Carbon-Based Field-Emission Cathodes

  • Nikolay EgorovEmail author
  • Evgeny Sheshin
Part of the Springer Series in Advanced Microelectronics book series (MICROELECTR., volume 60)


This chapter reviews the main carbon-based materials that, by the authors’ opinion, are suitable for use in the manufacturing of field emission cathodes. Those are, first and foremost, polyacrylonitrile carbon fibers, carbon nanotubes, fullerenes, graphenes etc. The ways to improve the emission characteristics of carbon-based field emission cathodes and techniques of measurement of volt-ampere characteristics out of such materials are also discussed.


Carbon Fiber Corona Discharge Cathode Surface Emission Current Emission Center 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    E.P. Sheshin, Structure of a Surface and Autoissue Properties of Carbon Materials (M of a.: MFTI-fizmatbook, 2001)Google Scholar
  2. 2.
    E.P. Sheshin, Field emission of carbon fibers. Ultramicroscopy 79, 101–108 (1999)Google Scholar
  3. 3.
    E.P. Sheshin, Properties of carbon materials, especially fibers, for field emitter applications. Appl. Surf. Sci. 215, 191–200 (2003)Google Scholar
  4. 4.
    E.P. Sheshin, Modern ways of formation of field electronic cathodes from carbon materials. Achievements Mod. Radio Electron. 56, 36–40 (2004)Google Scholar
  5. 5.
    Kypryshkin, E.P. Sheshin, A.A. Shyka, Methods of production of field electronic cathodes from carbon materials. Nano Microsc. Equip. 3, 26–31 (2005)Google Scholar
  6. 6.
    E.P. Sheshin, Possibility of receiving big autoissue currents from autocathodes from carbon volokn. Electron. Equip. Ser. 4. 2, 58–62 (1988)Google Scholar
  7. 7.
    E.P. Sheshin, L. Rybakov Yu, Field electronic cathodes from carbon volokn. Theses dokl. xviii Vsesoyuzn. Konf. on issue electronics, pp. 213–214, M.: nauka (1981)Google Scholar
  8. 8.
    V.A. Nevrovsky, V.I. Rahovsky, To a question of time of development of thermal instability of microledges on the cathode at vacuum breakdown. ZhTF 50, 2127–2135 (1980)Google Scholar
  9. 9.
    B.V. Bondarenko, V.I. Makyha, V. Titov Yu, E.P. Sheshin, Autocathodes with a big working area. Electron. Equip. (It is Gray. SVCh Electron) 4, 47–51 (1986)Google Scholar
  10. 10.
    A.S. Fialkov, Carbon and Graphite Materials (M.: energiya, 1979), p. 320Google Scholar
  11. 11.
    E. Braun, J. Smith, D. Sykes, Carbon fibers as field emitters. Vacuum 25(9/10), 425–426 (1975)Google Scholar
  12. 12.
    E.P. Sheshin, Emission characteristics carbon fiber, in Physical Processes in Devices of Electronic Equipment (M.: MFTI, 1980), pp. 6–10Google Scholar
  13. 13.
    R.M. Hatapova, V.H. Romanova, About issue stability of carbon autocathodes in the unsoldered devices. Theses дoкл. IV Vsesoyuzn. A symposium on not heated cathodes, Tomsk, ISE, p. 51 (1980)Google Scholar
  14. 14.
    B.V. Bondarenko, V.A. Sileverstov, E.P. Sheshin, Issue properties carbon вoлoкн various temperature of processing. Radio Technician Electron. Eng. 30(8), 1601–1605 (1985)Google Scholar
  15. 15.
    B.V. Bondarenko, V.I. Makyha, E.A. Tishin, E.P. Sheshin, About work of an exit of electrons of carbon materials, in The Physical Phenomena in Devices of an Electronic and Laser Teznika (M.: MIPT, 1983), pp. 13–18Google Scholar
  16. 16.
    B.V. Bondarenko, V.I. Makyha, E.P. Sheshin, Stability of issue and durability of some options of autocathodes. Radio Technician Electron. Eng. 28(8), 1649–1652 (1983)Google Scholar
  17. 17.
    B.V. Bondarenko, A.G. Shahovskoy, E.P. Sheshin, Stabilization of autoissue characteristics carbon вoлoкн during the long work, in Physical Yaleniye in Devices of Electronic and Laser Equipment (M.: MIPT, 1985), pp. 4–9Google Scholar
  18. 18.
    A.S. Baturin, T. Kelly, M.S. Mousa, E.P. Sheshin and others, Lifetime and emission stability of carbon fiber cathodes. Mat. Sci. Eng. 353, 22–26 (2003)Google Scholar
  19. 19.
    B.V. Bondarenko, V.I. Makyha, E.P. Sheshin, Field electronic cathodes from graphite. Theses dokl. iv Vsesoyuzn. A symposium but to not heated cathodes, Tomsk, pp. 49–50 (1980)Google Scholar
  20. 20.
