Skip to main content

Field Emission Cathode-Based Devices and Equipment

  • Chapter
  • First Online:
Book cover Field Emission Electronics

Part of the book series: Springer Series in Advanced Microelectronics ((MICROELECTR.,volume 60))

Abstract

In this chapter the main features of field cathode-based devices are reviewed. Such devices include various lighting sources, microwave appliances, X-ray tubes and other electronic devices.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. A.S. Bugaev, V.B. Kireev, E.P. Sheshin, A.Y. Kolodyzhnyj, Сathodoluminescent light sources: status and prospects. Physics-Uspekhi v 58(2), 792–818 (2015)

    Article  ADS  Google Scholar 

  2. Y.B. Ayzenberg, Lighting Engineering (Energoatom, M., 1983)

    Google Scholar 

  3. E.P. Sheshin, Structure of a Surface and Field Emission Properties of Carbon Materials (MIPT, M., 2001)

    Google Scholar 

  4. E.P. Sheshin, A.L. Suvorov, A.F. Bobkov, D.E. Dolin, Light source on the basis of carbon field electron cathodes: design and parameter, in Abstract of 7th International Vacuum Microelectronics Conference, Grenoble, France (1994), pp. 423–426

    Google Scholar 

  5. A.S. Baturin, V.S. Kaftanov, S.G. Kyzmenko, E.P. Sheshin, Field emission device. Patent R.F. No. 2180145, Cl. H01J/28 of 15.02.2000

    Google Scholar 

  6. M.Y. Leshukov, A.S. Baturin, N.N. Chadaev, E.P. Sheshin, Characterizations of light sources with carbon fiber cathodes. Appl. Surf. Sci. 215, 260–264 (2003)

    Google Scholar 

  7. M.Y. Leshukov, N.N. Chadaev, A.S. Baturin, E.P. Sheshin, Vacuum cathode luminescence lamps for systems of display of information, in Proceedings of Conference on Modern Television of Moskow (2004), pp. 36–38

    Google Scholar 

  8. M.O. Popov, S.Y. Bulakhon, A.V. Karpov, S.A. Shiriaev, E.N. Skorokhodov, A.L. Suvorov, Influence of parameters of field emission cathodoluminescence light sources on their technical properties. Appl. Surf. Sci. 215, 253–259 (2003)

    Google Scholar 

  9. E.P. Sheshin, A.Y. Kolodyazhnyiy, A.S. Raufov, Sources of general lighting with field emission cathodes from carbon materials. Izvestiya Vysshikh Uchebnykh Zavedenii; Seriya Khimiya I Khimicheskaya Tekhnologiya 58(7), 69–73 (2015)

    Google Scholar 

  10. M.Y. Leshukov, E.P. Sheshin, Optimization of an electron-optical system of a cathode luminescent light source with the field emission from carbon fibers, in Proceedings of Conference on Stability and Management Processes, vol. 1, St. Petersburg (2005), pp. 202–208

    Google Scholar 

  11. M.Y. Leshukov, E.P. Sheshin, New design of electron gun for field emission light sources with carbon fibers cathode. Hydrogen Materials Science and Chemistry of Carbon Nanomaterials. NATO Security Through Science Series A: Chemistry and Biology, Special issue, XLI (Springer Science, 2007), pp. 255–258

    Google Scholar 

  12. M.Y. Leshukov, N.N. Chadaev, E.P. Sheshin, Field emission light source with carbon fibers bundle cathode. Technical Digest of IVNC, Oxford, UK (2005), pp. 340–341

    Google Scholar 

  13. W. Knapp, O.F. Kieler, D. Schleussner, E.P. Sheshin, I.N. Yeskin, Fieldemission von kohlenstoff-fasern und deren anwendung in einem CRT-lightelement. Konferenzband Electronic displays, Berlin (2000), pp. 92–98

    Google Scholar 

  14. W. Knapp, D. Schleussner, A.S. Baturin, I.N. Yeskin, E.P. Sheshin, CRT lighting element with carbon field emitters. Vacuum 69, 339–344 (2003)

    Google Scholar 

  15. H. Murakami, M. Hirakawa, C. Tanaka, H. Yamakawa, Field emission from well-aligned, patterned, carbon field emitters. Appl. Phys. Lett. 76(13), 1776–1778 (2000)

    Google Scholar 

  16. Y. Saito, K. Hamagychi, R. Mizushima, S. Uemura, T. Nagasako, J. Yotani, T. Shimojo, Field emission from carbon nanotubes and its application to cathode ray tube lighting elements. Appl. Surf. Sci. 146, 305–311 (1999)

    Google Scholar 

  17. Y. Saito, K. Hata, A. Takakura, J. Yotani, S. Uemura, Field emission of carbon nanotubes and its application as electron sources of ultra-high luminance light-sours devices. Physica B B323, 30–37 (2002)

    Google Scholar 

  18. Y.-C. Yang, J. Tang, L. Liu, S.S. Fan, Field emission device. Patent USA №US 2008/0007153 of 30.11.2006. Cl 313/497 (2006)

    Google Scholar 

  19. Y.-C. Yang, J. Tang, L. Liu, S.S. Fan, Field emission device. Patent USA №US 2008/0007153 of 30.11.2006. cl.313/496 (2006)

    Google Scholar 

  20. A.N. Obraztsov, V.J. Kleshch, E.A. Smolnikova, A nano-graphite cold cathode for an energy-efficient catholuminescent light source. Beilstein J. Nanotechnol. 4, 493–500 (2013)

    Article  Google Scholar 

  21. K.-J. Chung, N.N. Pu, M.J. Youh, Y.-M. Liu, M.-D. Ger, W.-K. Huang, Improvement of lighting uniformity and phosphor life in field emission lamps using carbon nanocoils. J. Nanomater. 2015, ID373549 (2015) 9 p

    Google Scholar 

  22. Y.-C. Yang, Y. Wei, L. Liu, K.-L. Jiang, S.S. Fan, Field emission device. Patent USA №US 2008/0012466 of 16.11.2006, cl 313/495 (2006)

    Google Scholar 

  23. Y.-C. Yang, Y. Wei, L. Liu, K.-L. Jiang, S.S. Fan, Pixel tube for field emission device. Patent USA № US 2008/0030123 of 12.07.2007, cl.313/495 (2007)

    Google Scholar 

  24. www.inanov.fr

  25. Y. Kondo, J. Matsuura, H. Kimura, Characteristics of field emitter arrays for light source. Technical Digest IVMC 91, Nagahama (1991), pp. 56–57

    Google Scholar 

  26. Y.L. Ke, J. Zhou, J. Chen, S.Z. Deng, N.S. Xu, Luminescent tubes based on MoO2 nanowire cold cathode. Technical Digest JVNC, Oxford, UK (2005), pp. 362–363

    Google Scholar 

  27. V.S. Kaftanov, A.L. Suvorov, E.P. Sheshin, Field emission cathode and methods in the production thereof. Patent USA. №5588893 cl.445/6(H01 J 9/02) of 6.06.1995

    Google Scholar 

  28. V.S. Kaftanov, A.L. Suvorov, E.P. Sheshin, A field emission cathode and methods in the production thereof. Patent RST № WO 96/25753 of 15.02.1995

    Google Scholar 

  29. V.S. Kaftanof, A.L. Suvorov, E.P. Sheshin, Metod vid tillverkning av en faltemissions cathode samt faltemissions cathode. Patent Sweden №504603 of 02.15.1995 cl.H01 J/30

    Google Scholar 

  30. V.S. Kaftanov, A.L. Suvorov, E.P. Sheshin, Field emission cathode and methods in the production thereof. Patent USA № 5973446 of 15.02.1999 cl.313/310 (H01 J 1/05)

    Google Scholar 

  31. G. Forsberg, C.-H. Andersson, Method of producing a field emission cathode and a light source. Patent RST WOOO/77813 A1 of 10.06.1999

