Advertisement

Field Emission Cathodes

  • Nikolay EgorovEmail author
  • Evgeny Sheshin
Chapter
Part of the Springer Series in Advanced Microelectronics book series (MICROELECTR., volume 60)

Abstract

In the beginning of the chapter the main problems and obstacles to widespread practical use of field emission cathodes are considered. Then it proceeds to discuss the features, advantages and disadvantages of various types of field cathodes known as of today.

Keywords

Field Emission Emission Current Anode Voltage Electron Work Function Control Electrode 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    E.E. Martin, J.K. Trolan, W.P. Dyke, Stable, high density field emissiom cold cathode. J. Appl. Phys. 31(5), 782–789 (1960)ADSCrossRefGoogle Scholar
  2. 2.
    W.P. Dyke, F.M. Charbonnier, R.W. Strayer, R. Floyd, J.P. Barbour, J.K. Trolan, Electrical stability and lie of the heated field emission cathode. J. Appl. Phys. 31(5), 790–805 (1960)ADSCrossRefGoogle Scholar
  3. 3.
    M.I. Elinson, G.F. Vasiliev, Way of reduction of ionic bombing, emitting electrons metal more sharply. A. S. USSR. No. 107388 of Cl.H01j 1/30 of 24.09.55Google Scholar
  4. 4.
    W.P. Dyke, Progress in electron emission at high fields. Proc. IRE 43(2), 162–167 (1955)CrossRefGoogle Scholar
  5. 5.
    M.I. Elinson, G.A. Kydinceva, Field emission cathodes on the basis of metal similar refractory connections. Radio Technician Electron. 7(9), 1511 (1962)Google Scholar
  6. 6.
    M.I. Elinson, G.V. Vasiliv, Field emission. GIFML (1958)Google Scholar
  7. 7.
    V.V. Chesnokov, Electron lamps with field emission cathodes. A. S. USSR. No. 314454 of 27.12.65Google Scholar
  8. 8.
    V.V. Chesnokov, V.M. Gayles, N.A. Morozova, Receiving-amplifying lamp with the cold field emission cathode. A.S. USSR. No. 339986Google Scholar
  9. 9.
    R. Fisher, H. Noyman, Field emission of semiconductors. Science (1971)Google Scholar
  10. 10.
    N.V. Egorov, Experimental dissertation research of field emission of silicon. Abstract of the thesis. I. LIE. Leningrad (1973)Google Scholar
  11. 11.
    E.P. Sheshin, Structure of a surface and field emission properties of carbon materials. M. MFTI. Fizmatgiz (2001)Google Scholar
  12. 12.
    D. Alpert, R.S. Burits, Ultra-vacuum. D. limiting factors on the attainment of very low pressures. J. Appl. Phys. 25(2), 202 (1954)ADSCrossRefGoogle Scholar
  13. 13.
    I.L. Sokolskay, Surface migration of atoms of tungsten in electric field. ZhTF 26(6), 1177 (1956)Google Scholar
  14. 14.
    G.N. Fursey, G.K. Karcev, The stability of field emission issue and migratory processes preparing development of a vacuum arch. ZhTF 40(2), 310 (1970)Google Scholar
  15. 15.
    P. Staib, K. Ulmer, Maintenance in vacuum of clean metallic surfaces. Phys. Stat. Solidi. 32(2), K163–K165 (1969)ADSCrossRefGoogle Scholar
  16. 16.
    G. Krause, D. Stark, Field emission of chromium, cobalt and hafnium (zur feldemission top cjarom, ilobalt und hafnium), Z. Phys. 201(1), 69 (1967)Google Scholar
  17. 17.
    A.P. Komar, U.N. Talanin, Pictures of field emission of crystals of carbides of tungsten and molybdenum. Jnt. AS Suur. Ser. fiz. 22(5), 580 (1958)Google Scholar
  18. 18.
    M.I. Elinson, G.F. Vasiliev, Research of field emission of a geksaborid of lanthanum. Radio Technician Electron. 3(7), 945 (1958)Google Scholar
  19. 19.
    M.I. Elinson, G.F. Vasiliev, Experemental research of field electronic issue of a geksaborid of lanthanum. Radio Technician Electron. Eng. 2(3), 348 (1957)Google Scholar
  20. 20.
    YuV Zybenko, I.L. Sokolskay, Field electronic emission of carbonized and thoriated carbonized tungsten. Radio Technician Electron. Eng. 5(8), 1327 (1960)Google Scholar
  21. 21.
    G.A. Kydinceva, Application of refractory connections as field electronic cathodes. Question Radionics S1 Electron. 3, 75 (1961)Google Scholar
  22. 22.
    V. Espe, Technology of electrovacuum materials, Energy 2 (1968)Google Scholar
  23. 23.
    E.I. Davydova, F.D. Kirichenko,V.A. Shishkin, Stability of field emission tip cathodes passivated by films of transitional metals. ZhTF 49(11), 2344–2348 (1979)Google Scholar
  24. 24.
    M.I. Elinson, A.G. Gdan, Field electronic emitter. A. S. USSR. №118913. Kl. HOlj 1/30 of 28.02.58Google Scholar
  25. 25.
    M.S. Mousa, Characteristics of tungsten substrate with Al2O3 coatings under UHV conditions. Vacuum 38(8–10), 835–838 (1988)Google Scholar
  26. 26.
    M.S. Mousa, Field electron emission studies on zinc oxide coated tungsten microemitters. Surf. Sci. 266, 110–120 (1992)Google Scholar
  27. 27.