    V.I. Makyha, E.P. Sheshin, About possibility of receiving big autoissue currents from graphite, in The Physical Phenomena in Devices of Electronic and Laser Equipment (M.: MIPT, 1983), pp. 22–25Google Scholar
  21. 21.
    E.P. Sheshin, A.C. Batyrin, Stability field electron emission uglerodnovolokonnykh of autocathodes. Mater. The All-Russian symposium on Amis. To electronics, Ryazan, pp. 141–142 (1996)Google Scholar
  22. 22.
    E.P. Sheshin, A.B. Stolarov, A.V. Anashenko, A.H. Kydravcev, N.B. Dyakonova, Studying of issue properties and structure carbon вoлoкн various types. Mater. VII meetings “Radiation physics of a solid body”, Moscow-Sevastopol, pp. 78–82 (1997)Google Scholar
  23. 23.
    E.P. Sheshin, A.V. Anaschenko, S.G. Kuzmenko, Field emission characteristic research of some type of carbon fibers. Ultramicroscopy 79, 109–114 (1999)Google Scholar
  24. 24.
    D.M. Paytov, V.A. Tkachenko, V.S. Neshpor, E.I. Podolskay, Mnogoostriyny cold cathode. Ampere-second. USSR, No. 767858. Cl. H01j 1/30 of 14.06.78Google Scholar
  25. 25.
    D.M. Paytov, V.A. Tkachenko, V.H. Fedorov, E.V. Gorbachevskiy, Mnogoostriyny cold cathode. Ampere-second. USSR, No. 1019518. Cl. H01j 1/30 of 15.01.82Google Scholar
  26. 26.
    A.G. Chaknovskoi, E.P. Sheshin, A.S. Kupryashkin, V.A. Seliverstov, Method of fabrication of matrix carbon fiber field emission cathode structure for flat-panel indicators. J. Vac. Sci. Techn. 11(2), 511–513 (1993)Google Scholar
  27. 27.
    T.N. Bredihina, V.K. Esina, A.U. Cherepanov, A.G. Shohovskoy, E.P. Sheshin, Way of production of the multiemitter autocathode. Ampere-second. USSR, No. 151606. Cl. H01j 9/02 of 15.10.87Google Scholar
  28. 28.
    A.S. Batyrin, V.I. Beloglazov, V.F. Lebedev, N.B. Skibina, A.V. Sherbakov, E.P. Sheshin, Way of production of the matrichesky autocathode. Stalemate. Russia No. 2183362. Cl. H01j 1/14 of 04.04.2001Google Scholar
  29. 29.
    R.R. Bessette, M.G. Madeiros, C.J. Patrissi, C.M. Deschenes, C.N. La fratta, Development and characterization of a novel carbon fiber based cathode for semi-fuel cell applications. J. Power Sour. 96, 240–244 (2001)Google Scholar
  30. 30.
    T. Keesmann, W.H. Grosse, Field emission cathode using carbon fibers. Pat. USA 2004/0036402. Cl. H01j 1/05 (313/311), of 8.04.2003Google Scholar
  31. 31.
    M.A. Guillorn, M.L. Simpson, G.J. Bordonaro, V.J. Merkulov, L.R. Baylor, D.H. Lowndes, Fabrication of gated cathode structures using an in situ grown vertically aligned carbon nanofiber as a field emission element. J. Vac. Sci. Tech. 19(2), 573–578 (2001)Google Scholar
  32. 32.
    V.D. Blank, E.V. Polyakov, D.V. Batov, B.A. Kulnitskiy, U. Bangert, A. Gutierrez-Sosa, A.J. Harvey, A. Seepujak, Diam. Rel. Mater. 12, 864–869 (2003)Google Scholar
  33. 33.
    Y. Wada, Y.K. Yap, Y. Mori, M. Yoshimura, T. Sasaki, Diam. Rel. Mater. 9, 620–624 (2000)Google Scholar
  34. 34.
    R. Kurt, J.M. Bonard, A. Karimi, Thin Solid Films 398, 193–198 (2001)Google Scholar
  35. 35.
    A.G. Kydashov, A.V. Okotryb, N.F. Udanov, A.I. Romanenko, L.G. Bylysheva, A.G. Abrosimov, A.L. Chyvilin, E.M. Pazhetov, A.I. Boronin. FTT 44(4), 626–629 (2002)Google Scholar
  36. 36.
    M. Terrones, XV International Winterschool on Electronic Properties of Novel Materials (Austria, 2001), p. 63Google Scholar
  37. 37.
    C. Kimura, Y. Yamamuro, H. Aoki, T. Sugino, 17th European Conference on Diamond, Diamond-Like Materials, Carbon Nanotubes, and Nitrides (Portugal, 2006), p. 380Google Scholar
  38. 38.
    V.S. Bormashov, E.P. Sheshin, D.V. Baton, V.D. Blank, S.G. Buga, Novel method of flat cold cathode production from carbon-nitrogen nanofibers. Technical Digest of 19th IVNC and 50th IFES, Guilin, China, p. 293 (2006)Google Scholar
  39. 39.