    Google Scholar 

  32. W.-H. Tsai, M.-C. Fan, J.-C. Chang, Flat field emission illumination module. Patent USA № US 2008/0036361 of 14.02.2008 cl.313/496 (H01j 1/62)

    Google Scholar 

  33. W-H. Tsai, M.-C. Fan, J.-C. Chang, Flat field emission illumination module. Patent UK GB 2441618, of12.03.2008. cl. H01j 63/02

    Google Scholar 

  34. P.J. Chen, P. Liu, L.M. Sheng, Y. Wei, L. Liu, Z.F. Hu, C.L. Guo, S.S. Fan, Light source apparatus using field emission cathode. Patent USA US 2006/0022574 of 2.02.2006, cl.313/495 (H01J 9/02)

    Google Scholar 

  35. J.H. Choi, A.R. Zoulkarneev, Y.T. Park et al., Cathodoluminescent flat lamp using the suspend wire structure. Technical Digest of JVNC 2005, Oxford, UK (2005), pp. 350–35

    Google Scholar 

  36. K.W. Cheng, S.H. Lee, C.Y. Hsiao, Field emission type planar lamp and method for the same. Patent USA US 2008/0079348 of 3.04.2008 cl.313/495 (H01 J 1/02)

    Google Scholar 

  37. L. Qian, L. Lin, P. Liu, J. Tang, Y. Wei, S.S. Fan, Field emission double-plane light source and method for making the same. Patent USA US 2007/0222363 of 27.09.2007 cl.313/496 (H01 J 63/04)

    Google Scholar 

  38. A.N. Obraztsov, J.Y. Pavlovsky, A.P. Volkov, Prototype of light emitting device ith thin film cold cathode. Technical Digest of Euro Display 99, Berlin, Germany (1999), pp. 229–231

    Google Scholar 

  39. A. Gorecka-Drzazga, B.J. Cichy, P. Szczepanska, R. Walczak, J.A. Dziubun, Field emission light sources for lab-on-a-chip microdevices. Bull. Polish Acad. Sci. Techn. Sci. 60(1), 13–17 (2012)

    Google Scholar 

  40. Y. Kuroiwa, S. Narushima, S. Ito, Electron emitter, field emission display unit, cold cathode florescent tube, flat type lighting device, and electron emitting material. European patent EP 1876628 29.01.2008 H01 J 1/304 (2008)

    Google Scholar 

  41. V.B. Sharov, E.P. Sheshin, A.A. Shyka, Field emission cathodes from graphite for diode light sources. Nano Microsyst. Equip. 3, 17–19 (2005)

    Google Scholar 

  42. M.-J. Youh, C.-L. Tseng, M.-H. Jhuang, S.-C. Chiu, L.-H. Huang, J.-A. Gong, Y.-Y. Li, Flat panel light source with lateral gate structure based on SiC nanowire field emitters. Sci. Rep. 5, 10976, c1–34 (2015)

    Google Scholar 

  43. V.S. Kaftanov, A.L. Suvorov, E.P. Sheshin, J. Olsford, Field emission cathode and a light source including a field emission cathode. Patent USA №5877588 of 5.03.1999, cl.313/491 (H01 J 1/30)

    Google Scholar 

  44. V.S. Kaftanov, A.L. Suvorov, E.P. Sheshin, J. Olsford, Light source including a field emission cathode, and a field emission cathode. Patent USA 6008575 of 28.12.1999, cl. 313/484 (H01 J 1/30)

    Google Scholar 

  45. E.P. Sheshin, A.L. Suvorov, V.S. Kaftanov, J. Olstors, Field emission cathode and a light source including a field emission cathode. Patent Canada CA 2293269 cl, H01 J 001/30 of 17.12.1998

    Google Scholar 

  46. A.A. Blyablin, A.V. Kandidov, A.T. Rakhimov, V.A. Samorodov et al. Divergence of electrons emitted from a carbon cold cathode cold cathode. Technical Digest of IVMC 1999, Darmstadt, Germany (1999), pp. 346–347

    Google Scholar 

  47. J.-M. Bonard, T. Stockli, O. Noury, A. Chatelain, Field emission from cylindrical carbon nanotube cathodes: possibilities for luminescent tubes. Appl. Phys. Lett. 78(18), 2775–2777 (2001)

    Google Scholar 

  48. X.X. Zhang, C.C. Zhu, X. Li, W.Z. Cui, The fabrication of novel structure of field emitting light tube with carbon nanotubes as cathode. Technical Digest of IVNC, Oxford, UK (2005), pp. 342–343

    Google Scholar 

  49. J.X. Huang, J. Chen, S.Z. Deng, J.C. She, N.S. Xu, Optimization of carbon nanotube cathode for a fluorescent lamp. Technical digest of IVNC, Oxford, UK (2005), pp. 284–285

    Google Scholar 

  50. J. Kjellman, M. Lindmark, Light source, and a field emission cathode. Patent USA 6873095 of 29.03.2005 313.336 (H01 J 1/16)

    Google Scholar 

  51. Y. Yun, G. Tailiang, J. Yadong. Application of ZnO nanopillars and nanoflowers to field emission luminescent tubes. J. Semiconductors, 33(4), 043003, 1–5 (2012)

    Google Scholar 

  52. A.N. Obraztsov, A.P. Volkov, A.A. Zakhidov, D.A. Lyashenko, Y.V. Petrushenko, O.P. Satanovskaya, Field emission characteristics of nanostructured thin film carbon materials. Appl. Surf. Sci. 215, 214–221 (2003)

    Google Scholar 

  53. A.N. Obraztsov, Cathodoluminescent light source. Patent USA US 005/0174059 of 11.08.2005 cl. 313/634 (H01 J 63/04)

    Google Scholar 

  54. L. Qian, L. Lin, P. Liu, J. Tang, Y. Wei, S.S. Fan, Field emission lamp and method for making the same. Patent USA US 2007/0228919 of 4.10.2007, 313/310, (H01 J 9/02)

    Google Scholar 

  55. A.S. Leychenko, M.Y. Leshukov, N.N. Chadaev, E.P. Sheshin, Effective lamp for LCD-backlighting with the field emission cathode. Technical Digest IVNC IFEC, Guilin, China (2006), pp. 383–384

    Google Scholar 

  56. A.S. Leychenko, M.Y. Leshukov, N.N. Chadaev, E.P. Sheshin, Field emission lamp illuminations for l.c. displays, in Proceedings of Modern Television Conference, Moscow (2006), pp. 30–31

    Google Scholar 

  57. A.L. Suvorov, E.P. Sheshin, N.E. Lazarev, N.N. Chubun, Vacuum luminescent light source with carbon fibres field emission cathode. Technical Digest of IVMC, Portland USA (1995), pp. 516–521

    Google Scholar 

  58. P. Liu, Y. Wei, L.M. Sheng, L. Qian, J. Tang, L. Liu, C.L. Guo, C.L. Du, B.C. Du, S.S. Fan, Field emission luminescent light source. Patent USA US 2006/0091782, of 04.03.2006 cl.313–496 (H01 J 63/04)

    Google Scholar 

  59. K.J. Chung, C.C. Chiang, Y.M. Liu, N.W. Pu, M.D. Ger, The study of fabricating the field emission lamps with carbon nano materials. Int. J. Chem. Mol. Nucl. Mater. Metall. Eng. 6(5), 437–439 (2012)

    Google Scholar 

  60. L. Qian, L. Liu, P. Liu, J. Tang, Y. Wei, S.S. Fan, Field emission lamp and method for making the same. Patent USA US 2007/0247071 of 25.10.2007. cl.313/634 (H01 J 61/30)

    Google Scholar 

  61. C. Li, K. Song, C. Lan, Field emission excited UV light source structure and preparation method there of. Patent CN 103 400919 от 20.11.2013 кл.HOIj-063/06