    V.V. Zhirnov, W.B. Choi, I.I. Cuomo, I.I. Hren, Diamond coated Si and Mo field emitters: diamond thickness effect. Appl. Surf. Sci. 94/95, 123–128 (1996)Google Scholar
  28. 28.
    W.B. Choi, I.I. Cuomo, V.V. Zhirnov others, Field emission from silicon and molybdenum tips coated with diamond powder by dielectrophoresis. Appl. Phys. Lett. 68(5), 720–722 (1996)Google Scholar
  29. 29.
    A.V. Crewe, Electron gun using a field emission source. Rev. Sci. Inst. 39(4), 576 (1968)Google Scholar
  30. 30.
    N. Shogo, K. Tsukasa, Remolding of tungsten field emitter. Jap. J. Appl. Phys. 11(4), 604–605 (1972)Google Scholar
  31. 31.
    I.W. Wiggins, I.A. Zubin, M. Beer, High-resolution scanning transmission electron microscope at Ions Hopkins. Rev. Sci. Instrum. 50(4), 403–410 (1979)Google Scholar
  32. 32.
    G.N. Fursey, S.N. Shakirova, To a question of possibility of localization of an field emission in small space angles. ZhTF 33(6), 1125 (1966)Google Scholar
  33. 33.
    L.W. Swanson, Comparative study of the zincroniated and built-up W. thermal-field cathode. J. Vac. Sci. Tech. 12(6), 1228 (1975)Google Scholar
  34. 34.
    T.A. Baker, M.M. Balsiger, K.T. Considine, H.E. Litsjo, Electron-beam tube including a thermonic-field emission cathode for a scanning electron microscope. Pat. №3809899 (USA)Google Scholar
  35. 35.
    S. Hosoki, S. Yomamoto, H. Todokoro others, Field emission cathode and method of fabricating the same. Pat. USA. №4379250. CL. 313/336 (HOl l/16) of 5.04.1983Google Scholar
  36. 36.
    E.I. Davydova, A.D. Karpenko, V.A. Shishkin, B.I. Pab, A.c. №439028 (USSR). Way of production of field emission cathodes. 1974. No. 29Google Scholar
  37. 37.
    G.A. Kudintseva, V.P. Savchenko, B.I. Pab, A.c. №424254 (USSR). Way of production of needle field emitters. 1974 No. 14Google Scholar
  38. 38.
    E.A. Litvin, A.A. Starobinec, Limit currents of field emission. ZhTF 47(10), 2032 (1977)Google Scholar
  39. 39.
    A.D. Karpenko, U.S. Lobachev, V.A. Shishkin, About limit current of the one tip field emission cathode. Radio Technician Electron. Eng. 21(1), 207 (1976)Google Scholar
  40. 40.
    M.I. Elinson, V.A. Gorkov, A.A. Yaciopolskay , G.A. Kydinceva, Research of pulse field emission at the high density of currents. Radio Technician Electron. Eng. 5(8), 1318 (1960)Google Scholar
  41. 41.
    J.P. Barbour, W.W. Dolan, J.K. Trolan, E.E. Martin, W.P. Dake, Space-charge effects in field emission. Phys. Rev. 22(1), 53 (1953)Google Scholar
  42. 42.
    T.J. Lewis, Theoretical interpretation of a field emission periments. Phys. Rev. 101(6), 1694 (1956)Google Scholar
  43. 43.
    E.G. Shirokov, Field emission of system tungsten tips. Radio Technician Electron. T9(7), p1320 (1964)Google Scholar
  44. 44.
    A.A. Golov, G.N. Fursey, I.D. Ventova others, Field emission cathode type “comb”. A.S. USSR. No. 342241. C. HOlj 1/30 of 14.06.72Google Scholar
  45. 45.
    V.M. Gykov, D.M. Paytov, S.A. Polegaev, other, Way of production of the Many tip field emission cathode. A.S. USSR. No. 1001225. Cl.HOlj 9/02 of 28.02.83Google Scholar
  46. 46.
    P. Genequand, Pat. Switzerland. №603005. C. HOlj 1/30 of 15.08.78Google Scholar
  47. 47.
    I.D. Ventova, L.E. Valuyeva, B.I. Pab, A. S. №416784 (USSR), Way of production of many tip field emission cathode. 1974, No. 7Google Scholar
  48. 48.
    V.G. Pavlov, A.S. Rabinovich, V.L. Savchenko, V.N. Shrednik, B.I. Pab, A. S. №493834 (USSR), Way of blunting tip cathode. 1975. No. 44Google Scholar
  49. 49.
    B.V. Okylov, I.Z. Gleyzer, L.T. Dronova, Manufacturing techniques of multiemitter cold cathodes. PTE, (6), 124–125 (1973)Google Scholar
  50. 50.
    J. Shelton, Field effect electron emitter. Pat. USA. №3745402. Cl. 313/309 (HOlj 1/30) of 10.07.1973Google Scholar
  51. 51.
    I. Shelton, Field effect electron gun having at least a million emitting fibers per square centimeter. Pat. USA. №3783325. C. 313/336 (HOlj 1/02) of 1.01.1974Google Scholar
  52. 52.
    I. Shelton, Edge effect elimination and beam forming designs for field emitting arrays. Pat. USA. №434181. Cl. 313/309 (HOlj 1/02) of 17.08.82Google Scholar
  53. 53.
    W.L. Less, Method and apparatus for liming-emission current. Pat. USA. №3671798. Cl. 313/336(HOlj 1/16) of 20.06.1972Google Scholar
  54. 54.