    V.D. Blank, E.V. Polyakov, B.A. Kulnitskiy, A.A. Nuzhdin, L. Alshevskiy Yu, U. Banget, A.J. Harvey, Thin Solid Films 346, 86–92 (1999)Google Scholar
  40. 40.
    P.M. Ajayan, M. Terrones, A. De La Guardia, V. Hue, N. Grobert, B.Q. Wei, H. Lezec, G. Ramanath, T.W. Ebbe, Science 296(5568), 705 (2002)Google Scholar
  41. 41.
    N.G. Shang, F.C.K. Au, X.M. Meng, C.S. Lee, I. Bello, S.Y. Lee, Chem. Phys. Lett. 358, 187–191 (2002)Google Scholar
  42. 42.
    Z.Y. Kosakovskay, L.A. Chernozatonskiy, E.A. Fedorov, Lett. ZhETF 56(1), 26–30 (1992)Google Scholar
  43. 43.
    S. Fan, M.G. Chapline, N.R. Franklin, T.W. Tombler, A.M. Cassell, H. Dai, Science 283, 512–514 (1999)Google Scholar
  44. 44.
    A.G. Rinzler, J.H. Hafner, P. Nikolaev, L. Lou, S.G. Kim, D. Tomanek, P. Nordlander, D.T. Colbert, R.E. Smalley, Science 269, 1550–1553 (1995)Google Scholar
  45. 45.
    Q.H. Wang, T.D. Corrigan, J.Y. Day, R.P.H. Chang, A.R. Krauss, Appl. Phys. Lett. 70, 3308–3310 (1997)Google Scholar
  46. 46.
    J.-M. Bonard, J.-P. Salvetat, T. Stockli, W.A. De Heer, L. Forro, A. Chatelain, Appl. Phys. Lett. 73, 918–920 (1998)Google Scholar
  47. 47.
    H. Schmid, H.-W. Fink, Appl. Phys. Lett. 70, 2679–2680 (1997)Google Scholar
  48. 48.
    W.A. De Heer, A. Chatelain, D. Ugarte, Science 270(5239), 1179 (1995)Google Scholar
  49. 49.
    V. Gulaev Yu, N.I. Sinicin, G.V. Torgashov, L.A. Chernozatonsky, Z.Y. Kosakovskay, F. Zaharchenko Yu, Microelectronics 26(2), 84–88 (1997)Google Scholar
  50. 50.
    V. Filip, D. Nicolaescu, M. Tanemura, F. Okuyama, J. Vac. Sci. Technol. 21, 382–390 (2003)Google Scholar
  51. 51.
    T.C. Choy, A.H. Harker, A.M. Stoneham, J. Phys. Matter. 16, 861–880 (2004)Google Scholar
  52. 52.
    T.C. Choy, A.M. Stoneham, A.H. Harker, J. Phys. Condens. Matter 17, 1505–1528 (2005)Google Scholar
  53. 53.
    A.N. Obraztsov, I. Pavlovsky Yu, A.P. Volkovv, J. Vac. Sci. Technol B. 17, 674–678 (1999)Google Scholar
  54. 54.
    A.N. Obrazcov, A.P. Volkov, I. Palovskiy Yu, A.L. Chyvilin, N.A. Rydina, V.L. Kyznetsov, Lett. ZhETF 69(5), 381–386 (1999)Google Scholar
  55. 55.
    A.N. Obraztsov, J. Pavlovsy, A.P. Volkov, V.L. Kuznetsov, A.L. Chuvilin, Oriented carbon nanotubes growth for field emission application. Mat. Res. Soc. Symp. Proc. 558, 111–116 (2000)Google Scholar
  56. 56.
    H. Hiura, T.W. Ebbesen, J. Fujita, K. Tanigaki, T. Takada, Nature 148–151 (1994)Google Scholar
  57. 57.
    F. Salver-Disma, J.-M. Tarascon, C. Clinard, J.-N. Rouzaund, Carbon 37, 1947–1959 (1999)Google Scholar
  58. 58.
    J.K. Huang, H. Yasuda, H. Mori, Chem. Phys. Lett. 303, 130–134 (1999)Google Scholar
  59. 59.
    Y. Omaru, M. Nagamine, J. Appl. Phys. 88, 6389–6377 (2000)Google Scholar
  60. 60.
    K.E. Robinson, D.D. Edie, Carbon 34, 13–36 (1996)Google Scholar
  61. 61.
    S.-H. Hong, Y. Korai, I. Mochida, Carbon 38, 805–815 (2000)Google Scholar
  62. 62.
    M.I. Elinson, Not Heated Cathodes (M.: Soviet Radio, 1971)Google Scholar
  63. 63.
    V.T. Binh, C. Adessi, Phys. Rev. Lett. 85, 864–867 (2000)Google Scholar
  64. 64.
    V.M. Lobanov, ZHTF 75(11), 92–96 (2005)Google Scholar
  65. 65.
    V.D. Frolov, A.V. Karabutov, S.M. Pimenov, V.I. Konov, V.P. Ageev, Diam. Rel. Mater. 10, 1719–1726 (2001)Google Scholar
  66. 66.
