Advertisement

Simulation of Structure and Parameters of Field Emission Cathodes

  • Nikolay EgorovEmail author
  • Evgeny Sheshin
Chapter
Part of the Springer Series in Advanced Microelectronics book series (MICROELECTR., volume 60)

Abstract

In this chapter, simulation of a surface potential barrier is presented and method of determining the barrier permeability based on experimental data is proposed. It also presents simulation of current–voltage characteristics, surface structure and distribution of the work function over the surface of metal field-emission cathode for a model configuration of its vertices. Theoretical studies of the physical processes affecting the field-emission current density limits are discussed towards the end of the chapter.

Keywords

Field Emission Normal Line Electric Intensity Spatial Charge Field Emission Cathode 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    A.Y. Antonov, V.P. Denissov. Phys. Scr. 59, 235–240 (1999)Google Scholar
  2. 2.
    A.Y. Antonov, V.P. Denisov, N.V. Egorov, Mathematical modeling of the passage of electrons through a solid-vacuum boundary for small variations in the work function. Poverhnost. (12), 116–118 (1999)Google Scholar
  3. 3.
    A.Y. Antonov, Mathematical modeling of electron transport across the border solid-vacuum. The Control Processes and stability, in Proceedings of XXIX Scientific Conference of Applied Mathematics and Control Processes Faculty of Saint Petersburg State University, St. Petersburg (1998), pp. 115–118Google Scholar
  4. 4.
    A.Y. Antonov, The dependence of the electron energy states of the shape of the potential in the semiconductor emitter. The Control Processes and stability, in Proceedings of XXX Scientific Conference of Applied Mathematics and Control Processes Faculty of Saint Petersburg State University, St. Petersburg (1999), pp. 203–207Google Scholar
  5. 5.
    A.Y. Antonov, An inverse problem of the transparency of the quantum barrier. The Control Processes and stability, in Proceedings of XXXI Scientific Conference of Applied Mathematics and Control Processes Faculty of Saint Petersburg State University, St. Petersburg (2000), pp. 132–136Google Scholar
  6. 6.
    A.Y. Antonov, V.P. Denisov, Resonant tunneling in processes of electron emission from semiconductors. Europhys. Conf. Abstr. 23G(ECOSS-18), Th-P-066 (1999)Google Scholar
  7. 7.
    A.Y. Antonov, V.P. Denisov, Potential barrier shape determination from experimental data. Europhys. Conf. Abstr. 23G(ECOSS-18), We-P-060 (1999)Google Scholar
  8. 8.
    N.V. Egorov, A.Y. Antonov, M.I. Varayun, Determination of transparency of the potential barrier by the variations of the external field. Poverhnost. (11), 107–110 (2004)Google Scholar
  9. 9.
    N.V. Egorov, A.Y. Antonov, M.I. Varayun, Isolation of the harmonic component of the field emission signal. Poverhnost. (9), 94–98 (2005)Google Scholar
  10. 10.
    (a) V.P. Denisov. Pis’ma v ZTP. 18(5), 21 (1992); (b) V.P. Denisov, Pis’ma v ZTP. 18(14), 38 (1992)Google Scholar
  11. 11.
    L.I. Antonov et al. Pis’ma v ZTP. 11, 602 (1985)Google Scholar
  12. 12.
    L.I. Antonova, V.P. Denissov. Appl. Surf. Sci. 111, 237 (1997)Google Scholar
  13. 13.
    B.V. Thien, C. Adessi, New mechanism for electron emission from planar cold cathodes. The solid-state field-controlled electron emitters. Phys. Rev. Lett. 85(4), 864–867 (2000)Google Scholar
  14. 14.
    M.I. Varayun, Mathematical modeling of the tip of the electron emission structures. Thesis for the degree of Candidate of Physics and Mathematics Sciences, St. Petersburg (2002)Google Scholar
  15. 15.
    M.I. Varayun, A.Y. Antonov, V.P. Denisov, Mathematical modeling of a field emission cathode, in Proceedings of the X International Meeting: Accelerators -2001. St. Petersburg State University, St. Petersburg (2001), pp. 346–349Google Scholar
  16. 16.
    E.L. Murphy, R.H. Good, Thermionic emission, field emission and transition region. Phys. Rev. 102(6), 1464–1473 (1956)ADSCrossRefGoogle Scholar
  17. 17.
    A. Modinos, Field, thermionic and secondary electron emission spectroscopy. M.: Nauka (1990), 320 pGoogle Scholar
  18. 18.
    L.D. Landau, E.M. Lifshitz, Quantum mechanics. Non-relativistic theory, M.: Nauka (1974), 752 pGoogle Scholar
  19. 19.
