Advertisement

Computation of Field-Emission Cathode-Based Electron Guns

  • Nikolay EgorovEmail author
  • Evgeny Sheshin
Chapter
Part of the Springer Series in Advanced Microelectronics book series (MICROELECTR., volume 60)

Abstract

This chapter proposes computation models of cathode-based electron guns along with assumptions that could be helpful for simplifying the computation. General problem of computation of the optimum structure of electron guns based on one-apex and multi-apex field-emission cathodes (the Almazov–Egorov model) is posed and solved. Then mathematical simulation of model triode electron-optical systems and methods of calculation of distribution of the electric field in forming and controlling systems based on a field-emission cathode and a small-aperture focusing diaphragm system are presented. The chapter presents a technique for calculating the optimum characteristics of the forming and controlling systems based on a field-emission cathode and a focusing diaphragm system and proceeds to proposing a computation model of electron trajectories in a field-emission cathode-based system is proposed.

Keywords

Field Intensity Cathode Surface Electric Field Intensity Equipotential Surface Emission Area 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    V.P. Ilyin (ed.), Algorithms And Methods for Calculating the Electron-Optical Systems (Novosibirsk, 1983), p. 190Google Scholar
  2. 2.
    L.A. Baranova, S.Y. Yavor, The electrostatic electron lenses. M.: Nauka, 192 (1986)Google Scholar
  3. 3.
    V.P. Ilyin , Numerical methods for solving the electro-optics problems. M.:Nauka, 202 (1974)Google Scholar
  4. 4.
    N.D. Devyatkova (ed.), Methods for calculating the electron-optical systems. M.: Nauka, 174 (1977)Google Scholar
  5. 5.
    V.P. Ilyin (ed.), in The Methods of Calculating Electron-Optical Systems: Proceedings of IV All-Union Sem (Novosibirsk, 1982), p. 202Google Scholar
  6. 6.
    A.P. Drum, V.V. Bulavinov, P.P. Konorov, Non-equilibrium electronic processes in layers on the surface of silicon. in Molecular and Electronic Processes on the Interphase Boundaries. (L.: Publishing of Leningrad University, 1989), p. 3–27Google Scholar
  7. 7.
    V.A. Syrovoy, Calculation of forming the electrodes in the optical planar electron beams. Radiotehnika i Elektronika 39(3), 481–502 (1994)Google Scholar
  8. 8.
    V.A. Syrovoy, Calculation of forming the electrodes in optics rotationally symmetric electron beams. Radiotehnika i Elektronika 39(4), 666–687 (1994)Google Scholar
  9. 9.
    L.E. Tsyrlin. Selected problem for electric magnetic fields. M.: Soviet Radio 319 (1977)Google Scholar
  10. 10.
    L.A. Neganov, V.A. Syrovoy, V.N. Tskhai, Calculation and experimental investigation of the electron gun for technological purpose. Radiotehnika i Elektronika 35(10), 2146–2155 (1990)Google Scholar
  11. 11.
    V.V. Plohov, V.A. Syrovoy. On calculation of multi beams injector with a relativistic electron beam. Radiotehnika i Elektronika 35(12), 2582–2593Google Scholar
  12. 12.
    V.A. Syrovoy, On the synthesis of nonparaxial relativistic electron beams at emission limited by temperature, and the injection of a non-zero velocity. Radiotehnika i Elektronika 42(3), 348–360 (1997)Google Scholar
  13. 13.
    Y. Xuebiao, X. Zhangchcheng, H. Guoguang et. al. Emission characteristics of the molybdenum-coated silicon field emitter array. J. Phys. D: Appl. Phys. 29(3), 506–510 (1996)Google Scholar