    Google Scholar 

  62. S. Ono, T. Suyama, K. Fukura, S. Ishizu, N. Kawaguchi, T. Nagami, A. Yoshikawa, T. Yanagida, Y. Yokota, Device for emitting vacuum ultraviolet light. Patent W0201127881 от 10.03.2011,кл.Н01о-061/38,Н01j-063/00

    Google Scholar 

  63. M. Yanagihara, M.Z. Yusop, M. Tanemura, S. Ono, T. Nagami, K. Fukuda, T. Suyama, Y. Yokota, T. Yanagida, A. Yoshikawa, Vacuum ultraviolet field emission lamp utilizing KMgF3 thin film phosphor. APL Mater. 2, 046110 (2014)

    Article  ADS  Google Scholar 

  64. V.D. Blank, S.G. Buga, I.V. Ekhmenina, N.N. Chadaev, E.P. Sheshin, Patent RF №2529014, kl.N01j 61/06, H05B33/12 ot 27.09.14. Lampa vakuumnaya ul’trafioletovogo diapazona spektra

    Google Scholar 

  65. I.V. Ekhmenina, E.P. Sheshin, N.N. Chadaev, Problemy sozdaniya ul’trafioletovyh istochnikov na osnove nanostrukturirovannyh avtoehmissionnyh katodov. ZHurnal «Nano- i mikrosistemnaya tekhnika» 2, str.39–45 (2010)

    Google Scholar 

  66. I.V. Ekhmenina, E.P. Sheshin, N.N. Chadaev, Istochniki izlucheniya na osnove nanostrukturirovannyh avtokatodov. Zhurnal «Nano- i mikrosistemnaya tekhnika» 4, str.45–48 (2010)

    Google Scholar 

  67. I.V. Ekhmenina, E.P. SHeshin, N.N. CHadaev, Avtoehmissionnyj istochnik ul’trafioletovogo izucheniya s avtokatodom iz nanostrukturirovannogo uglerodnogo materiala. Vestn. S.-Peterburg, un-ta. Ser.10. Prikl.matem. Inform.Proc.upr. 1, str.3–8 (2011)

    Google Scholar 

  68. I.V. Ekhmenina, E.P. SHeshin, Issledovanie vliyaniya razlichnyh faktorov na ehffektivnost’ katodolyuminescencii s cel’yu sozdaniya konkurentosposobnogo avtoehmissionnogo istochnika izlucheniya N ZHurnal «Trudy Moskovskogo fiziko-tekhnicheskogo instituta», tom 5, 1(17), str.36–43 (2013)

    Google Scholar 

  69. I.V. Ekhmenina, E.P. SHeshin, Issledovanie harakteristik izlucheniya avtoehmissionnyh lamp s avtokatodami iz nanostrukturirovannogo uglerodnogo materiala. Izvestiya vysshih uchebnyh zavedenij. Seriya: Himiya i himicheskaya tekhnologiya. T.56(5), S.74–76 (2013)

    Google Scholar 

  70. I.V. Ekhmenina, E.P. Sheshin, N.N. Chadaev, Source of ultraviolet radiation with field emission cathode made of nanostructured carbon materials. Springer_Book_BWF_2164446_Carbon Nanomaterials in Clean Energy Hydrogen System-II (2011), pp. 299–303

    Google Scholar 

  71. H.S. Kang, J.T. Han, Y.W. Jin, M.J. Bae, Y.J. Park, Field emission backlight unit, method of driving the backlight unit, and method of manufacturing lower panel. Patent USA US 2008/0106221 of 8.05.2008 cl.315/334 (H01 J 19/24)

    Google Scholar 

  72. B.N. Lin, C.H. Fu, Field emission backlight unit and scanning driving method. Patent USA US 2008/0100235 of 1.05.2008 cl.315–349 (H05B 37/02)

    Google Scholar 

  73. Y.J. Jung, J.H. Park, J.-S. Jeong, J.W. Nam, A.S. Berdinsky, J.B. Yoo, C.Y. Park, Fabrication and characteristics of flat lamp with CNT based triode structure for back light unit in LCD. Technical Digest of IVNC 2005, Oxford, UK (2005), pp. 202–203

    Google Scholar 

  74. S.H. Park, C.W. Baik, J.H. Lee, Y.W. Jin, Field emission type backlight unit and method of manufacturing the same. Patent USA US 2007/0229003 4.10.2007 315/324 (H01J 1/02)

    Google Scholar 

  75. J.H. Choi, B.G. Song, M.J. Shin, A. Zoulkarneev, D.S. Chung, M.J. Bae, Field emission backlight device and method of fabricating. Patent USA US 2005/0179363 of 18.08.2005 cl.313/497 (H01J 1/62)

    Google Scholar 

  76. A.S. Batyrin, N.N. Chadaev, E.P. Sheshin, N.A. Duzhev, Y.I. Tishin, Development of a lamp of illumination for liquid crystal screens, in Proceedings of Conference on “Modern Television” Moscow (2001), pp. 21–23

    Google Scholar 

  77. A.S. Baturin, N.N. Chadaev, M.Y. Leshukov, A.J. Trufanov, E.P. Sheshin, Cathodo-luminescent dynamic backlighting for color liquid crystal displays, in Proceeding of Conference on Displays and Vacuum Electronics, Garmisch-partenkirchen, Germany (2004), pp. 321–323

    Google Scholar 

  78. J. Gorog, P.M. Ritt, Liquid crystal display having a field emission backlight. Patent PCT WO 2008/002321of 03.01.2008 cl. (H01J 9/227)

    Google Scholar 

  79. M.Y. Leshukov, N.N. Chadaev, E.P. Sheshin, Three-colored cathode luminescent lamp for systems of display of information, in Proceedings of Conference onModern Television”, Moscow (2005), pp. 37–38

    Google Scholar 

  80. M.Y. Leshukov, N.N. Chadaev, A.S. Baturin, K.H. Nikolskiy, R.G. Chesov, Illumination of liquid crystal screens cathode luminescent lamps with field emission cathodes from carbon fibers, in Proceedings of Modern Television Conference, Moscow (2002), pp. 30–31

    Google Scholar 

  81. N. Abanshin, A. Ezhkov, P. Ivashkin, S. Kashyrin, A. Vrotov, Y. Timofeev, Cathode luminescent radiators for display units of collective use. Electron. Compon. 4, 114–116 (2007)

    Google Scholar 

  82. A.I. Tryfanov, A.S. Batyrin, M.Y. Leshukov, N.N. Chadaev, E.P. Sheshin, Emission characteristics of a light source with field emission cathode on the basis of a bunch carbon fibers. Microsyst. Equip. 3, 32–35 (2004)

    Google Scholar 

  83. A.S. Leychenko, M.Y. Leshukov, N.V. Luparev, P.A. Starikov, N.N. Chadaev, E.P. Sheshin, Element of the big video screen with field emission cathode luminescent light sources as pixels, in Proceedings of “Modern Television” Conferences, Moscow (2007), pp. 45–46

    Google Scholar 

  84. A.V. Kudryashov, E.P. Sheshin, N.N. Chadaev, M.M. Kustikov, The element of a big size screen based on light emitters with field emission cathodes, in Abstract of International Vacuum Electron Sources Conference (IVESC), London (2008)

    Google Scholar 

  85. D.S. Strebkov, V.Z. Trubnikov, A.V. Pastuhov, E.P. SHeshin, N.N. CHadaev, Sistema ehlektricheskogo osveshcheniya (varianty). Patent RF №2505 744, ot 27.01.2014, kl.F2159/00

    Google Scholar 

  86. S. Groznov, A.S. Leychenko, E.P. Sheshin, A. Shyka, Flat display screens on a basis the field emission cathodes. Chip News 7, 21–25 (2008)

    Google Scholar 

  87. K.R. Shoulders, Microelectronics using electron-beam-activated machining techniques, in Advances in Computers, vz, (1961), pp. 135–197