    M.S. Dresselhaus, G. Dresselhauss, P. Eklund, The Science of Fullerenes and Carbon Nanotubes (Academic, 1996)Google Scholar
  67. 67.
    T.W. Ebbesen (ed.), Carbon Nanotubes, Preparation and Properties (CRC Press, 1996)Google Scholar
  68. 68.
    R. Saito, G. Dresselhaus, M.S. Dresselhaus, Physical Properties of Carbon Nanotubes (World Scientific, 1998)Google Scholar
  69. 69.
    A.V. Eleckiy, Carbon nanotubes and their issue svostvo. UFN 172(4), 401–438 (2002)Google Scholar
  70. 70.
    Y. Zhang, S.Z. Deng, J. Cheng, N.S. Xu, Synthesis and Field Emission Properties of Large-Area Uniform Carbon Nanotubes Films (Techn Didgest JVNC, Oxford, UK, 2005), pp. 324–325Google Scholar
  71. 71.
    C. Zhu, C. Lou, W. Lei, X. Zhang, Fabrication and Characterization of High Current Density Carbon Nanotubes Cold Cathodes (JVESC, Beijing, China, 2004), pp. 237–238Google Scholar
  72. 72.
    N.Y. Huang, J.C. She, J. Chen, S.Z. Deng, N.S. Xu, H. Bishop, S.E. Huq, L. Wang, D.Y. Zhong, E.G. Wang, D.M. Chen, Phys. Rev. Lett. 93(7), 075501-1 (2004)Google Scholar
  73. 73.
    T. Shiroishi, T. Sawada, A. Hosono, S. Nakata, Low Temperature Growth of Carbon Nanotubes by Thermal CVD with FeZrN Catalyst (Techn Didgest JVMC, Osaka, Japan, 2003), pp. 13–14Google Scholar
  74. 74.
    A.N. Rodokin, L.V. Malarevich, Receiving carbon nanofibre and nanotubes by method of ultrahigh heating of vapors of ethanol. Inorg. Mat. 39(4), 433–437 (2003)Google Scholar
  75. 75.
    A.M. Lamanov, R.M. Ibragimov, K.N. Nikolskiy, A.N. Redkin, R.G. Chesov, E.P. Sheshin, The autoissue cathodes manufactured by method of low-temperature gas sedimentation of ethanol pa. Nano Microsyst. Equip. 9, 34–37 (2005)Google Scholar
  76. 76.
    A.M. Lamanov, E.P. Sheshin, A.N. Redkin, New Technique of Field Emission Cathodes Preparation by Low Temperature Deposition From Ethanol Vapor. Hydrogen Materials and Chemistry of Carbon Nanomaterials (Springer, 2007), pp. 265–268Google Scholar
  77. 77.
    Z. Sun, Y.J. Li, G.Y. Chen, S.P. Lau, B.K. Tay, J.S. Chen, L.K. Chean, Fabrication of carbon nanotubes film arrays film arrays for field emission flat panel display application. Surf. Rev. Lett. 8(5), 505–508 (2001)Google Scholar
  78. 78.
    J.I. Sohn, S. Lee, Y.-H. Song, S.-Y. Choi, K.I. Cho, K.S. Nam, Patterned selective growth of carbon nanotubes and large field emission from vertically well-aligned carbon nanotubes field emitter arrays. Appl. Phys. Lett. 78(7), 901–903 (2001)Google Scholar
  79. 79.
    G.S. Choi, K.H. Son, D.J. Kim, Fabrication of high performance carbon nanotubes field emitters. Microelectron. Eng. 66, 206–212 (2003)Google Scholar
  80. 80.
    G.S. Choi, S.S. Cho, S.Y. Hong, J.B. Park, K.H. Son, D.J. Kim, J. Appl. Phys. 91, 3847 (2002)Google Scholar
  81. 81.
    Y.T. Jang, C.H. Choi, B.K. Ju, J.H. Ahn, Suppression of leakage current via formation of a sidewall protector in the microgated carbon nanotubes emitter. Nanotechnology 14, 497–500 (2003)Google Scholar
  82. 82.
    Y.H. Lee, Y.T. Jang, D.J. Kim, J.H. Ahn, B.K. Ju, Realization of gated field emitter for electrophotonic applications using carbon nanotubes line emitters directly grown into submicrometer holes. Avd. Mater. 13(7), 479–482 (2001)Google Scholar
  83. 83.
    S. Kang, C. Bae, W. Son, M. Kim, J. Yi, A. Chang, J. Kim, C. Lee, Low Temperature Carbon Nanotubes for Field Emission Display (Techn Didgest JVMC, Osaka, Japan, 2003), pp. 51–52Google Scholar
  84. 84.
    C. Lou, X. Zhang, W. Lei, C. Qi, New method to fabricate field-emission cathode of carbon nanotubes. Appl. Surf. Sci. 251, 254–257 (2005)Google Scholar
  85. 85.
    J.W. Moon, Electron emission source composition for flat panel display and method of producing electron emission source for flat panel display using the same. Pat. US 2006/0066200 of 30.03.2006. Cl. 313/311 (H01j 1/14)Google Scholar
  86. 86.