    K. Inoue, K. Bersui, T. Nakatani, O. Toyoda, Field emission cathode and process for producing the same. Pat. USA 2003/0184203 Kl. 313/309 (Hoij 9/04 of 2.10.2003)Google Scholar
  55. 55.
    V.F. Bibik, P.G. Borzak, A.F. Yshenko, Photofield cathode. A. S. USSR. №584667. Cl. Ho1j 9/09Google Scholar
  56. 56.
    R.N. Thomas, R.A. Wickstrom, D.K. Schroder, H.C. Nathanson, Fabrication and some applications of large-area silicon field emission arrays. Solid State Electron. 17, 155 (1975)Google Scholar
  57. 57.
    A.I. Klimin, A.A. Mostovsky, I.A. Pystylnik, D.A. Sakseev, L.P. Titova, N.M. Eden, Field emission research one and many tips silicon catode. Izv. Acad. Sci. USSR. Ser. fiz. 40(8), 1575 (1976)Google Scholar
  58. 58.
    V.F. Bibik, P.G. Borzak, A.F. Ycenko, Germanium and silicon field emission photo cells. Ukr. Phys. Zh. 13(5), 868 (1968)Google Scholar
  59. 59.
    X.S. Natanson, Y. Goldberg, Matrixes tips for field emission systems.:fizik of thin films, 8 (M.:mir, 1978), p. 264Google Scholar
  60. 60.
    D.N. Schroder, R.N. Thomas, J. Vine, H.C. Hathanson, The semiconductor field emission photocathodes. JEEE Trans. Electr. Devices 21(12), 785–798 (1974)Google Scholar
  61. 61.
    R.N. Thomas, H.C. Hathanson, Photosensitive Field emission from silicon point arrays. Appl. Phys. Lett. 21(8), 384–389 (1972)Google Scholar
  62. 62.
    R.Z. Bahtizin, E.K. Ratnikova, V.P. Petrakov, Way of production of the many tips field emission cathodes. A. S.. USSR No. 1215536. Cl. HOij 1/30Google Scholar
  63. 63.
    R.Z. Bahtizin, E.K. Ratnikova, Edektronny equipment. Ser. 2. Semicond. Device 7(173), 124 (1984)Google Scholar
  64. 64.
    R.Z. Bahtizin, E.K. Ratnikova, G.G. Kylishova, A.F. Yshenko, V.P. Petrakov, Production germanium many tips structures and research of their emission characteristics. News Acad. Sci. USSR. 49(9), 1738–1740 (1985)Google Scholar
  65. 65.
    R.Z. Bakhtizin, Field emission from semiconductor point arrays. I. De Physique (Colloque P. 6). 49(11), 155–160 (1988)Google Scholar
  66. 66.
    P.G. Borzak, E.I. Givargizov,G.G. Kylishova, I.E. Lifshic, A.N. Stepanova, A.F. Yshenko, News of academy of sciences of the USSR. Ser. Fiz. 40(9), 1571 (1976)Google Scholar
  67. 67.
    C.A. Spindt, K.R. Shoulders, L.N. Heynick, Field emission cathode structures and devices utilizing such structures. Pat. USA. №3755704. Cl. 313/309 (Hoij 1/16 of 28.08.1973)Google Scholar
  68. 68.
    C.A. Spindt, K.R. Shoulders, L.N. Heynick, Field emission cathode structures and devices utilizing such structures, and methods of producing such structures. Pat. USA. №3789471. Cl. 29/25.17 (Hoij 9/02 of 5.02.74)Google Scholar
  69. 69.
    C.A. Spindt, L.N. Heynick, Method of producing field ionizer and field emission cathode structures. Pat. USA, №3812559 Kl. 29/25.18 (Hoij 9/02 of 28.05.74)Google Scholar
  70. 70.
    C.A. Spindt, I. Brodie, L. Humphrey, E.R. Westerberg, Physical properties of thin-film field emission cathode with molybdenum cones. J. Appl. Phys. 47(12), 5248–5263 (1976)ADSCrossRefGoogle Scholar
  71. 71.
    C.A. Spindt, in Field emission arrays for high-current density, and high frequency operation. Teth. Digest of 18th. IVNS. (Oxford, UK, 2005), p. 20–21Google Scholar
  72. 72.
    I.M. McCaulay, C.A. Spindt, C.E. Holland, I. Brodie, Field emission cathode array coated with electron work function reducing material, and method. Pat. USA. №5089292. Kl. 427/78. (BO5D 5/12 of 18.02.1992)Google Scholar
  73. 73.
    M.S. Mousa, C.E. Holland, J. Brodie, C.A. Spindt, The effect of hydrogen and acetylene processing on microfabricated field emitter arrays. Appl. Surf. Sci. 67, 218–221 (1993)Google Scholar
  74. 74.
    M.S. Mousa, A study of the effect of hydrogen plasma on microfabricated field- emitter arrays. Vacuum 45(2/3), 235–239 (1994)Google Scholar
  75. 75.
    H. Li, M.Q. Ding, J.J. Feng, X. Li, G. Bai, F. Zhang, in Fabrications and characterization of spindt-type field emission arrays coated with ZrC thin films. Thech. Digest IVNC. (Oxford, UK, 2005), p. 237–238Google Scholar
  76. 76.
    C.C. Chang, Field emission display cathode plate with an internal via and the fabrication method for the cathode plate. Pat/ USA 2002/0105261. Cl. 313/495 H01j 63/04 of 8.08.2002Google Scholar
  77. 77.