    Google Scholar 

  88. S.A. Spindt, A thin film field emission cathode. J. Appl. Phys. 39(7), 3504–3505 (1968)

    Google Scholar 

  89. C.A. Spindt, J. Brodie, L. Humphrey, E.R. Westarber, Physical properties of thin film field emission cathode with molybdenum cones. J. Appl. Phys. 47(12) (1976)

    Google Scholar 

  90. R. Meyer, Recent development on «microtips» display at LETI. Technical Digest of IVMC 1999, Hagahama, Sapan (1999), pp. 6–9

    Google Scholar 

  91. S. Jtoh, T. Watanabe, T. Yamaura, K. Yano, A challenge to field emission displays. Asia Displays 95, 617–620 (1995)

    Google Scholar 

  92. S. Jtoh, Current status of the field emission display. ASET International Forum on Low Power Displays, Shinagawa (2000), pp. 59–68

    Google Scholar 

  93. S. Stoh, M. Tanaka, T. Tonegawa, Development of field emission display. Technical Digest of IVMC 2003, Osaka, Japan (2003), pp. 19–20

    Google Scholar 

  94. B.E. Russ, J. Barger, J. Wang, Field emission cathode structure using perforated gate. Patent USA US 2003/0193297 of 16.10.2003, cl.315/169 (H05B 39/04)

    Google Scholar 

  95. S. Kubota, K. Kikuchi, H. Sata, Cold cathode field emission device, process for the production there of, and cold cathode field emission display. Patent USA US 2002/0050776, of 2.05.2002, cl.313/309 (H01J 9/02)

    Google Scholar 

  96. Y. Kamide, S. Kubota, H. Sata, K. Kikuchi, Cathode panel for a cold cathode field emission display, and cold cathode field emission display, and method of producing cathode panel for a cold cathode field emission display. Patent USA US 6917155 of 15.07.2005, cl.313/495 (H01J 1/62)

    Google Scholar 

  97. Y. Kamide, S. Kubota, H. Sata, K. Kikuchi, Cathode panel for a cold cathode field emission display and cold cathode field emission display, and method of producing cathode panel for a cold cathode field emission display. Patent USA US 2005/0236964 of 27.10.2005, cl.313/495(H01J 1/62)

    Google Scholar 

  98. M. Konishi, K. Jida, Cold cathode electric field electron emission display device. Patent USA US 2006/0087248 of 27.04.2006, cl.315/169, 3 (G09G 3/10)

    Google Scholar 

  99. E. Negishi, Method for treating a cathode panel, cold cathode field emission display device, and method for producing the same. Patent USA US 2008/0012467 of 17.01.2008, cl.313/495 (H01J 1/62)

    Google Scholar 

  100. M. Konishi, Cold cathode electric field electron emission display device. Patent USA US 2005/0082964 of 21.04.2005, cl.313/497 (H01J 31/12)

    Google Scholar 

  101. D. Sarrasin, Method of driving a matrix display device having an electron source with reduced capacitive consumption. Patent USA, 8477156B2, 2.07.2013, cl.345/690 (G09G5/10)

    Google Scholar 

  102. M. Yamamoto, K. Koga, A. Shiota, S. Kanemaru, M. Nagao, Field emission electron source. Patent USA US 2005/0001536 of 6.01.2005, cl.313/497, (H01J 1/02)

    Google Scholar 

  103. S.-T. Yan, Field emission display and method for manufacturing same. Patent USA US 2008/0074031 of 27.03.2008 cl.313/496, (H01J 63/04)

    Google Scholar 

  104. G.-L. Chen, Field emission display device. Patent USA US 6646282 of 11.11.2003, cl.257/10 (H01L 29/06)

    Google Scholar 

  105. K.S. Choi, S.J. Lee, J.M. Kim et al., FED devices containing a novel graphite cathode prepared by a screen printing process, in Digest of 12th JVMC, Darmstadt, Germany (1999), pp. 32–33

    Google Scholar 

  106. K.S. Choi, S.J. Lee, J.M. Kim et al., Field emission display devices containing a novel graphite cathode prepared by a screen printing process. Digest SID 00 (2000), pp. 671–673

    Google Scholar 

  107. W.B. Choi, D.S. Chung, J.H. Kang, H.Y. Kim et al., Fully sealed, hight-brightness carbon-nanotube field emission display. Appl. Phys. Lett. 75(20), 3129–3131 (1999)

    Google Scholar 

  108. J.M. Kim, W.B. Choi, N.S. Lee, J.E. Jung, Field emission from carbon nanotubes for displays. Diam. Relat. Mater. 9, 1184–1189 (2000)

    Google Scholar 

  109. Q.H. Wang, A.A. Setlur, J.M. Lauerhaas, J.Y. Dai, E.W. Seelig, R.P.H. Chang, A nanotube-based field emission flat panel display. Appl. Phys. Lett. 72(22), 2912–2913 (1998)

    Google Scholar 

  110. Y. Nakayama, S. Akita, Field emission device with carbon nanotubes for a flat panel display. Synth. Metals 117, 207–210 (2001)

    Google Scholar 

  111. C.C. Kuo, W.S. Hsu, C.Y. Hsao, Sintering method for carbon nanotube cathode of field emission display. Patent USA US 2006/0009110 of 12.01.2006. cl.445/50 (H01J 9/12)

    Google Scholar 

  112. Y.H. Chien, C.P. Peng, C.H. Fu, W.Y. Lin, L.H. Chan, Field emission system and method for improving its vacuum. Patent USA US 2008/0042547 of 21.02.2008, cl.313/495 (H01J 63/04)

    Google Scholar 

  113. E.P. Sheshin, A.M. Kyrnosov, Flat field emission device to display the image. Patent PF ru 2178598 from 20.01.2002 CL.H01J 31/12

    Google Scholar 

  114. A.S. Baturin, N.N. Chadaev, K.N. Nikolski, R.G. Tchesov, E.P. Sheshin, I.N. Yeskin, Application of cathode materials for field mission display, in Proceedings of Conference Displays and Vacuum Electronics, Garmisch-partenkirchen, Germany (2004)

    Google Scholar 

  115. A.Y. Tcherepanov, A.G. Chakhovskoi, V.B. Sharov, Flat panel display prototype using low-voltage carbon field emitters. J. Vac. Sci. Technol. B 13(2), C.482–486 (1995)

    Google Scholar 

  116. Q.H. Wang, M. Yan, R.P.H. Chang, Flat panel display prototype using gated carbon nanotube field emitters. Appl. Phys. Lett. 78(9), 1294–1296 (2001)

    Google Scholar 

  117. L. Yukui, Z. Changchum, L. Xinghui, Field emission display with carbon nanotubes cathode prepared by a screen-printing process. Diam. Relat. Mater. 11, 1845–1847 (2002)

    Article  ADS  Google Scholar 

  118. B.E. Russ, J. Barger, Field emission display using line cathode structure. Patent USA US 2003/0193296 of 16.10.2003 cl.315/169.3 (G09 G3/10)

    Google Scholar 

  119. A. Okamoto, K. Konuma, Y. Tomihari, F. Ito, Y. Okada, CNT film and field emission cold cathode comprising the same. Patent USA US 2004/0104660 of 3.01.2004 cl.313/346 R (H01j 19/06)

    Google Scholar 

  120. W.B. Choi, Y.W. Jin, H.Y. Kim, S.J. Lee et al., Electrophoresis deposition of carbon nanotubes for triode-type field emission display. Appl. Phys. Lett. 78(11), 1547–1549 (2001)

    Google Scholar 

  121. M. Nakamoto, Field emission type cold cathode device, manufacturing method thereof and vacuum micro device. Patent USA US 2004/0265592 of 30.12.2004 cl.428/408 (B32B 15/04)

    Google Scholar 

  122. X. Xu, C.P. Beetz, G.R. Brandes, R.W. Boerstler, J.W. Steinbeck, Carbon fiber-based field emission devices. Patent USA, №5973444 of 26.10.1999 cl.313/309 (H01J 1/30)