    T. Honda, W. Rochanachirapar, K. Murakami, K. Ohsumi, N. Shimizu, S. Abo, F. Wakaya, M. Takai, KrF Laser Surface Treatment of CNT Cathode (Tech Digest IVNC, Oxford, UK, 2005), pp. 300–301Google Scholar
  87. 87.
    X.H. Liang, N.S. Xu, I. Chen, S.Z. Deng, Enhanced Field Emission from Carbon Nanotube Films by Hydrogen Glow Discharge Treatment (Tech Didgest IVNC, Oxford, UK, 2005), pp. 302–303Google Scholar
  88. 88.
    J. Robertson, Diamond Relat. Mater. 3, 361 (1994)Google Scholar
  89. 89.
    J. Robertson, Amorphous carbon cathodes for field emission display. Thin Solid Films 296, 61–65 (1997)Google Scholar
  90. 90.
    V.J. Merkylov, D.H. Lowndes, L.R. Baylor and others, An addressable field emission array for E-beam lithography using planar, pulsed-laser deposited amorphous diamond cathodes. IVMS 178–179 (1998)Google Scholar
  91. 91.
    X. Zhang, Z. Lu, B. Zhang, N. Yao, B. Ma, Y. Zhao, Preparation of Nanostructure Amorphous Carbon Film and Its Field Emission Properties (Techn Digest IVNC, 2004), pp. 293–295Google Scholar
  92. 92.
    S. Bae, K.H. Park, S. Lee, K.H. Koh, Triode Emitters with Well-Structure Cathode (Techn Diest IVNC, 2004), pp. 26–27Google Scholar
  93. 93.
    K.H. Park, K.M. Lee, S. Choi, S. Lee, K.H. Koh, J. Vac. Sci. Tehnol. 19, 946 (2001)Google Scholar
  94. 94.
    K.H. Park, W.J. Seo, S. Lee, K.H. Koh, Appl. Phys. Lett. 81, 358 (2002)Google Scholar
  95. 95.
    W. Knapp, D. Schleussner, Field emission characteristics of carbon buchypaper. J. Vac. Sci. Tehnol. 21(1), 557–561 (2003)Google Scholar
  96. 96.
    W.J. Zhao, R. Wasu, M. Takai, Field Emission from Carbon Nanotube Material (Techn Digest IVNC, 2003), pp. 57–58Google Scholar
  97. 97.
    W. Weibiao, X. Yuxue, Z. Chuanping, Electron Emission of Carbon Nanonets (Techn Digest IVNC, 2003), pp. 155–156Google Scholar
  98. 98.
    H. Busta, Z. Tolt, J. Montgomery, A. Feinerman, Field Emission from Teepee-Shaped Carbon Nanotube Bundles (Techn Digest IVNC, 2004), pp. 30–31Google Scholar
  99. 99.
    B.C. Halloway, M. Zhu, X. Zhao, J. Wang, R. Outlaw, Milliamp-Class Field Emission Devices Based on Free-Standing, Two-Dimensional Carbon Nanostructures (Techn Digest IVNC, 2005), pp. 24–25Google Scholar
  100. 100.
    V. Gulyaev Yu, V.N. Koro, A. Grigorev Yu, G.A. Rehn, Research of the Field Emission of Fractal Blads Patterns of Large Length (Techn Digest IVNC, 2004), pp. 78–80Google Scholar
  101. 101.
    A. Kastalsky, S. Shokhor, J. Hou, S. Naar, N. Abianshin, B. Gorfinkel, Thin Film Edge-Emitter Field Emission Flat Panel Display (Techn Digest of SiD, 2001), pp. 201–203Google Scholar
  102. 102.
    S.K. Gordeev, A.M. Lamanov, R.M. Jbragimov, K.N. Nikolskiy, E.P. Sheshin, Pyrolitic Carbon Cathodes Prepared by Low Temperature Vapor Deposition (Techn Digest IVNC, 2005), pp. 176–177Google Scholar
  103. 103.
    S.K. Gordeev, S.B. Korchagina, A.M. Lamanov, E.P. Sheshin and other, New technique of production of cathodes from a graphite foil. Nano Microsyst. тexникa. 12, 33–36 (2005)Google Scholar
  104. 104.
    V.P. Vereyko, M.M. Libenson, A.M. Miluchev, Laser technology. Electronics 68(137), 114 (1970)Google Scholar
  105. 105.
    M.F. Stelmakh, Lasers in technology under the editorship. Energy (1975)Google Scholar
  106. 106.
    V. Polezhaev Yu, F.B. Yurivech, Thermal Protection (1975)Google Scholar
  107. 107.
    K.N. Nikolskiy, A.C. Batyrin, A.C. Kyprashkin, R.G. Chesov, E.P. Sheshin, “Effect of a ring” at intensive field electronic issue. Microsyst. Equip. 7, 8–10 (2003)Google Scholar
  108. 108.
    K.N. Nikolskiy, A.C. Batyrin, A.I. Knazev, R.G. Chesov, E.P. Sheshin, Formation of rings round primary field emission image and possibility of their practical use. Mag. Tech. Phys. 74(2), 110–113 (2004)Google Scholar
  109. 109.