    L.N. Dobretsov, M.V. Gomoyunova. Emission electronics, M.: Nauka (1964), 364 pGoogle Scholar
  20. 20.
    T. Pang, A numerical method for quantum tunneling. Comput. Phys. 9, 602–606 (1995)Google Scholar
  21. 21.
    K.-Y. Kim, B. Lee, Superlattices Microstruct. 24(6), 389 (1997)ADSCrossRefGoogle Scholar
  22. 22.
    P. Niedermann, N. Sankarraman, R.J. Noer, O. Fisher. J. Appl. Phys. 59, 892–896 (1986)Google Scholar
  23. 23.
    V.M. Zhukov, S.A. Polezhaev. Radiotehnika i elektronika. 33(10), 2153–2162 (1988)Google Scholar
  24. 24.
    A. Modinos, J.P. Xanthahis, Energy floating of field-emitted electrons due to Coulomb scattering. Surf. Sci. 249(1–3), 373–378 (1991)ADSCrossRefGoogle Scholar
  25. 25.
    D. Nicolaescu, Physical basis for applying the F-NJ-E relationship to experimental I-V data. J. Vac. Sci. Technol. B 11(2), 392–395 (1993)CrossRefGoogle Scholar
  26. 26.
    A. Seidl, M. Takai, A. Hosono, S. Yura, S. Okuda, Geometry effects arising from anodization of field emitters. J. Vac. Sci. Technol. B. 18(2), 929–932 (2000)Google Scholar
  27. 27.
    M.I. Elinson, G.F. Vasiliev. Field emission. M.: Fizmatgiz (1958), 272 pGoogle Scholar
  28. 28.
    N.V. Egorov, V.M. Zhukov, C.A. Polezhaev, Metal tip producing for scanning tunneling microscopy, in Proceedings of 148. WE-Heraeus-Seminar: STM-Related Spectroscopies of Semiconductor Interfaces, Bad Honnef (1995), pp. 5–7Google Scholar
  29. 29.
    N.V. Egorov, E.M. Vinogradova, Solution of boundary-value problem in bispherical coordinates, in Proceedings of 3-th International Workshop: BDO-96, S.-Petersburg (1996), pp. 274–278Google Scholar
  30. 30.
    G. Mesa, E. Dobado-Fuentes, J.J. Saenz, Image charge method for electrostatic calculations in field emission diodes. J. Appl. Phys. 79(1), 39–43 (1996)ADSCrossRefGoogle Scholar
  31. 31.
    Y. Ohkavara, T. Naijo, T. Washio, S. Oshio, H. Ito, H. Saitoh, Field emission properties of AlZnO whiskers modified by amorphous carbon and related films. Jpn. J. Appl. Phys. 40(12), 7013–7017 (2001)Google Scholar
  32. 32.
    K.L. Jensen, J.E. Yater, Advanced emitters for next generation rf amplifiers. J. Vac. Sci. Technol. B. 16(4), 2038–2049 (1998)Google Scholar
  33. 33.
    K.A. Nikiforov, Mathematical modeling of the field electron emission from a metal-dielectric systems. Dissertation for the degree of Candidate of Sciences, St. Petersburg (2005)Google Scholar
  34. 34.
    C.A. Spindt, C.E. Holland, P.R. Schwoebel, I. Brodie. J. Vac. Sci. Technol. B. 16, 758 (1998)Google Scholar
  35. 35.
    E. Mueller, T. Tson, Ion microscopy. M.: Metallurgy (1972), 360 pGoogle Scholar
  36. 36.
    J. Rena, S. Ranganathan (eds.), The field-ion microscopy. M.: Mir (1971), 210 pGoogle Scholar
  37. 37.
    A.L. Suvorov, T.L. Razinkova, V.A. Kuznetsov, Computers in field ion microscopy. Phys. Stat. Sol. 61A, 11 (1980)Google Scholar
  38. 38.
    A.L. Suvorov, Structure and properties of the surface atomic layers of metal. M.: Energoatomizdat (1990), 296 pGoogle Scholar
  39. 39.
    A.L. Suvorov, T.L. Razinkova, V.A. Kuznetsov, Computer simulation of field electro images. Surf. Sci. 52, 697 (1975)Google Scholar
  40. 40.
    K.A. Nikiforov, N.V. Egorov, Modelling of the surface structure and the numerical calculation of a current density of field emission metal cathode. Vestnik St. Petersburg State University, Ser.10. Applied mathematics, computer science, management processes. 2, 39–45Google Scholar
  41. 41.