    Google Scholar 

  123. M.A. Gruillom, M.L. Simpson, V.J. Merkulov, A.V. Melechko, D.H. Lowndes, Gated fabrication of nanostructure field emission cathode material within a device. Patent USA US 6858455 of 22.02.2005. cl.438/20 (H011 21/00)

    Google Scholar 

  124. Z. Zheng, S.-S. Fan, Method for manufacturing cathode assembly of field emission display. Patent USA US 2007/0287350 of 13.12.2007 cl.445/24 (H0iJ 9/00)

    Google Scholar 

  125. H.J. Kim, J.T. Han, Y.C. Choi, K.S. Jeong, Method of forming a carbon nanotube structure and method of manufacturing field emission device using the method of forming a carbon nanotube structure. Patent USA US 2008/0003733 of 3.01.2008 cl.438/197 (H01L 21/8234)

    Google Scholar 

  126. M. Muroyama, T. Yagi, K. Jnoue, S. Saito, Electron emitter and its production method. Patent USA US 2004/0108515 of 10.06.2004, Cl.257/144 (H01L 21/00)

    Google Scholar 

  127. S. Kang, C. Bae, J. Kim, Barrier metal layer for a carbon nanotube flat panel display. Patent WO 2004/064099 of 29.07.2004

    Google Scholar 

  128. A.A. Blyablin, A.T. Rakhimov, V.A. Samorodov, N.V. Suetin, Method for producing an addressable field emission cathode and an associated display structure. Patent USA US 2003/0143321 of 31.07.2003. Cl 427/77 (B 05 D5/12)

    Google Scholar 

  129. Z. Sun, B.K. Tay, S.P. Lau, Y. Li, Field emission device and method of fabricating same. Patent USA US 2005/0077811 of 14.04.2005 Cl.313/495(H01j 1/62)

    Google Scholar 

  130. M. Okai, T. Muneyoshi, T. Yaguchi, N. Hayashi, Flat panel display. Patent USA US 2006/0049743 of 09.03.2006, cl. 313/496 (H01j 1/62)

    Google Scholar 

  131. F. Ito, Field emission type cold cathode and method for manufacturing the same and method for manufacturing flat display. Patent USA US 2003/0080663 of 1.05.2003. CL.313/336 (H01j 1/16)

    Google Scholar 

  132. H. Lee, S. Lee, S. Park, Triode structure field emission display device using carbon nanotubes and method of fabricating the same. Patent USA US 2005/040752 of 24.02.2005, Cl.313/495 (H01j 1/02)

    Google Scholar 

  133. K.A. Dean, B.F. Coll, E.M. Howard, L.L. Tisinger, Method for reducing leakage current in a vacuum field emission display. Patent USA US 2007/0097567 of 03.05.07, cl.361/42 (H02H9/08)

    Google Scholar 

  134. W. Gu, W. Lei, X. Zhang, Influence of the dielectric layer on the performance FED. Technical Digest of IVNC, Oxford, UK (2005), pp. 330–331

    Google Scholar 

  135. S.V. Johnson, Discharge of a field emission display based on charge accumulation. Patent USA US 2008/0048570 of 28.02.2008, cl.315/169.3 (G09 G3/10)

    Google Scholar 

  136. M.J. Youh, C.L. Tseng, Y.H.J. Huang, M. Liu, Triode field emission cold cathode device with random distribution and method. Patent USA US 2005/0104506 of 19.05.2005, cl.313/496 (Ho1j 1/62)

    Google Scholar 

  137. N.S. Xu, Z.S. Wu, S.Z. Deng, J. Chen, High-voltage triode flat-panel display using field emission nanotube-based thin films. J. Vac. Sci. Technol. B19(4), 1370–1372 (2001)

    Article  Google Scholar 

  138. T. Yaguchi, T. Muneyoshi, M. Okai, N. Hayashi, T. Nakamura, Flat panel display device. Patent USA US 2005/0057178 of 17.03.2005 of 315/169.4 (G 09 G 3/10)

    Google Scholar 

  139. T. Oh, Field emission display. Europatent EP 1542258 of 15.06.2005 cl.H01j 31/12

    Google Scholar 

  140. K. Oono, Field emission display device and method of manufacturing same. Patent USA US 2004/0239235 of 2.12.2004, cl.313/497 (H01j 1/62)

    Google Scholar 

  141. P.S. Ahn, H.W. Lee, Field emission device with focusing control electrode and field emission display. Patent USA US 2005/0189868 of 1.09.2005. Cl 313/497 (H01j 1/02)

    Google Scholar 

  142. J.T. Han, Field emission display and method of manufacturing the same. Patent USA US 2005/0110393 of 26.05.2005, cl.313/495 (H01j 1/62)

    Google Scholar 

  143. Y.H. Song, J.H. Lee, K.Y. Kang, Field emission device and field emission display device using the same. Patent USA US 2006/0290259 of 28.12.2006 cl.313/495 (H01j 63/04)

    Google Scholar 

  144. Y.H. Song, J.H. Lee, C.S. Hwang, Field emission display. Patent USA 2005/0248256 of 10.11.2005, cl 313/495 (H01j 1/62)

    Google Scholar 

  145. M. Nakamoto, Field emission cold cathode device of lateral type. Patent USA US 2004/0183421 of 23.09.2004 cl.313/309, (H01j 1/62)

    Google Scholar 

  146. M. Nakamoto, Field emission cold cathode device of lateral type. Patent USA US 2006/0061257 of 23.03.2006. Cl.313/496 (H01j 63/04)

    Google Scholar 

  147. Y. Takeuchi, T. Nanataki, J. Ohwada, T. Horiuchi, Electron-emitting device and field emission display using the same. Patent USA US 7088049 of 8.08.2006 cl.315/169.1 (G 09 G3/10)

    Google Scholar 

  148. H. Kawamura, S. Kafo, T. Maki, T. Kobayashi, Fabrication of planar diamond electron emitters for flat panel displays. Mat. Res. Soc. Symp. Proc. 558, 155–160 (2000)

    Article  Google Scholar 

  149. T.S. Oh, Field emission display. Patent USA US 2004/0222734 of 11.11.2004 cl.313/497 (H01j 1/62)

    Google Scholar 

  150. H. Moon, Field emission display device. Patent USA US 2005/0093424 of 5.05.2005 cl.313/495 (H01j 1/62)

    Google Scholar 

  151. J.H. Kang, Y.S. Choi, W.B. Choi, N.S. Lee et al., Under-gate triode type field emission displays with carbon nanotube emitters. Mat. Res. Soc. Symp. Proc. 621, P.R 5.2.1–R 5.2.5 (2000)

    Google Scholar 

  152. Y.S. Choi, J.H. Kang, Y.J. Park, W.B. Choi et al., An under-gate structure field emission display with carbon nanotube emitters. Diam. Relat. Mater. 10, 1705–1708 (2001)

    Google Scholar 

  153. Y.S. Choi, J.H. Kang, H.Y. Kim, B.G. Lee et l, A simple structure and fabrication of carbon-nanotube field emission display. Appl. Surf. Sci. 221, 370–374 (2004)

    Google Scholar 

  154. V.P. Mammana, G.E. Mc Guire, O.A. Shenderova, Back-gated field emission electron source. Patent USA, US 2005/0116214 of 02.06.2005 cl.257/10 (H01 L 29/06)

    Google Scholar 

  155. S.H. Ahn, S.J. Lee, Field emission display and method of manufacturing the same. Patent USA US 2005/0093426 of 05.05.2005 cl.313/496 (H01j 1/62)

    Google Scholar 

  156. S.H. Moon, Field emission display device. Patent USA US 2005/019 4880 of 08.09.2005 cl.313/311 (Ho 0j 1/02)

    Google Scholar 

  157. M. Taniguchi, M. Kitada, K. Nakamura, S. Kawata, Field emission element. Patent USA US 7067971 of 27.06.2006 cl.313/497 (H01j 1/62)

