of 11.03.85Google Scholar
  235. 235.
    A.G. Chakhovskoi, A.V. Galdetski, A.N. Obraztsov, A.P. Volkov, Experimental investigation of electron gun wih nanostructured carbon cathode. Technical Digest of IVNC, Oxford, UK (2005), pp. 204–205Google Scholar
  236. 236.
    N.N. Dzbanovskiy, P.V. Minakov, A.A. Pilevskiy, A.T. Rahimov, B.V. Seleznev, N.V. Syetin, A.Y. Yuriev. High current electronic gun on the basis of an field emission cathode and a diamond grid. Zh.T.F. t.75(10), 111–114 (2005)Google Scholar
  237. 237.
    V.S. Nazarov, A.G. Gryshnikova, M.B. Silaev, O.G. Varnakova et al., A.c. 490211 SSSR, Cl. H01J 41/00 of 4.11.72. Ion getter pump/Google Scholar
  238. 238.
    A.c. 1240279 SSSR, Cl H01 J 41/16 of 12.07.84. Ion getter pump/ Varnakova O.G.,Grinchenko V.T., Konovalov N.D., Pogibelskay N.BGoogle Scholar
  239. 239.
    A.V. Anashenko, A.S. Batyrin, I.N. Eskin, E.P. Sheshin, A.A. Shyka et al., Field emission cathodes for heaters of getter-ion pumps. Electron. Ind. 3−4, 80–81 (1998)Google Scholar
  240. 240.
    V.A. Antonov, Y.A. Bykovskiy, A.I. Larkin, V.N. Ylasuk, A.V. Shelakov, E.P. Sheshin, Light-valve equipment. a.s. SSSR №1609371 of 24.06.1988, Cl. H01J 31/24Google Scholar
  241. 241.
    Y. Sugiyama, J. Itoh, S. Kanemaru, Vacuum magnetic sensor with comb-shaped field emitter arrays, in The 7th International Conference on Solid-State Sensors and Actuators, Yokohama, Japan (1993)Google Scholar
  242. 242.
    D. Hong, M. Aslam, Diamond field emitter pressure sensor. Technical Digest of JVMC, Oregon, USA (1995), pp. 335–337Google Scholar
  243. 243.
    T. Asano, R. Kajiwara, Fabrication of a tunnel sensor with cantilever structure. Technical Digest of JVNC, Nagahama, Japan (1991), pp. 204–205Google Scholar
  244. 244.
    J.P. Hollingsworth, P.R. Banlaru, Carbon nanotube based nonvolatile memory. Appl. Phys. Lett. 87, 2333115 (2005)Google Scholar
  245. 245.
    B. Lojek, Solid state field emission charge storage. Patent USA US 2008/0105946 of 2.05.2008.Cl.257/505 (H01L 29/00)Google Scholar
  246. 246.
    B. Lojek, Solid state field emission charge storage. Int. Pat. WO 2008/051675 of 02.05.2008 Cl.H01 L21/336Google Scholar
  247. 247.
    S.S. Furkay, D.V. Horak, C.H. Lam, H.-S.P. Wong, Field emission phase change diode memory. Patent USA US 2005/0127350 of 16.06.2005, cl.257/4 (H01L 47/00)Google Scholar
  248. 248.
    C. Goodman, Neutron sources. Patent USA №2816242 of 10.12.57 cl.313/61Google Scholar
  249. 249.
    A. Otuka, M. Yoshino, C. Ohima, Application a Spindt emitter to an ionization gauge for an extremely high vacuum. Tecnical Digest of IVMC, Nagahama, Japan (1991), 202–203Google Scholar
  250. 250.
    B.E. Barrington, A.L. Floras, W.L. Lees, Field-ionization electrodes. Patent USA, 3562881, of 16.02.71, cl.29/25.18 (H01j 9/16)Google Scholar
  251. 251.
    M. Faubel, W. Hobler, J. Toennies, Field emission cathode. Patent England №2021854 of 5.12.79, cl.H01j 1/30Google Scholar
  252. 252.
    M. Faubel, W.M. Hobler, J.P. Toennies, Electron impact ion source with field emission cathode. Patent USA №4272699 of 9.06.1981 cl.313/309 (H01j 37/073)Google Scholar
  253. 253.
    P.J. Traynor, R.G. Wright, Carbon nanotube electron ionization sources. Patent RST WO 2005/048290 of 26.05.2005, cl.H01j 49/00Google Scholar
  254. 254.
    O.A. Velikodnaya, V.A. Gurin, V.A. Ksenofontov, I.M. Mihaylovskiy, E.V. Sadanov et al., Multiemitter field source of ions on a basis the nanostructure of carbon materials. Letters ZhTF t.33(13), c.90–94 (2007)Google Scholar
  255. 255.
    G.F. Byrchak, S.P. Chervonobrodov, E.P. Sheshin, Method of forming of a light stream on the external screen for full-color system of display of a video information and the equipment for its implementation. Patent RF.RU 2265964 of 05.08.2003, cl.H04 №9/30Google Scholar
  256. 256.
    R.Z. Bahtizin, S.S. Goc, R.F. Zaripov, R.R. Faizov, Noise generator. a.s. USSR №1157642 of 23.05.1985, cl.H03 B 29/00Google Scholar
  257. 257.
    Y.M. Wong, W.P. Kang, J.L. Davidson, V.K. Choi, D.V. Kerns, J.H. Huang, Design and fabrication of single-chip carbon nanotubes vacuum field emission differential amplifier. Technical Digest of IVNC, Oxford, UK (2005), pp. 35–36Google Scholar
  258. 258.
    A. Zoulkarneev, J.-H. Choi, Field emission RF amplifier. Patent USA US 2005/0184675 of 25.08.2005 cl.G3/10 (H01j 315/169.3)Google Scholar
  259. 259.
    B.J. Kampherbeek, M.J.-J. Wieland, P. Kruit, Emission photo cathode array for lithography system and lithography system provided with such and array. Patent USA.US 2003/0178583 of 25.09.2003., cl.250/492.3 (H01j257/10)Google Scholar
  260. 260.
    D.A. Shiffler, Method of making a field emission cold cathode. Patent USA 2004/0202779 of 14.10.2004, cl.427/78 (B05D 5/12)Google Scholar
  261. 261.
    K.W. Cheng, Mirror having a field emission information display. Patent USA US 2008/0012727 of 17.01.2008, cl.340/933 (G08G 1/01)Google Scholar
  262. 262.
    F.G. Rudenauer, Field emission devices for space applications. Surf. Interface Anal. 39, 116–122 (2007)Google Scholar
  263. 263.
    V. Mironov, Fundamentals of the scanning probe microscopy. M. Technosphere (2004)Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Saint Petersburg State UniversitySt. PetersburgRussia
  2. 2.MIPTDolgoprudny, Moscow regionRussia

Personalised recommendations