    L. Dvorson, A.J. Akinwande, Double-gated Spindt emitters with stacked focusing electrode. J. Vac. Sci. Tech. B 20(1), 53–59 (2002)Google Scholar
  78. 78.
    L.Y. Chen, A.I. Akinwande, in Negative resistance region in double-gated silicon field emission arrays. Tech. Digest JVNC. (Oxford, UK, 2002), p. 15–16Google Scholar
  79. 79.
    Y. Gotoh, M. Nagao, D. Nozaki others, Electron emission properties of Spindt-tipe platinum field emission cathodes. J. Appl. Phys. 95(3), 1537–1549 (2004)Google Scholar
  80. 80.
    M.Q. Ding, X. Li, G. Bai other, Spindt-type cathodes with aligned carbon nanotube emitters. JVESC 117–119 (2004)Google Scholar
  81. 81.
    L.R. Baylor, D.H. Lowndes, M.L. Simpson others, J. Vac. Sci. Technol. B. 20, 2646 (2002)Google Scholar
  82. 82.
    X. Yang, Simpson M.L., Rondolph S.J others, Integrated tungsten nanofiber field emission cathodes selectively grown by nanoscale electron beam-induced deposition. Appl. Phys. Let. 86, 183106 (2005)Google Scholar
  83. 83.
    A. Jankowski, J.P. Hayes, Process system and method for fabricating field emission cathode. U.S. patent №5746634 of 5.05.1998Google Scholar
  84. 84.
    A. Jankowski, J. Hayes, J. Morse, J. Ferreira, Large area deposition of field emission cathodes for flat panel displays. Thin Solid Films 355356, 194–198 (1999)Google Scholar
  85. 85.
    Y-F. Bai, S. Ren, S.Z. Deng, J. Chen, N-S. Xu, in Preparation of ZnO nanowires and there field emission properties. Tech. Digest of JVNC. (Oxford, UK, 2005), p. 178–179Google Scholar
  86. 86.
    C.Y. Li, X. Liu, J. Chen, S.Z. Deng, N.S. Xu, S. Yang, in Uniform field emission from CuO nanowires prepared by thermal oxidation method. Tech. Digest JVNC. (Oxford, UK, 2005), p. 213–214Google Scholar
  87. 87.
    P. Feng, X.Q. Fu, S.Q. Li, Y.G. Wang, T.H. Wang, Stable electron field emission from triangular-shaped ZnO nanoplate arrays with low local heating effect//Nanotechnology.2007.V.18.165704Google Scholar
  88. 88.
    A.J. Pedzaza, J.D. Fowlkes, D.H. Lowndes. Appl. Phys. Lett. 77, 3018 (2000)Google Scholar
  89. 89.
    A.V. Karabutov, V.D. Frolov, E.N. Loubnin, A.V. Simakin, G.A. Stapheev. Appl. Phys. A 76, 413 (2003)Google Scholar
  90. 90.
    V. Zorba, P. Tzanetakis, C. Fatakis others, Silicon electron emitters fabricated by ultraviolet laser pulses. Appl. Phys. Lett. 88(08), 103 (2006)Google Scholar
  91. 91.
    Zorba V., I. Alexandrou, I. Zergioti others, Thin Solid Films. 453454, 492 (2004)Google Scholar
  92. 92.
    V.S. Fomenko, Emission properties of materials. Naukova Thought, Kiev (1981)Google Scholar
  93. 93.
    I.N. Slivkov, Electrical insulation and the blunting in vacuum. Atomizdat (1972)Google Scholar
  94. 94.
    W.D. Dyke, Field emission, a newly practical electron source. IRE Trans. Mil. Electron. MIZ 4(1), 38 (1960)Google Scholar
  95. 95.
    E.G. Shirokov, Field emission cathode. C.S. №180712. in Opening, Inventions, Industrial Samples, Trademarks, 8, 52 (1966)Google Scholar
  96. 96.
    E.G. Shirokov, Technique of preparation and control emission surface of a tungsten edge of a disk-shaped form. Изв. Acad. Sci. USSR Ser. Tekh. Nauk. 6(2), 45 (1965)Google Scholar
  97. 97.
    B.V. Bondarenko, V.I. Makyha, The field emission cathode from steel edges. PTE (4), 235–236 (1965)Google Scholar
  98. 98.
    B.V. Bondarenko, V.I. Makyha, A.S. Gaydarov, Research field electronic edge of emitters of a disk-shaped form. Radio Eng. Electron. 17(12), 2634–2637 (1972)Google Scholar
  99. 99.
    V.I. Mahov, N.A. Dugev, A.I. in Kozlov, Cathodic Knot With Silicon Matrix Field Emission Cathodes. The xx vsesoyuzn. konf. on emission electronics: Tez.dokl. Kiyev, (1987) p. 232Google Scholar
  100. 100.
    A.A. Vasenkov, N.A. Dughev, V.I. Mahov, Low-voltage silicon matrix field 1 emission cathodes. Electron. Indus. (8), 48–49 (1987)Google Scholar
  101. 101.
    N.A. Dughev, A.I. Kozlov, V.I. Mahov, V.M. Serovayskiy, Speed of operation microelectronic triode structures with field emission cathodes. Microelectronics 19(5), 478–485 (1990)Google Scholar
  102. 102.
    V.I. Volosov, V.N. Lazarev, V.E. Teraev, About some features of field emission of cylindrical cathodes. ZhTF 40(4), 855 (1970)Google Scholar
  103. 103.