    Google Scholar 

  158. A. Kastalsky, S. Shokhor, F.J. Disanto, D.A. Krusos, B. Gorfinkel, N. Abanshin, Pixel structure for an edge-emitter field emission display. Patent USA US 2007/0046165 of 1.03.2007.cl.313/309 (H01j 1/02)

    Google Scholar 

  159. B.I. Gorfinkel, N.P. Abanshin, Cathodoluminescent screen and its manufacturing method. Patent PF RU 2152662 of 10.07.2000. cl.H01j 1/62

    Google Scholar 

  160. N.P. Abanshin, B.J. Gorfinkel, Thin-film planar edge-emitter field emission flat panel display. Patent USA 6 590320 of 08.07.2003 cl.313/309 (H01j 1/02)

    Google Scholar 

  161. L.D. Karpov, Patent USA №5 965971 of 12.10.1999, cl.313/309 (H01j 01/02), Pat USA №6 023126 of 08.02.2000, cl.313/310 (H01j 1/05)

    Google Scholar 

  162. K.L. Jensen, Field emitter arrays for plasma and microwave source applications. Phys. Plasmas 6(5), 2241–2253 (1999)

    Google Scholar 

  163. S.P. Morev, N.P. Abanshin, B.J. Gorfinkel, A.N. Darmaev, D.A. Komarov, A.E. Makeev, A.N. Yakunin, Electron-optical systems with planar field emission cathode matrices for high-power microwave devices. J. Commun. Techn. Electron. 58(4), 357–365 (2013)

    Google Scholar 

  164. J.P. Calame, H.F. Gray, J.L. Shaw, Analysis and design of microwave amplifiers. J. Appl. Phys. 73(3), 1485–1504 (1993)

    Google Scholar 

  165. A.G. Rozhnev, N.M. Ryskin, D.V. Sokolov, D.J. Trubetskov, S.T. Han, J.I. Kim, G.S. Park, Novel concepts of vacuum microelectronic microwave devices with field emitter cathode arrays. Phys. Plasmas 2(2), 4020–4027 (2002)

    Google Scholar 

  166. J.C. She, O.H. Ha, N.S. Xu, S.Z. Deng, S. Chen, S.E. Hug, L. Wang, Arrays of vacuum microdiodes using uniform diamondlike carbon tip apexes. Appl. Phys. Lett. 89, 233518 (2006)

    Google Scholar 

  167. P.A. Ananiev, Y.V. Andrianov, V.A. Bashilov, M.M. Bogatskiy, D.A. Borisov, L.A. Kontonistov, G.N. Fursey, HFF-amplifier. Patent USSR №1072145, of 07.02.84. cl.H01j 25/00

    Google Scholar 

  168. V.I. Mahov, B.V. Bondarenko, M.F. Kopylov, SVCH-devices M-type. Patent RF №2040821 of 27.07.1995 cl.H01j 1/30

    Google Scholar 

  169. N.M. Ryskin, S.T. Han, K.H. Jang, G.S. Park, Theory of the microelectronic traveling wave klystron amplifier with field emission cathode array. Phys. Plasmas, 14, 093106 (2007)

    Google Scholar 

  170. J.E. Graebner, S. Jin, G.P. Kochanski, W. Zhu, Microwave vacuum tube devices employing electron sources comprising activated ultrafine diamonds. Patent USA, №5796211 of 18.08.1998. cl.315/3.5 (H01j 23/04)

    Google Scholar 

  171. J. Garcia-Garcia, F. Martin, R.E. Miles, D.P. Streenson, J.M. Chamberian, J.R. Fletcher, J.R. Thorpe, Parametric analysis of micromachined reflex klystrons for operation at millimeter and submillimeter wavelengths. J. Appl. Phys. 92(11), 6900–6904 (2002)

    Google Scholar 

  172. T.C. Cunningham, Field emission X-ray tube having a graphite fabric cathode. Patent USA №3883760, 313/55 (H01J 35/06) of 07.04.71

    Google Scholar 

  173. P.R. Schwoebel, Field emission arrays for medical X-ray imaging. Appl. Phys. Lett. 8, 113902 (2006)

    Google Scholar 

  174. C.A. Spindt, C.E. Holland, R.D. Stowell, Recent progress in low-voltage field emission cathode. J. Phys. t.45(Col.C9, suppl. 12), C9-9–C9-278 (1984)

    Google Scholar 

  175. B. Diop, V.T. Binh, Quasi-monochomatic field emission X-ray source. Rev. Sci. Instrum. 83, 094704 (2012). doi:10.1063/1.4752406

    Article  ADS  Google Scholar 

  176. A.N. Bodrov, B.P. Merkulov, Y.V. Nikolyukin, Impul’snaya rentgenovskaya trubka, rat. RF № 2521436, ot 27.06.2014. kl.N01j 35/02

    Google Scholar 

  177. K. Kawakita, K. Hata, H. Sato, Y. Saito, Development of micro-focused X-ray source by using carbon nanotubes field emitter. Technical Digest 18th IVNC, Oxford, UK (2005), pp. 192–193

    Google Scholar 

  178. Z. Liu, O.Z. Zhou, S. Lu, Micro-field emission X-ray sources and related methods. Patent US 2008/0043920, of 21.02.2008, cl.378/138 (H01J 35/14)

    Google Scholar 

  179. J. Zhang, G. Yang, Y. Cheng, B. Gao, Q. Qiu, Y.Z. Lee, J.P. Lu, O. Zhou, Stationary scanning X-ray source based on carbon nanotube field emitters. Appl. Phys. Lett. 86,184104 (2005)

    Google Scholar 

  180. W. Knapp, D. Schleubner, S. Bjeoumikhov, H. Wolff, N. Langhoff, X-ray sources with carbon field emitter cathodes, in IVESC (2004), pp. 309–311

    Google Scholar 

  181. S.H. Heo, H.J. Kim, J.M. Ha, S.O. Cho, A vacuum-sealed miniature X-ray tube based on carbon nanotube field emitters. Nanoscale Res. Lett. 7, 258–265 (2012). doi:10.1186/1556-276x-7-258

    Article  ADS  Google Scholar 

  182. Y. Sun, The design and fabrication of carbon-nanotube-based Field emission X-ray cathode with ballast resistor. JEEE Trans. Electr. Dev. 60(1), 464–470 (2012)

    Google Scholar 

  183. J.W. Hwang, C.B. Mo, H.K. Jung, S. Ryu, S.H. Hong, Field emission behavior of carbon nanotube yarn for micro-resolution X-ray tube cathode. J. Nanosci. Nanotechnol. 13(11), 7386–7390 (2013)

    Google Scholar 

  184. Y. Jwai, K. Muramatsu, S. Tsuboi, A. Jyouzuka, T. Nakamura, Y. Onizuka, H. Mimura, X-ray tube using a graphene flower cloth field emission cathode. J. Appl. Phys. Express 6, 105102 (2013)

    Google Scholar 

  185. J.-W. Jeong, J.-T. Kang, S. Choi, J.-W. Kim, S. Ahn, Y.H. Song, Digital miniature X-ray tube a high-density triode carbon nanotube field emitter. Appl. Phys. Lett. 102, 023504 (2013)

    Google Scholar 

  186. G. Phillip, K. Timothy, W. Scotta, A sealing cold cathode X-ray tube for use in small X-ray sources is provided. Patent USA 2014 0226791, от 14.08.2014. кл.Н01j-035/06

    Google Scholar 

  187. E.P. Sheshin, N.N. Chadaev, A.S. Baturin, A.I. Tryfanov, X-ray tube cathodes. Patent RF N 8248643,cl.Ho1J 35/02 of 35/02 of 20.03.05

    Google Scholar 

  188. A.S. Baturin, A.I. Trufanov, N.N. Chadaev, E.P. Sheshin, Field emission gun for X-ray tubes. Technical Digest of Display and Vacuum Electronics, Garmisch-Partenkirchen (2004), pp. 407–409