    Y.J. Li, S.P. Lau et al., Oriented carbon microfibers grown by catalytic decomposition of acetylene and their field emission properties. Diamond Relat. Mat. 10(1), 878–883 (2001)Google Scholar
  110. 110.
    L.C. Jin, P. Jeunghee, Growth and field electron emission of vertically aligned multiwalled carbon nanotubes. Chem. Phys. Latters 326(1), 175–181 (2000)Google Scholar
  111. 111.
    Q.H. Wang, R.P.H. Chang, M. Yam, Flat panel display prototype using gated carbon nanotube field emitters. Appl. Phys. Lett. 78(9), 1294–1297 (2001)ADSCrossRefGoogle Scholar
  112. 112.
    Z. Lan, Z. Binglin et al., A Flat Panel Display Device Fabricated by Using Carbon Nanotubes Cathode. IEEE, IVMC 2001 University of California, Davis, California, USA, 12–16 August 2001Google Scholar
  113. 113.
    Z. Wei, G. Kochanski et al., Large current density from carbon nanotube field emitters. Appl. Phys. Lett. 75(6), 873–876 (1999)Google Scholar
  114. 114.
    S. Gleston, Introduction to Electrochemistry (M.: Foreign Literature, 1951)Google Scholar
  115. 115.
    E.M. Lifshic, L.P. Pitaevskiy, Theoretical Physics of T. 10. Physical Kinetics (M.; Science, 1979)Google Scholar
  116. 116.
    K. Fetter, Electrochemical Kinetics (M.: Chemistry, 1967)Google Scholar
  117. 117.
    G.A. Golikov, Guide to Physical Chemistry (M.: The Highest Shkola, 1988)Google Scholar
  118. 118.
    D.S. Dykin, B.V. Deragin, Electrophoresis (M.; Science, 1976)Google Scholar
  119. 119.
    D.A. Kurosov, A.S. Baturin, K.N. Nikolskiy, R.G. Tcheov, E.P. Sheshin, Influence of the interelectrode distance in electrophoretic cold cathode fabrication of the emission uniformity. Appl. Surf. Sci. 215, 232–236 (2003)Google Scholar
  120. 120.
    W.B. Choi, J.J. Cuomo, Field emission from silicon and molybdenum tips coated with diamond powder by dielectrophoresis. Appl. Phys. Lett. 68(5) (1996)Google Scholar
  121. 121.
    V.V. Zhirnov et al., Diamond coated Si and Mo field emitters: diamond thickness effect. Appl. Surf. Sci. 94(95), 123–128 (1996)ADSCrossRefGoogle Scholar
  122. 122.
    A.N. Alimova, N.N. Chubin et al., Electrophoresis of nanodiamond powder for cold cathode fabrication. J. Vac. Sci. Technol. B. 17(2) (1999)Google Scholar
  123. 123.
    A.F. Pal, N.V. Suetin et al., Emission Properties of Electrophoretically Deposited Nanodiamond Film. IEEE, IVMC 2001 Davis, California USA, 12–16 August 2001Google Scholar
  124. 124.
    Yoshikazu Nakayama, Seiji Akita, Field-emission device with carbon nanotubes for a flat panel display. Synth. Met. 117, 207–210 (2001)CrossRefGoogle Scholar
  125. 125.
    A.N. Obraztsova, A.P. Volkov et al., Single-Wall Carbon Nanotube Electron Emitters Formed by Liquid Electron Emitters Formed by Liquid Electrophoresis. ITM-FEECM 2001, Moscow, Russia, 2–4 July 2001Google Scholar
  126. 126.
    W.B. Choi, Y.W. Jin et al., Electrophoresis deposition of carbon nanotubes for triode-type field, emission display. Appl. Phys. Lett. 78(11), 12 (2001)CrossRefGoogle Scholar
  127. 127.
    H. Zhao, H. Song, Z. Li, G. Yuan, Y. Jin, Electrophoretic deposition and field emission properties of patterned carbon nanotubes. Appl. Surf. 251, 242–244 (2005)Google Scholar
  128. 128.
    S.J. Oh, J. Zhang, Y. Cheng, H. Shimoda, O. Zhou, Liqid-phase fabrication of patterned carbon nanotube field emission cathode. Appl. Phys. Lett. 84(19), 3738–3740 (2004)Google Scholar
  129. 129.
    E.P. Sheshin, A.S. Baturin, K.N. Nikolskiy, R.G. Tchosov, V.B. Sharov, Field emission cathodes based on milled carbon fibers. Appl. Surf. Sci. 251, 196–200 (2005)Google Scholar
  130. 130.
    A.N. Alimova, N.N. Chubin, P.J. Belobrov, V.V. Zhirnov, Electrophoreses of nanodiamond powder for cold cathode fabrication. Proc. IVMC 222–223 (1998)Google Scholar
  131. 131.