    V.A. Kyznetsov,A.N. Kyrochkin, Field e emitter. A. S. USSR №1078492. Cl. H01j 1/30, of 07.03.84Google Scholar
  104. 104.
    V.V. Chesnov, Electronic equipment. Series. (4), 3 (1968)Google Scholar
  105. 105.
    R.L. Akopyn, B.V. Bondarenko, V.I. Makyha, Radio Technician Electron. 16(11), 2236 (1971)Google Scholar
  106. 106.
    B.V. Bondarenko, R.L. Akopyn, Calculation of emission characteristics of film field emission cathodes. Radio Technician Electron. Eng. 17(5), 1059 (1972)Google Scholar
  107. 107.
    B.V. Bondarenko, Ways of increase of stability of emission and life of field emission cathodes. Electronic equipment. Series 1(6), 74–82 (1973)Google Scholar
  108. 108.
    B.V. Bondarenko, V.I. Makyha, About durability of the film emission cathode from chrome. Radio Technician Electron. Engineer. XVII(8), 1683–1686 (1972)Google Scholar
  109. 109.
    E.A. Gulbranson, K. Andern, J. Electrochem. Soc. 99, 402 (1959)Google Scholar
  110. 110.
    B.V. Bondarenko, V.I. Makyha, A.C. Gaydarov, The film emission cathode from the titan. Radio Technician Electron. 18(10), 2212 (1973)Google Scholar
  111. 111.
    B.V. Bondarenko, L.A. Kirichenko other, Research of field emission foil and films and the mechanical durability of microinhomogeneities on their surface. Summary of reports of All-Union conference on issue electronics. Makhachkala (1976)Google Scholar
  112. 112.
    B.V. Bondarenko, L.A. Kirichenko, N.D. Konovalov, Field emission thin foil refractory metals. Theses of reports of the All-Union symposium on not heated cathodes. Tomsk (1980)Google Scholar
  113. 113.
    B.V. Bondarenko, V.I. Makyha, A.C. Gaydarov, Research of pulse field electronic emission of film cathodes from chrome. Radio Eng. Elektronika 17(8), 1771–1772 (1972)Google Scholar
  114. 114.
    V.V. Chesnokov, Ways of production of field emission film electrode system. A. S. USSR No. 174727. Cl. H01j/30, of 08.07.64Google Scholar
  115. 115.
    N.A. Dughev, A.I. Kozlov, A.A. Kadnikov, V.I. Mahov, I.V. Panaev, Influence of geometrical parameters of silicon film field emission cathodes on their emission characteristics. Radio Technician Electron. (11), 2385–2389 (1990)Google Scholar
  116. 116.
    L.D. Karpov, Field-effect emitter device. European patent №0681311. Cl. H01j/30, of 08.11.95Google Scholar
  117. 117.
    L.D. Karpov, Edge emitter display device. Pat. USA. №5965971. Cl. 313/309 (H0Ij 01/02), of 12.10.1999Google Scholar
  118. 118.
    L.D. Karpov, Edge emitter with secondary emission display. Pat. USA. № 6023126. Cl. 313/310(H01j 1/05, of 8.02.2000Google Scholar
  119. 119.
    S.A. Gavrilov, E.A. Ilichev, E.A. Poltorackiy, N.V. Syetin other. The lateral emitter as basic Element of integrated emission electronics. Lett. ZhTF 30(11), 48–53 (2004)Google Scholar
  120. 120.
    S.A. Gavrilov, N.N. Dzbanovsky, V.V. Dvorkin et al., in Proceedings of 11th International Symposium, Nanostructures: Physics and Technology, p. 234–236, St. Petersburg, Russia. 23–28 June 2003Google Scholar
  121. 121.
    S.A. Gavrilov, N.N. Dzbanovsky, V.V. Dvorkin et al. in Abstract International Conference «Micro-and nanoelectronics-2003», p. 01–27, Moscow-Zvenigorod, Russia, 6–10 October 2003Google Scholar
  122. 122.
    S.A. Gavrilov, E.A. Ilichev, E.A. Poltorackiy, N.V. Syetin, Emitters from carbon nanotubes for planar emission vacuum micro and a nanoelectronics. Lett. ZhTF 30(14), 75–81 (2004)Google Scholar
  123. 123.
    Givargizov E.I. Growth of threadlike and lamellar crystals from steam. Science, 304c (1977)Google Scholar
  124. 124.
    G.V. Bereghkova, Threadlike crystals. M.: Science, 160c (1969)Google Scholar
  125. 125.
    S.A. Ammer, V.S. Postnikov, Threadlike crystals (Polytechnic University, Voronezh, 1974), p. 284cGoogle Scholar
  126. 126.
    V.G. Syrkin, Gas-phase metalliztion through carbonyls. Metallurgy, 264c (1985)Google Scholar
  127. 127.
    V.G. Syrkin., Carbonyls of metals. Khimiya, 200c (1983)Google Scholar
  128. 128.
    B.G. Gribov, G.A. Domrachev, B.V. Ghyk other. Sedimentation of films and coverings decomposition of metalloorganic connections of M of a.:nauk, (1981), p. 322Google Scholar
  129. 129.
    A.A. Nosov, T.A. Poshehonova, P.V. Poshehonov, About the education mechanism the filiform of monocrystals on electrodes of electronic devices. RVE, 18(9), 199–1999 (1973)Google Scholar
  130. 130.
    L.V. Poshehonov, D.K. Nosova, A.A. Nosov, in Growth of Filiform Crystals of an Oxide of Chrome. Materials of the All-Union Conference “Filiform Crystals for New Equipment”. Voronezh VPK, 73 (1979)Google Scholar
  131. 131.