    Google Scholar 

  189. A.S. Baturin, A.I. Trufanov, N.N. Chadaev, E.P. Sheshin, Field emission gun for X-ray tubes. Nuclear Instrum. Methods Phys. Res. A, 558, 253–255 (2006)

    Google Scholar 

  190. J.W. Jeong, Y.-H. Song, J. Kang, J.-W. Kim, Field emission X-ray tube and method of operating the same. Patent US 2012/0148027, от 14.06.2012, кл.378/106 (Н05G 1/22)

    Google Scholar 

  191. A.S. Bugaev, P.A. Eroshkin, V.A. Romanko, E.P. Sheshin, Low-power X-ray tubes the current state. Physics-Uspekhi 56(7), 691–703 (2013)

    Google Scholar 

  192. A.V. Crewe, Electron gun using a field emission source. Rev. Sci. Jnsx. 39(4), 576 (1968)

    Article  ADS  Google Scholar 

  193. G.N. Fursey, S.A. Shahirova, To the question of possible localization of the bodily field emission in small angles-ZhTF t.33(6), 1125 (1966)

    Google Scholar 

  194. S. Hosoki, S. Yamamoto, H. Todokoro, S. Kawasa, Y. Hirai, Field emission cathode and method of fabricating the same. Patent USA N 4379250, cl. 313/336 of 05.04.1983

    Google Scholar 

  195. L.W. Swanson, L.C. Grouser, Angular confinement of field electron and ion emission. J. Appl. Phys. 40(12), 4741 (1969)

    Article  ADS  Google Scholar 

  196. Z.I. Dranova, V.A. Ksenofontov, V.B. Kylko, B.G. Lazarev, L.S. Lazarev, I.M. Mihaylovskiy, A method of manufacturing the tip emission field emitter with localized emission. USSR №828261 cl H01 J9/02 of 07.05.1981

    Google Scholar 

  197. V.A. Kyznetsov, B.N. Vasichev, Y.L. Rybakov, Field emitter with localized emission a.s. USSR №1069029 cl.Ho1J 1/30, 23.01.1984

    Google Scholar 

  198. T.A. Bakeer, M.M. Balsiger, K.T. Considine, H.E. Litsjo, Electron-beam tube including a thermonic field emission cathode for a scanning electron microscope. Patent №3809899 (USA)

    Google Scholar 

  199. B. Cho, K. Shigeru, C. Oshima, W(310) cold-field emission characteristics reflecting the vacuum states of an extreme high vacuum electron gun. Rev. Sci. Instrum. 84, 013305 (2013)

    Google Scholar 

  200. E.A. Litvinov, A.A. Starobinec, The limiting currents of field emission. ZhTF 47(10), c.2032 (1977)

    Google Scholar 

  201. A.D. Karpenko, Y.S. Lobachev, V.A. Shishkin, On the limiting current of field emission electronic cathode tip. Radio-electronics t.21(1), s.207 (1976)

    Google Scholar 

  202. M.I. Elinson, V.A. Gorkov, A.A. Yasnopolskaya, G.A. Kydinceva, A investigation of pulsed field emission at high density of currents. Radio Eng. Electron. 5(8), 1318 (1960)

    Google Scholar 

  203. J.P. Barbour, W.W. Dolan, J.K. Trolan, E.E. Martin, W.P. Dake, Space-charge effects in field emission

    Google Scholar 

  204. Jeol. J. Electron Microscope

    Google Scholar 

  205. http://www.hitachi-hitec.com

  206. Patent N3191028 (USA), Scanning Electron Microscope/Crewe A.V

    Google Scholar 

  207. J.W. Butler, Digital computer techniques in electron microscopy, in 6th International Congress Electron Microscopy (Kyoto) (1966), p. 191

    Google Scholar 

  208. M. Okai, K. Hidaka, M. Hayashibara, S. Watanabe, Field emission electron gun and electron beam applied device using the same. Patent USA US 2008/0029700 of 07.02.2008, 250/310 (Ho1J 37/073)

    Google Scholar 

  209. D.I. Swan, D. Kynastou, The development of a field Emission SEM, in Proceedings of the 6th Annual Scanning Electron Symposium, N 1 (1973), p. 57

    Google Scholar 

  210. K. Kuroda, T. Suzuki, High current efficiency accelerating lens system of field emission scanning electron microscope. J. Appl. Phys. 46, N1 (1975)

    Google Scholar 

  211. K. Kuroda, H. Ebisui, T. Suzuki, Three-anode accelerating lens system for the field emission scanning electron microscope. J. Appl. Phys. 45(N5) (1974)

    Google Scholar 

  212. R.J. Taylor, P.J. Swan, An experimental scanning electron microscope. In: Proceedings of the Scanning Electron Microscope System and Application Symposium (1973), p. 36

    Google Scholar 

  213. H.P. Kue, B.M. Siegel, A field emission probe forming system with magnetic pre-accelerator lens. In: Proceedings of Electron Microscope Society of America, 34th Annual Meeting (1976)

    Google Scholar 

  214. A.V. Crewe, Electron microscope using field emission source. Surf. Sci. 48(N1), 152–160 (1975)

    Google Scholar 

  215. R.I. Garber, A.K. Malik, I.M. Fishman, Use of needle emitters in electronic microscopy. PTE 4, 188–190 (1974)

    Google Scholar 

  216. A.K. Malik, I.M. Fishman, S.M. Hazan, A.c.№389564 (USSR). Cathodic unit for electronic gun. №29 (1973)

    Google Scholar 

  217. Pat.№1426509 (USSR), Improvements in field emission electron guns

    Google Scholar 

  218. Y. Sakitani, Patent №4019077 (USA). Field emission gun

    Google Scholar 

  219. T.A. Baker, M.M. Balsiger, K.T. Considine, H.E. Litsjo, Separable-chamber electron-beam tube including means for puncturing. Pat.№3881125 (USA)

    Google Scholar 

  220. L.M. Welter, Field emission gun improvement. Pat №3946268 (USA)

    Google Scholar 

  221. V.A. Vasin, V.I. Zaporozhchenko, V.I. Rahovskiy, A.c. №594540 (SSSR). The device for stabilization of current of an field emission source, №7 (1978)

    Google Scholar 

  222. S. Nomura, Patent №3786268 (USA). Electron gun device of field emission type

    Google Scholar 

  223. K.C.A. Smith, I.R.A. Cleaver, Electron gun. Patent №3872351 (USA)

    Google Scholar 

  224. T. Someya, M. Kobayshi, T. Goto, Feldemissions-Electronenguelle. Patent №2221138 (FRG)

    Google Scholar 

  225. R. Aihara, S. Ota, N. Kabayshi, Field emission type electron gun. Patent №3810025 (USA)

    Google Scholar 

  226. V.J. Coates, L.M. Welter, Patent №1355365 (England). Improvements in and relating to electron gun

    Google Scholar 

  227. Siemens atteiengesellschaft Co., Electron-beam microanalyzer apparatus. Patent №1389119 (England)

    Google Scholar 

  228. R.V. Latham, D.A. Wilson, The development of s high-definition cathoderay tube using a carbon-fibre field emission electron source. J. Phys. E: Sci. Instrum. 15(10), 1083–1092 (1982)

    Google Scholar 

  229. B.V. Bondarenko, V.A. Siliverstov, E.P. Sheshin, Use of field emission cathodes from carbon fibers in an electronic gun. Theses of Reports of the 5th Symposium to Not Heating Cathodes, Tomsk, pp. 81–83 (1985)

    Google Scholar 

  230. V.I. Tihtilo, E.P. Sheshin, Electrovacuum device. A.c. 1345935 SSSR, Cl.Ho1J 1/30 of 21.10.1985

    Google Scholar 

  231. F. Houdeller, L. Knoop, G. Gatel, A. Masseboeuf, S. Manishin, Y. Taniguchi, M. Delmas, M. Monthioux, M.J. Hytch, E. Snoeck, Development of TEM and SEM high brightness electron guns using cold-field emission from a carbon nanotip. Ultramicroscopy 151, 107–115 (2015)