  14. 14.
    M.I. Yavor, E.V. Strigova, Field distribution and electrical properties of electrostatic conical slit lenses. Nucl. Instr. Meth. Phys. Res. A 363(1/2), 445–450 (1995)Google Scholar
  15. 15.
    L.N. Baranova, N.S. Ulyanova, S.Y. Yavor, The study of spatial and temporal characteristics of the charged particle beam focused by axisymmetric electrostatic lens. ZTP 61(2), 144–148 (1991)Google Scholar
  16. 16.
    I.M. Gordion, I.D. Tokman, The problem of electrostatics to an oblate spheroid in the point charge field. ZTP 67(2), 121–122 (1997)Google Scholar
  17. 17.
    G.Ch. Shushkevich, The electrostatic problem for the disk and torus. ZTP 67(4), 123–126 (1997)Google Scholar
  18. 18.
    V.V. Rassadin. Calculation of the electric field in periodic structures of linear ion accelerators. in A system of linear accelerators and the use of beams of charged particles. (M.: Publishing House of -the Moscow Engineering Physics Institute, 1987), p. 41–45Google Scholar
  19. 19.
    L. Klemar, E. Kasper, On the numerical design of elecnron guns. Optic. 72(1), 29–30 (1985)Google Scholar
  20. 20.
    S.K. Godunov, E.I. Romenskii, G.A. Chumakov, in Construction of numerical grids in complex domains using quasi-conformal mappings. (Novosibirsk: Nauka, 1990), pp. 75–83Google Scholar
  21. 21.
    A.Taflove, Emerging applications for FD-TD computation. IEEE on Comp. Sci. Eng. 2(4), 24–34 (1995)Google Scholar
  22. 22.
    S. Roques, M. Denizart, F. Sonier, Tetrode field emission guns for electron microscopy. Optic. 61(1), 51–66 (1983)Google Scholar
  23. 23.
    M.I. Yavor, E.V. Strigova, Field distribution and electrical properties of electrostatic conical slit lenses. Nucl. Instr. Meth. Phys. Res. A 363(1/2), 445–450 (1995)Google Scholar
  24. 24.
    G.V. Lebedev, N.A. Timchenko, Complex of programs for design of electron-optical systems “Probe.”. Sci. Instrum. Electron-ion Optics L.: Nauka, 111–116 (1989)Google Scholar
  25. 25.
    N.V. Egorov. Calculation and optimization of the characteristics of the field emission electron source. in Modeling and Control in the Electrical and Mechanical Systems, ed. by D.A. Ovsyannikov (St. Petersburg: St. Petersburg State University Publishing House, 2002), pp. 111–127Google Scholar
  26. 26.
    E.M. Vinogradova, N.V. Egorov. Calculation of the electrostatic field systems with coaxial axially symmetric electrodes. Radiotehnika i Elektronika 52, 225 (2007)Google Scholar
  27. 27.
    A.A. Almazov, N.V. Egorov, Optimization of multi-tips field source. Vacuum 52, 295 (1999)CrossRefGoogle Scholar
  28. 28.
    A.A. Almazov, N.V. Egorov, Optimization of multi-tips emission systems. Radiotehnika i Elektronika 40(4), 638–643 (1995)Google Scholar
  29. 29.
    E.M. Vinogradova, Calculation of electron-optical systems based on field cathodes, in Modeling and Control in the Electrical and Mechanical Systems, ed. by D.A. Ovsyannikov (St. Petersburg: St. Petersburg State University Publishing House, 2002), pp. 99–110Google Scholar
  30. 30.
    E.M. Vinogradova, N.V. Egorov, R.Y. Baranov, in Calculation Of The Electrostatic Potential In Single Tip And Multi-Tips Emission Systems, 1 (Vestnik of St. Petersburg State University, Ser. 10, 2007), p. 39Google Scholar
  31. 31.
    E.M. Vinogradova, N.V. Egorov, R.Y. Baranov, Mathematical model of the cathode assembly of the electron gun field, (Vestnik of St. Petersburg State University. Ser. 10, 2006), p. 3Google Scholar