    R. Gomer, Field emission from mercury whiskers. J. Chem. Phys. 28(3), 457–469 (1958)Google Scholar
  132. 132.
    A.A. Nosov, T.A. Poshehonova, P.V. Poshehonova, Investigation of conditions of destruction of filiform monocrystals in high-voltage vacuum devices at influence strong electric fields. 15(10), 2156–2161 (1970)Google Scholar
  133. 133.
    P.V. Poshehonov, V.M. Gennadiev, N.P. Ovsynnikov, Methods of a increasing of efficiency of training of field emission cathodes on the basis of threadlike monocrystals. RIE 21(12), 2568–2573 (1976)Google Scholar
  134. 134.
    P.V. Poshehonov, N.P. Ovsannikov other, Investigation of process of production of effective field emission cathodes when forming many tips system of monocrystals of gold out of the working volume of the device. In kN.:tex. rep. An all-Union seminar on not heated cathodes, Tomsk, p. 33 (1977)Google Scholar
  135. 135.
    P.V. Poshehonov, N.P. Ovsannikov, V.M. Genadiev, N.N. Chadaev, Influence of contact with the gas environment on emission ability of the field emission cathode formed by system of filiform crystals. Vacuum and gas-discharge electronics, Ryazan, RRTI, p. 73–77 (1981)Google Scholar
  136. 136.
    E.I. Givargizov, G.A. Gydingeva other, Many tips field emission cathodes from a single-crystal geksaborid of lanthanum. In kN.:tes.rep. Hush Vsesoyuznyu Konferentsii on emission electronics, M.:nauka, p. 234 (1981)Google Scholar
  137. 137.
    N.G. Borsak, E.I. Givargizov other, Emission properties the many tips of field emission cathodes six Gei-x from the made crystallization from a steam phase. Izv. Acad. Sci. USSR 40(7), 1571–1580 (1976)Google Scholar
  138. 138.
    F. Okuyama, Vapor-grown tungsten whiskers induced by vacuum discharges. J. Appl. Phys. 45(10), 4239–4241 (1974)Google Scholar
  139. 139.
    H.B. Linden, H.D. Beckey, F. Okuyama, On the mechanism of cathodio growth of tungsten needles by decomposition of hexacarbonyl tungsten under high field conditions. Appl. Phys. 22(1), 83–87 (1980)ADSCrossRefGoogle Scholar
  140. 140.
    F. Okuyama, T. Shibata, I. Yasuda, tungsten needle produced by decomposition of hexacarbonyl tungsten. Appl. Phys. Lett. 35(1), 6–7 (1979)ADSCrossRefGoogle Scholar
  141. 141.
    F. Okuyama, Growth of metallio w wiskers crystals incorporated with field electron emission. Appl. Phys. Iott. 36(1), 46–47 (1980)Google Scholar
  142. 142.
    F. Okuyama, Cathodio needle growth from Mo (Co)6 and Cr(Co)6 vapors at lower electric fields. Appl. Phys. 22(1), 39–46 (1980)Google Scholar
  143. 143.
    F. Okuyama, Cathodio needle growth from Mo(Co)6 vapors at higher electric fields. Appl. Phys. 27(1), 57–64 (1982)Google Scholar
  144. 144.
    F. Okuyama, Growth of Cr needle crystals induced by field electron emission. J. Appl. Phys. 22(2), 245–251 (1984)Google Scholar
  145. 145.
    A.A. Nosov, N.P. Ovsannikov, G.N. Shyppe, Direct electron microscopy supervision of dynamics of formation of the many tips field emission cathode on the basis of tungsten. ZhTF 54(2), 372–374 (1984)Google Scholar
  146. 146.
    V.G. Syrkin, Carbonyl metals. M. Metalurgizdat, p. 255 (1978)Google Scholar
  147. 147.
    V.E. Ivanov other, Crystallization the refractory of metals from a gas phase. M. Atomizdat of 1974, p. 212Google Scholar
  148. 148.
    T.A. Razyvaev other, Metalloorganic connections in electronics. M. Sci. 479 (1972)Google Scholar
  149. 149.
    V. Barton, N. Rabrera, F. Frank, Elementary processes of growth of crystals (1959)Google Scholar
  150. 150.
    R. Vagner, Growth of crystals on the PKR mechanism. Monokristalny fibers and materials reinforced by them. M.:Mir, pp. 42–57 (1973)Google Scholar
  151. 151.
    M.M. Pogorelskiy. Lett, ZhTF 4, 1068 (1978)Google Scholar
  152. 152.
    A.A. Nosov, D.I. Nosova, N.P. Ovsannikov, N.N. Chadaev, Limit density of field emission current of tip emitter of submicron dimension which are grown up in various ways. Radio Technician Electron. XXXI(7), 1466–1467 (1986)Google Scholar
  153. 153.
    N.I. Tatarenko, V.F. Kravchenko. Field emission nanostructures and devices on their basis. M. Fizmatgiz (2006)Google Scholar
  154. 154.
    V.A. Labynov, B.A. Sokol, N.I. Tatarenko, The electrovacuum device. A. S. USSR No. 713386. H01j 21/10 of 05.10.1979Google Scholar
  155. 155.
    N.I. Tatarenko, in Development of an Integrated Technique for Fabricating Thin-Film Field Emission Microelectronic Devices. The Third International scientific and technical conference: Modern technology of hybrid integrated chips, including elements of superconductor electronics. The Belorussky state univrsitt informatics and radio electronics. Naroch, Conference Materials, pp. 159–160 (1994)Google Scholar
  156. 156.