    I.M. Gribkova, Mathematical modeling of the image field in an electron microscope. Bachelor work, St. Petersburg (2009), 37 p. I.M. Gribkova, Mathematical modeling of the image field in an electron microscope. The Control Processes and stability, ed. by N.V. Smirnov, G.S. Tamasyan, in Proceedings of XXXIX Scientific Conference of Applied Mathematics and Control Processes Faculty of Saint Petersburg State University, Publishing House of St. Petersburg state University, St. Petersburg (2008), pp. 116–121Google Scholar
  42. 42.
    N.V. Egorov, On the possibility of narrow collimated electron beams. ZTP. 52(12), 2440–2442 (1982)Google Scholar
  43. 43.
    M. Drechsler, E. Henkel, Feldemissions-Stromdichten und Oberflachenfeldstarken bei Feldemissionsmikroskopen sowie Methoden zur Bestimmung des Spitzenrauius, der Spitzenform, der Vergrosserung und des Auflosungsvermogens. Z. Angew. Phys. 6, 341–346 (1954)Google Scholar
  44. 44.
    W.P. Dyke, J.K. Trolan, Field Emission: large current densities, space charge and vacuum arc. Phys. Rev. 89(4), 799–808 (1953)Google Scholar
  45. 45.
    W.W. Dolan, W.P. Dyke, Temperature and field emission of electrons from metals. Phys. Rev. 95, 327–332 (1954)Google Scholar
  46. 46.
    G.E. Vibrans, Vacuum voltage breakdown as thermal instability of the emitting protrusions. J. Appl. Phys. 35(10), 2855–2857 (1964)ADSCrossRefGoogle Scholar
  47. 47.
    V.M. Zhukov, Stability of the surface of the tip emitters when exposed to thermo and field. Stability and control processes, ed. by D.A. Ovsyannikov, L.A. Petrosyanm in Proceedings of the International Conference Volume 1: Section 1–5, 11. St. Petersburg State University, Research Institute of the VM and PU, OOO VVM, St. Petersburg (2005), pp. 161–164Google Scholar
  48. 48.
    Y.V. Andrianov, V.N. Bazdyrev, D.A. Borisov, V.M. Zhukov, Spontaneous growth of field emission current in a microwave field. ZTP. 61(9), 183–185 (1991)Google Scholar
  49. 49.
    V.L. Egorov, Y.V. Chentsov, Field emission cathodes in modern electron microscopes. In: Proceedings of the State Optic Inst. L. Publishing House of the State Optic Inst, vol. 58, pp. 68–87 (1985)Google Scholar
  50. 50.
    N.V. Egorov, K.A. Nikiforov, C-C. Shen, Reconstruction of the surface of the field electron emitter. Poverhnost. X-ray Synchrotron Neutron. (10), 100–106 (2009)Google Scholar
  51. 51.
    K. Nikiforov, Simulation of the crystal structure of the surface of a metal cathode. The control processes and stability, ed. by N.V. Smirnov, V.N. Starkov, in Proceedings of XXXV Scientific Conference of Applied Mathematics and Control Processes Faculty of Saint Petersburg State University, Publishing House of St. Petersburg state University, St. Petersburg (2004), pp. 244–247Google Scholar
  52. 52.
    V.S. Fomenko, The Emission Properties of the Materials. Directory, 4th edn. Revised and complementary (Naukova Dumka, Kiev, 1981), 340 pGoogle Scholar
  53. 53.
    L. Feldman, D. Meyer, Basics of analysis of surfaces and thin films. M.: Mir (1989), 344 pGoogle Scholar
  54. 54.
    L.A. Rudnicki, On the work function of the electron and the donor-acceptor properties of non-ideal adsorption particles and coated metal surfaces. Math. USSR Acad. Sci. Ser. Nat. 26, 1240–1246 (1982)Google Scholar
  55. 55.
    V. Linnik, The method of least squares, and the theoretical foundations of mathematical and statistical processing of observations. L.: Fizmatgiz (1962), p. 352Google Scholar
  56. 56.
    M.I. Elinson (ed.), The cold cathodes. M.: Sov. radio (1974), 386 pGoogle Scholar
  57. 57.
    T.I. Lewis, Theoretical interpretation of field emission experiments. Phys. Rev. 101(6), 1694–1698 (1956)ADSCrossRefGoogle Scholar
  58. 58.
    W.B. Nottingham, Remarks on energy losses attending thermionic emission of electrons from metals. Phys. Rev. 59(11), 907–908 (1941)ADSCrossRefGoogle Scholar
  59. 59.
    O.W. Richardson, Extraction of electrons from cold conductors in intense electric fields. Proc. Roy. Soc. 117, 719–730 (1928)Google Scholar
  60. 60.