    A.S. Batyrin, D.A. Kyrnosov, K.N. Nikolskiy, E.P. Sheshin, R.G. Chesov, Way of production of the autoissue cathode. Stalemate. The Russian Federation No. 2225052 from 2002. Cl. H01j1/14Google Scholar
  132. 132.
    E.P. Sheshin, A.S. Baturin, K.N. Nikolskiy, R.G. Tchosov, in Field Emission Cathodes Based on Milled Carbon Fibers. Proceedings of IVESC, Beijing, China, pp. 114–116 (2004)Google Scholar
  133. 133.
    J.-W. Nam, J.H. Choi, J.-H. Han, J.-B. Yoo, C.-Y. Park, Enhanced Emission from Carbon Nanotube Paste After Firing (Techn Digest IVNC, Osaka, Japan, 2003), pp. 225–226Google Scholar
  134. 134.
    H. Ren, S.Z. Deng, J. Chen, J.C. She, N.S. Xu, Plasma Etching Treatment for Improving the Field Emission Properties of Carbon Nanotubes Composite Emitters (Techn Digest IVNC, Osaka, Japan, 2003), pp. 261–262Google Scholar
  135. 135.
    J.W. Nam, S.H. Cho, S.H. Choi, Y.C. Choi, J.S. Ha, J.H. Park, D.H. Choe, J.B. Yoo, Long Lifetime of Field Emitters Fabricated Using Carbon Nanotube Paste (Techn Digest of IVNC, Oxford, UK, 2005), pp. 292–293Google Scholar
  136. 136.
    L.-T.A. Cheng, D.H. Roach, Electron field emitter and composition related thereto. Stalemate. USA 2004/0017141. 2004 Yu CL. H01j19/06Google Scholar
  137. 137.
    A. Boda, Y. Jshida, K. Hakiai, T. Asano, Fabrication of Gated Carbon Black Field Electron Emitter Using Inkjet (Techn Digest of IVNC, Oxford, UK, 2005), pp. 42–43Google Scholar
  138. 138.
    B.V. Bondarenko, V.I. Makyha, E.P. Sheshin, Autoelectronic emitters with the developed working surface. Electron. Equip. (It is gray. 1: Elektronika Microwave Oven) 10, 44–47 (1984)Google Scholar
  139. 139.
    B.V. Bondarenko, V.I. Makyha, L. Rybakov Yu, V.B. Sharov, E.P. Sheshin, Vlyany roughnesses of a surface of autocathodes on their issue characteristics. Radio Eng. Elektronika 32(12), 2606–2610 (1987)Google Scholar
  140. 140.
    B.V. Bondarenko, V.I. Makyha, A. Rybakov Yu, E.P. Sheshin, Field Electronic Emission of Rod Graphite Cathodes. Physical Phenomena in Devices of Electronic and Laser Equipment (M.: MFTI, 1981), pp. 11–15Google Scholar
  141. 141.
    A.L. Syvorov, E.P. Sheshin, V.V. Protasenko and other, The microrough flat autoissue cathodes from graphite received in the radiftsionny way. ZhTF 66(7), 156–160 (1996)Google Scholar
  142. 142.
    A.G. Chakhovskoi, C.B. Hunt, Improved Image Uniformity in Light Sources with Carbon Field Emitters (Techn Digest Lith JVMC, NC, USA, 1998), pp. 190–191Google Scholar
  143. 143.
    A.S. Baturin, E.P. Sheshin, Field Emission Characteristics of Reticulated Vitreous Carbon (Tecchn Digest of IVNC, Guangzhou, China, 2000), pp. 42–43Google Scholar
  144. 144.
    C.E. Hunt, A.G. Chakhovskoi, Field emission cathode fabricated from porous carbon foam material. Patent WO 99/43870 of 2.09.99. Cl. C25B3/00. H01j1/30Google Scholar
  145. 145.
    P.G. Gabdyllin, S.N. Davydov, V.V. Korablev, A.E. Kravchik, A. Kykyshkina Yu, V.V. Sokolov, V.S. Travnikov, Cold emitter of electrons. Stalemate. Russian Federation No. 2249876 of 6.11.2003. Cl. H01j1/30Google Scholar
  146. 146.
    M. Leshukov Yu, E.P. Sheshin, Plasmachemical Processing of Field Emission Cathodes Made of Carbon Fibers Bundles (Techn Digest of IVNC, Guilin, China, 2006), pp. 333–334Google Scholar
  147. 147.
    A.S. Leychenko, M. Leshykov Yu, N.V. Lyparev, E.P. Sheshin, in Formation of the Emitting Surface of Autocathodes from Bunches Carbon вoлoкн the Crown Category. Sb. Tezisov of dokl. mezhdunarodny Conference “Carbon: Fundamental Problems of Science, Materials Science, Ekhnologiya”, Moscow, p. 115 (2006)Google Scholar
  148. 148.
    L.B. Loeb, Electrical Coronas (University of California Press, 1965), p. 760Google Scholar
  149. 149.
    R. Morrow, Theory of negative corona in oxygen. Phys. Rev. A. 32, 1799–1809 (1985)Google Scholar
  150. 150.