  32. 32.
    E.M. Vinogradova, N.V. Egorov, Calculation of the electrostatic field of spherical segments. ZTP 78(8), 128 (2008)Google Scholar
  33. 33.
    K.A. Krimskaya, Mathematical modeling of the formation of the electron beam on the basis of the field cathode. Diss. Cand. SPb, p. 85 (2009)Google Scholar
  34. 34.
    N.V. Egorov, E.M. Vinogradova, Mathematical model of electron gun on the field emission electron cathode basis. Vacuum 57, 267–281 (2000)CrossRefGoogle Scholar
  35. 35.
    N.V. Egorov, E.M. Vinogradova, Mathematical modeling of electron beam formatting systems on the basis of field emission cathodes with various shapes. Vacuum 72, 103–111 (2004)CrossRefGoogle Scholar
  36. 36.
    D.A. Ovsyannikov, N.V. Egorov, Mathematical modeling of systems of formation of electron and ion beams (St. Petersburg State University Publishing House, St. Petersburg, 1998), p. 276Google Scholar
  37. 37.
    N.V. Egorov, A.G. Karpov. Diagnostic information and expert systems (SPb.: Publishing house of St. Petersburg University, 2002), p. 470Google Scholar
  38. 38.
    E.P. Shurina, M.U. Velikaya, M.P. Fedoruk, Algorithms for solving Maxwell’s equations on unstructured grids. Comput. Technol. 5(6), 99–116 (2000)MathSciNetzbMATHGoogle Scholar
  39. 39.
    A.A. Almazov, N.V. Egorov, By the method of calculating the field-emission systems. Radiotehnika i Elektronika 31(12), 2452–2458 (1986)Google Scholar
  40. 40.
    Almazov A.A., Egorov N.V. Mathematical model of field-emission diode. Mathematical methods of modeling and analysis of controlled processes.( L.: Publishing of Leningrad University, 1989), pp. 20–28Google Scholar
  41. 41.
    A.A. Almazov, E.M. Vinogradova, Egorov N.V. Mathematical model of the electron gun with field cathode. Abstracts of 12th All-Union. Sem. on linear particle accelerators. Kharkov, 1991. p.39Google Scholar
  42. 42.
    P.F. Bovey, A 100 kV high resolution analytical STEM. Mirrosc. Spectrosc. Electron. 1, 507–508 (1976)Google Scholar
  43. 43.
    G.F. Vasiliev, Influence of the form of the potential barrier at the emitter-vacuum and electric field distribution on the surface of the emitter in the form of current-voltage characteristics of field emission. Radiotehnika i Elektronika 5(11), 1857–1861 (1960)Google Scholar
  44. 44.
    G. Rekleytis, A. Reyvidran, K. Regsdel. Optimization in Technology. M.: Mir 2, 1986Google Scholar
  45. 45.
    N.S. Demchenko, A.Y. Antonov, Construction of the electron trajectories in the emission system. , 3 (Vestnik of St. Petersburg State University, Ser. 10, 2010), pp. 1–10Google Scholar
  46. 46.
    M. Matsumoto, T. Nishimura, Mersenne Twister: A 623-dimensionally equidistributed uniform pseudorandom number generator. ACM Trans. Model. Comput. Simul. (Special Issue on Uniform Random Number Generation) 8(1), 3–30 (1998)Google Scholar
  47. 47.
    I.M. Gribkova, in Mathematical Modeling of the Images in a Field Electron Microscope. eds. by N.V. Smirnov, G.S. Tamasyan. The Control Processes and stability. Proceedings of XXIX Scientific Conference of Applied athematics and Control Processes Faculty of Saint Petersburg State University (Publishing House of St. Petersburg State University, St. Petersburg, 2008), pp. 116–121Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Saint Petersburg State UniversitySt. PetersburgRussia
  2. 2.MIPTDolgoprudny, Moscow regionRussia

Personalised recommendations