    Google Scholar 

  232. Y.A. Grigoriev, A.I. Petrosya, V.V. Penzyakov, V.G. Pimenov, V.I. Rogovin, V.I. Shesterkin, V.P. Kudryashov, V.C. Semyonov, Experimental study of matrix carbon field emission cathodes and computer aided design of electron guns for microwave power devices, exploring these cathodes. J. Vac. Sci. Technol. B v 15(2), 503–506 (1997)

    Article  Google Scholar 

  233. A.S. Baturin, I.N. Yeskin, A.I. Trufanov, N.N. Chadaev, E.P. Sheshin, R.G. Tchesov, Electron gun with field emission cathode of carbon fiber bundle. J. Vac. Sci. Technol. B 21(1), 1–4 (2003)

    Article  Google Scholar 

  234. B.V. Bondarenko, V.I. Makyha, E.P. Sheshin, Y.V. Kydrashov, V.N. Ylacyuk, Y.V. Petryshenko, Field emission electronic gun. A.c. 1294188 SSSR,Cl.H01J 1/30 of 11.03.85

    Google Scholar 

  235. A.G. Chakhovskoi, A.V. Galdetski, A.N. Obraztsov, A.P. Volkov, Experimental investigation of electron gun wih nanostructured carbon cathode. Technical Digest of IVNC, Oxford, UK (2005), pp. 204–205

    Google Scholar 

  236. N.N. Dzbanovskiy, P.V. Minakov, A.A. Pilevskiy, A.T. Rahimov, B.V. Seleznev, N.V. Syetin, A.Y. Yuriev. High current electronic gun on the basis of an field emission cathode and a diamond grid. Zh.T.F. t.75(10), 111–114 (2005)

    Google Scholar 

  237. V.S. Nazarov, A.G. Gryshnikova, M.B. Silaev, O.G. Varnakova et al., A.c. 490211 SSSR, Cl. H01J 41/00 of 4.11.72. Ion getter pump/

    Google Scholar 

  238. A.c. 1240279 SSSR, Cl H01 J 41/16 of 12.07.84. Ion getter pump/ Varnakova O.G.,Grinchenko V.T., Konovalov N.D., Pogibelskay N.B

    Google Scholar 

  239. A.V. Anashenko, A.S. Batyrin, I.N. Eskin, E.P. Sheshin, A.A. Shyka et al., Field emission cathodes for heaters of getter-ion pumps. Electron. Ind. 3−4, 80–81 (1998)

    Google Scholar 

  240. V.A. Antonov, Y.A. Bykovskiy, A.I. Larkin, V.N. Ylasuk, A.V. Shelakov, E.P. Sheshin, Light-valve equipment. a.s. SSSR №1609371 of 24.06.1988, Cl. H01J 31/24

    Google Scholar 

  241. Y. Sugiyama, J. Itoh, S. Kanemaru, Vacuum magnetic sensor with comb-shaped field emitter arrays, in The 7th International Conference on Solid-State Sensors and Actuators, Yokohama, Japan (1993)

    Google Scholar 

  242. D. Hong, M. Aslam, Diamond field emitter pressure sensor. Technical Digest of JVMC, Oregon, USA (1995), pp. 335–337

    Google Scholar 

  243. T. Asano, R. Kajiwara, Fabrication of a tunnel sensor with cantilever structure. Technical Digest of JVNC, Nagahama, Japan (1991), pp. 204–205

    Google Scholar 

  244. J.P. Hollingsworth, P.R. Banlaru, Carbon nanotube based nonvolatile memory. Appl. Phys. Lett. 87, 2333115 (2005)

    Google Scholar 

  245. B. Lojek, Solid state field emission charge storage. Patent USA US 2008/0105946 of 2.05.2008.Cl.257/505 (H01L 29/00)

    Google Scholar 

  246. B. Lojek, Solid state field emission charge storage. Int. Pat. WO 2008/051675 of 02.05.2008 Cl.H01 L21/336

    Google Scholar 

  247. S.S. Furkay, D.V. Horak, C.H. Lam, H.-S.P. Wong, Field emission phase change diode memory. Patent USA US 2005/0127350 of 16.06.2005, cl.257/4 (H01L 47/00)

    Google Scholar 

  248. C. Goodman, Neutron sources. Patent USA №2816242 of 10.12.57 cl.313/61

    Google Scholar 

  249. A. Otuka, M. Yoshino, C. Ohima, Application a Spindt emitter to an ionization gauge for an extremely high vacuum. Tecnical Digest of IVMC, Nagahama, Japan (1991), 202–203

    Google Scholar 

  250. B.E. Barrington, A.L. Floras, W.L. Lees, Field-ionization electrodes. Patent USA, 3562881, of 16.02.71, cl.29/25.18 (H01j 9/16)

    Google Scholar 

  251. M. Faubel, W. Hobler, J. Toennies, Field emission cathode. Patent England №2021854 of 5.12.79, cl.H01j 1/30

    Google Scholar 

  252. M. Faubel, W.M. Hobler, J.P. Toennies, Electron impact ion source with field emission cathode. Patent USA №4272699 of 9.06.1981 cl.313/309 (H01j 37/073)

    Google Scholar 

  253. P.J. Traynor, R.G. Wright, Carbon nanotube electron ionization sources. Patent RST WO 2005/048290 of 26.05.2005, cl.H01j 49/00

    Google Scholar 

  254. O.A. Velikodnaya, V.A. Gurin, V.A. Ksenofontov, I.M. Mihaylovskiy, E.V. Sadanov et al., Multiemitter field source of ions on a basis the nanostructure of carbon materials. Letters ZhTF t.33(13), c.90–94 (2007)

    Google Scholar 

  255. G.F. Byrchak, S.P. Chervonobrodov, E.P. Sheshin, Method of forming of a light stream on the external screen for full-color system of display of a video information and the equipment for its implementation. Patent RF.RU 2265964 of 05.08.2003, cl.H04 №9/30

    Google Scholar 

  256. R.Z. Bahtizin, S.S. Goc, R.F. Zaripov, R.R. Faizov, Noise generator. a.s. USSR №1157642 of 23.05.1985, cl.H03 B 29/00

    Google Scholar 

  257. Y.M. Wong, W.P. Kang, J.L. Davidson, V.K. Choi, D.V. Kerns, J.H. Huang, Design and fabrication of single-chip carbon nanotubes vacuum field emission differential amplifier. Technical Digest of IVNC, Oxford, UK (2005), pp. 35–36

    Google Scholar 

  258. A. Zoulkarneev, J.-H. Choi, Field emission RF amplifier. Patent USA US 2005/0184675 of 25.08.2005 cl.G3/10 (H01j 315/169.3)

    Google Scholar 

  259. B.J. Kampherbeek, M.J.-J. Wieland, P. Kruit, Emission photo cathode array for lithography system and lithography system provided with such and array. Patent USA.US 2003/0178583 of 25.09.2003., cl.250/492.3 (H01j257/10)

    Google Scholar 

  260. D.A. Shiffler, Method of making a field emission cold cathode. Patent USA 2004/0202779 of 14.10.2004, cl.427/78 (B05D 5/12)

    Google Scholar 

  261. K.W. Cheng, Mirror having a field emission information display. Patent USA US 2008/0012727 of 17.01.2008, cl.340/933 (G08G 1/01)

    Google Scholar 

  262. F.G. Rudenauer, Field emission devices for space applications. Surf. Interface Anal. 39, 116–122 (2007)

    Google Scholar 

  263. V. Mironov, Fundamentals of the scanning probe microscopy. M. Technosphere (2004)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nikolay Egorov .

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Egorov, N., Sheshin, E. (2017). Field Emission Cathode-Based Devices and Equipment. In: Field Emission Electronics. Springer Series in Advanced Microelectronics, vol 60. Springer, Cham. https://doi.org/10.1007/978-3-319-56561-3_8

Download citation

Publish with us

Policies and ethics