    N.I. Tatarenko, Way production of the thin-film vacuum microdevice. Patent USSR No. 1729243. HO1j 21/10 of 22.12.1991Google Scholar
  157. 157.
    F. Keller, M.S. Hunter, D.L. Robinson, Structural features of oxide coatings on aluminum. J. Electrochem. Soc. 100(9), 411–419 (1953)Google Scholar
  158. 158.
    J.P. OSullivan, G.C. Wood, The morphology and mechanism of formation of porous anodic films on aluminium. Proc. R. Soc. London A 317, 511–643 (1970)Google Scholar
  159. 159.
    G.E. Thompson, Porous anodic alumina: fabrication, characterization and applications. Thin Solid Films 297, 192–201 (1997)Google Scholar
  160. 160.
    A.P. Li, F. Mueller, A. Birner, K. Nielsh, U. Gosele, Hexagonal pore arrays with a 50–420 nm interpore distance formed by self-organization in anodic alumina. J. Appl. Phys. 84(11), 6023-6026 (1998)Google Scholar
  161. 161.
    H. Masuda, M. Nakao, T. Tamamura, H. Asoh, Fabrication of ordered nanostructure based on anodic porous alumina. The SPIE Conference on Micromachining and Microfabrication Process Technology IV.-SPIE Vol.3511,1998.-P.74–81Google Scholar
  162. 162.
    A.P. Li, F. Mueller, A. Birner, K. Nielsh, U. Gosele, Fabrication and mi-crostructuring of hexagonally ordered two-dimensional nanopore arrays in anodic alumina. Adv. Mater. 11(6), 483–487 (1999)Google Scholar
  163. 163.
    D. Crouse, Y.H. Lo, A.E. Miller, M. Crouse, Self-ordered pore structure of anodized aluminum on silicon and pattern transfer. Appl. Phys. Lett. 76(1), 49–51 (2000)Google Scholar
  164. 164.
    L. Ba, W.S. Li, Influence of anodizing conditions on the ordered pore formation in anodic alumina. J. Phys. D: Appl. Phys. 33, 2527–2531 (2000)Google Scholar
  165. 165.
    H. Assoh, K. Nishio, M. Nakao, T. Tamamura, H. Masuda, Conditions for fabrication of ideally ordered anodic porous alumina using pretextured Al. J. Electrochem. Soc. 148(4), B152-B156 (2001)Google Scholar
  166. 166.
    H. Masuda, M. Yotsuya, M. Asano, K. Nishio, M. Nakao, A. Yokoo, T. Tamamura, Self-repair of ordered pattern of nanometer dimensions based on self-compensation properties of anodic porous alumina. Appl. Phys. Lett. 78(6), 826–828 (2001)Google Scholar
  167. 167.
    C.Y. Liu, A. Datta, Y.L. Wang, Ordered anodic alumina nanochannels on focused-ion-beam-prepattened aluminum surfaces. Appl. Phys. Lett. 78(1), 120–122 (2001)Google Scholar
  168. 168.
    A. Cai, H. Zhang, H. Hua, Z. Zhang, Direct formation of self-assembled nanoporous aluminium oxide SiO2 and Si substrates. Nanotechnology 13, 627–630 (2002)Google Scholar
  169. 169.
    W.L. Xu, M.J. Zheng, S. Wu, W.Z. Shen, Effects of high temperature annealing on structural and optical properties of highly ordered porous alumina membranes. Appl. Phys. Lett. 85(19), 4364–4366 (2004)Google Scholar
  170. 170.
    N.V. Myung, J. Lim, J.P. Fleurial, M. Yun, W. West, D. Choi, Alumina nanotemplate fabrication on silicon substrate. Nanotechnology 15, 833–838 (2004)Google Scholar
  171. 171.
    N.I. Tatarenko, T.N. Andrushenko, Influence of conditions of anodizing on a microstructure of porous anode oxide films of aluminum. Prot. мeтaллoв (3), 499–501 (1984)Google Scholar
  172. 172.
    V.A. Labynov, N.I. Danilovich, A.C. Yksysov, V.E. Minaychev, Modern magnetron sputtering devices. Foreign Electron. Equipment 10, 3–62 (1982)Google Scholar
  173. 173.
    A.N. Govyadinov, S.A. Zakhvitcevich, in Field Emitter Arrays Based On Natural Seiforganized Porous Anodic Alumina. 10th International Vacuum Microelecronics Conference. Kyongju, Korea, pp. 735–737 (1997)Google Scholar
  174. 174.
    S. Zakhvitcevich, A. Govyadinov, Nanodimensional field emitter arrays based on porous anodic alumina. Phys., Chem. Appl. Nanos-truct. 297–300 (1997)Google Scholar
  175. 175.
    E.R. Holland, M.T. Harrison, M. Huang, P.R. Wilshaw, Nonlithographic technique for the production of large area high density gridded field emission sources. J. Vac. Sci. Technol. B 17(2), 580–582 (1999)Google Scholar
  176. 176.
    R.R. Greene, H.F. Gray, P-N junction controlled field emitter array cathode. United States Patent № 4 513 308, Int. Cl. H01L 29/06- H01L 29/34; H01L 27/12, Apr.23,1985Google Scholar
  177. 177.