    A. Cao, X. Zhang, C. Xu, J. Liang, D. Wu, B. Wei, Thinning and diluting aligned carbon nanotube film for uniform field emission. Appl. Phys. A. 74, pp. 415–418 (2002)Google Scholar
  151. 151.
    V.V. Zhirnov, O.M. Kuttel, O. Gruning, A.N. Alimova, P.Y. Detkov, P.J. Belobrov, E. Mailadr-Schaller, L. Schlapbach, Characterization of field emission cathodes with different forms of diamond coatings. J. Vac. Sci. Thechnol. B. 17(2), 666–669 (1999)Google Scholar
  152. 152.
    V. Gilyaev Yu, N.J. Sinitsyn, G.V. Torgashov, S.G. Saveliev, Fundamental and applied directions of field emission electronics using nanicluster carbon materials. Appl. Surf. Sci. 215, 141–148 (2003)Google Scholar
  153. 153.
    Y. Choi, W.W. Lee, B.-H. Ryu, Application of Carbon Nanofiber Coated with Pt Nanoparticles to FED (Techn Digest of Euro Display, Moscow, 2007), pp. 318–320Google Scholar
  154. 154.
    R.B. Sharma, D.J. Late, D.S. Joag, A. Govindaraj Rao, CNR Field Emission Studies of Boron and Nitrogen Doped Carbon on Pointed and Flat Substrates (Techn Digest of IVNC, Oxford, UK, 2005), pp. 310–311Google Scholar
  155. 155.
    V.D. Yu, J.H. Zhang, X. Wang, X.M. Li, X.D. Gao, Characterization and field emission property of aligned porous carbon nanotube film by hydrogen-ion implantation. Appl. Phys. A. 81, 169–172 (2005)Google Scholar
  156. 156.
    A.C. Batyrin, K.N. Nikolskiy, A.I. Knazev, R.G. Chesov, E.P. Sheshin, Introduction of shchelochnozemelny metal in structure of graphite for the purpose of decrease in work of an exit. Mag. Tech. Fiziki 74(3), 62–64 (2004)Google Scholar
  157. 157.
    A.C. Batyrin, A.G. Borisov, V.S. Korsakov, L.A. Plavich, I. Tishin Yu, E.P. Sheshin, Way of drawing an issue covering on the cathode. The Stalemate of the Russian Federation No. 2177657. Cl. H01j1/14 of 22.01.2001Google Scholar
  158. 158.
    K.N. Nikolsky, A.S. Batyrin, V.S. Bormashov, E.P. Sheshin, D.V. Shyr, S. Zaginaychenko Yu, V.E. Myradan and other, Field Emission Researches Dopirovannykh of Carbon Nanotubes (Techn Didgest of Cont «Hydrogen Materials Science and Chemistry of Carbon Nanomaterials», Sudak-Crimea, Ukraine, 2003), pp. 824–825Google Scholar
  159. 159.
    P.V. Sherstnev, A.S. Baturin, V.S. Bormashov, K.N. Nikolskiy, E.P. Sheshin, Investigation of local work function of field emission of field emission cathode from carbon materials doped by Ba with the help of AFM/SEM/X-ray. Phys. Chem. Solids 62, 159–163 (2004)Google Scholar
  160. 160.
    A. Bobkov, E. Davidov, S. Zaitsev, S. Karpov, M.A. Kozodaev, I.N. Nikolaeva, M.O. Popov, E.N. Skorokhodov, A.L. Suvorov, N. Cheblukov Yu, J. Vac. Sci. Technol. B 19, 32 (2000)Google Scholar
  161. 161.
    V.S. Bormashov, A.S. Baturin, K.N. Nikolskiy, E.P. Sheshin, Tech Digest of 15th IVMC and 48th IFES, vol. 2, no. 2, 64 (2002)Google Scholar
  162. 162.
    R.G. Forbes, J. Vac. Sci. Technol. B 17, 534 (1999)Google Scholar
  163. 163.
    R.G. Forbes, J. Vac. Sci. Technol. B 17, 526 (1999)Google Scholar
  164. 164.
    E.L. Murphy, R.H. Good, Phys. Rev. 102, 1464 (1956)Google Scholar
  165. 165.
    J.-M. Bonard, J.-P. Salvetat, T. Stockli, L. Forro, A. Chatelain, Appl. Phys. Lett. 69, 245 (1999) Google Scholar
  166. 166.
    W. Zhu, G. Koshanski, J. Sungho, C. Bower, O. Zhou, Appl. Phys. Lett. 75, 873 (1999)Google Scholar
  167. 167.
    V.S. Bormashov, A.S. Baturin, K.N. Nikolsky, E.P. Sheshin, Appl. Surf. Sci. 215, 178–184 (2003)Google Scholar
  168. 168.
    V.S. Bormashov, A.S. Batyrin, Materials of the international conference «Educational, scientific and engineering applications in the environment LabVIEW and technologies National Instruments» Moscow, p. 130 (2003)Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Saint Petersburg State UniversitySt. PetersburgRussia
  2. 2.MIPTDolgoprudny, Moscow regionRussia

Personalised recommendations