    N.I. Tatarenko, A.A. Blyablin, N.V. Suetin, in Field Emission Nanostructures Formed By Self-Organization In Anodic Porous Alumina. 12th International Vacuum Microelectronics Conference.-Darmstadt, Germany, (1999), pp. 136–137Google Scholar
  178. 178.
    A.A. Blyablin, N.V. Suetin, D.B. Suyatin, E.S. Soldatov, N.I. Tatarenko, in STM u ATM Study of a Nanoscale Field Emission Array Formed by Self-Organization in Porous Anodic Aluminium Oxide. 2nd Europen Field Emission Workshop. Seqovia, Spain, (2000), pp. 176–177Google Scholar
  179. 179.
    N.I. Tatarenko, A.O. Vorobyev, Volt-ampere characteristics and differential parameters nanostructural field emission of microdevices. Electromag. Waves Electron. Sistemy 10(9), 68–74 (2005)Google Scholar
  180. 180.
    X.B. Yan, S. Xu, H.W. Liu, S.R. Yang, Field emission properties of polymer-converted carbon films by heat treatment. Solid State Commun. 133(2), 113–116 (2005)Google Scholar
  181. 181.
    J. Alexandrou, E. Kymakis, G.A.J. Amazatunga, Polymer-nanoyube composites: burying nanotubes improves their field emission properties. Appl. Phys. Lett. 80(8), 1435–1437 (2002)Google Scholar
  182. 182.
    J.Y. Shim, E.J. Chi, H.K. Baik, K.M. Song. Thin Solid Films 355356, 223 (1999)Google Scholar
  183. 183.
    H. Busta, D. Furst, A.T. Rakhimov, V.A. Samorodov, B.V. Seleznev, N.V. Suetin, A. Silzars. Appl. Phys. Lett. 78, 3418 (2001)Google Scholar
  184. 184.
    Y.W. Jin, J.E. Jung, Y.J. Park others, Triode-type field emission array using carbon nanotubes and a conducting polymer composite prepared by electrochemical polymerization. J. Appl. Phys. 92(2), 1065–1068 (2002)Google Scholar
  185. 185.
    Y. Liu, S. Fan, Enhancement of field emission properties of cyanoacrylate-carbon nanotube arrays by laser treatment. Nanotechnology 15, 1033–1037 (2004)Google Scholar
  186. 186.
    A.N. Ionov, E.O. Popov, V.M. Svetlichny, A.A. Pashkevich, Influence of a thin polymeric covering on field emission properties of flat metal cathodes. Lett. ZhTF 30(13), 77–82 (2004)Google Scholar
  187. 187.
    A.N. Ionov, E.O. Popov, V.M. Svetlichnyi, M.N. Nikolaeva, A.A. Pashkevich, Field emission from metal/polymer construction. Suf. Interface Anal. 39, 159–160 (2007)Google Scholar
  188. 188.
    A.N. Ionov, V.A. Zakrevskii, V.M. Svetlichnyi, R. Rentzsch. In Abstract of 10th International Symposium Nanostructure: Physic and Technology. (St.Petersburg, Russia, 2002), June 17–21.. p. 531Google Scholar
  189. 189.
    J. Yilgor, B.C. Johnson. Amer. Chem. Soc. Polym. Prepr. 27, 54 (1986)Google Scholar
  190. 190.
    J. Lowell, A.C. Rose-Innes, Adv. Phys. 29, 947 (1980)Google Scholar
  191. 191.
    H. Liu, Q. Zhao, Y. Li, F. Lu others, Field emission Properties of Large-Area Nanowires of organic Charge Transfer Complex. J. Am. Chem. Soc. 127, 1120–1121 (2005)Google Scholar
  192. 192.
    J. Kymissis, A.J. Akinwande, Field emission from a patterned organic conduction composite, Appl. Phys. Lett. 82(14), 2347–2349 (2003)Google Scholar
  193. 193.
    W. Eccleston, G.A.J. Amaratunga, J. Musa, Field emission cathode and field emission display. Pat.USA. №6853127 of 8.02.2005. Cl. H01j 1/62(313/495)Google Scholar
  194. 194.
    L. Tonks, A theory of liquid surface rupture by uniform electric field. Phys. Rev. 48, 562–568 (1935)Google Scholar
  195. 195.
    Y. Frenkel. On a theory of liquid surface instability in electric field in vacuum. Zh. Tekh. Fiz.6, 347–351 (1935)Google Scholar
  196. 196.
    K. Hata, R. Ohya, S. Hishigaki, H. Tamura, T. Noda, Stable field emission of electrons from liquid metal. Jpn. J. Appl. Phys. 26(6), L896–L898 (1987)ADSCrossRefGoogle Scholar
  197. 197.
    J.W. Beams, Field electron emission from liquid mercury, Phys. Rev. 44(15), 803–807 (1933)Google Scholar
  198. 198.
    J. Metterauer, Field emission from thin liquid metal films. Appl Surf. Sci. 9495, 161–170Google Scholar
  199. 199.
    L.M. Baskin, A.A. Kantonistov, G.N. Fursey, L.A. Shirochin, Peculiarities in explosive emission of liquid metals in microwave field. Rep. USSR Acad. Sci. (USSR) 296(6), 1352 (1987)Google Scholar
  200. 200.
    A.A. Kantonistov, I.N. Radchenko, G.N. Fursey, L.A. Shirochin, Field emission of liquid metals in alternating fields. Collogue de Physique, Colloque C8, supplement au Tome 50. C.8. P.203–207.1989Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Saint Petersburg State UniversitySt. PetersburgRussia
  2. 2.MIPTDolgoprudny, Moscow regionRussia

Personalised recommendations