    W.W. Dolan, W.P. Dyke, J.K. Trolan, The field emission initiated vacuum area. II. The resistively heated emitter. Phys. Rev. 91(5), 1054–1057 (1953)ADSCrossRefGoogle Scholar
  61. 61.
    V.A. Gorkov, M.I. Elinson, G.L. Yakovlev, Theoretical and experimental research in the fore-arc phenomena of field emission. Radiotehnika i Elektronika. 7(9), 1501–1510 (1962)Google Scholar
  62. 62.
    A. van Oostrom, Dependence of the critical field strength for vacuum breakdown of tungsten on the field emitting area, in Proceeding III International Symposium on Discharges and Electrical insulation in Vacuum, Paris (1968), pp. 174–180Google Scholar
  63. 63.
    D. Lee, The influence of Nottingham effect on temperature of field emitting surface, in Proceedings of Insulation of High Voltages in Vacuum, Boston (1965), pp. 96–98Google Scholar
  64. 64.
    A.S. Kompaneets, Effect of space charge on the field emission. DAN USSR 128(6), 1160–1162 (1959)Google Scholar
  65. 65.
    Y.V. Zubenko, I.L. Sokolskaya, G.N. Fursey. ZTP. 34(5), 911–912 (1964)Google Scholar
  66. 66.
    N.V. Egorov, V.M. Zhukov, On the mechanism of formation of “rings” on the field emission cathodes images. Abstracts, in 21st All-Union. Conference for emission electronics, L. (1990), p. 240Google Scholar
  67. 67.
    N.V. Egorov, A.G. Karpov, Diagnostic Information and Expert Systems (St. Petersburg State University Publishing House, St. Petersburg, 2002), 472 pGoogle Scholar
  68. 68.
    N.V. Egorov, B.V. Yakovlev, Evolution of the surface of liquid metal in a strong electric field. Poverhnost. (8–9), 36–41 (1994)Google Scholar
  69. 69.
    R. Klein, L. Leder, Filed emission from Niobium in the normal and Superconducting State. Phys. Rev. 124(4), 15–18 (1961)Google Scholar
  70. 70.
    H. Bergeret, A. Septier, Finding of cathode heating owing to Nottingham effect. CR Acad. Sci. 277(17), 489–492 (1973)Google Scholar
  71. 71.
    L.M. Baskin, V.A. Godyak, O.I. Lvov et al., Effect of space charge of relativistic electrons in the field emission. ZTP. 42(6), 1282–1287 (1972)Google Scholar
  72. 72.
    N.E. Alexeevskiy, The impact of the emission current on the critical parameters of tantalum. DAN USSR. 242(4), 816 (1978)Google Scholar
  73. 73.
    V.M. Zhukov, Processes on the Surface Under Field Emission (VVM, St. Petersburg, 2007), 295 pGoogle Scholar
  74. 74.
    D.A. Ovsyannikov, N.V. Egorov, Mathematical Modeling of Systems of Formation of Electron and Ion Beams (St. Petersburg State University, St. Petersburg, 1998), 276 pGoogle Scholar
  75. 75.
    N.V. Egorov, The physical model of the processes occurring in the field emission diode in the magnetic field. Lett. ZTP 8, 1038–1041 (1982)Google Scholar
  76. 76.
    V.E. Ptitsyn, G.N. Fursei, N.V. Egorov et al., Egorov et al. Effect of magnetic field on the field electron emission from tungsten. Lett. ZTP 5, 116–119 (1979)Google Scholar
  77. 77.
    V.E. Ptitsyn, G.N. Fursei, N.V. Egorov et al., The temperature dependence of the magnetic field emission effects in metals. Lett. ZTP 6, 619–622 (1980)Google Scholar
  78. 78.
    P.H. Levine, Thermoelectronic phenomena associated with electron-field emission. J. Appl. Phys. 33(2), 582–587 (1962)ADSCrossRefGoogle Scholar
  79. 79.
    I. Brodie, Temperature of strongly field emmiting surface. Int. J. Electron. 18, 223–232 (1965)Google Scholar
  80. 80.
    L.W. Swanson, L.C. Crouser, F.M. Charbonnier, Energy exchanges attending field emission. Phys. Rev. 151(1), 327–340 (1966)ADSCrossRefGoogle Scholar
  81. 81.
    T.E. Stern, B.S. Gossling, R.H. Fowler, Further studies in the emission of electrons from cold metals. Roy. Soc. Proc. A. 124, 699–723 (1929)Google Scholar
  82. 82.
    J.R. Barbour, W.W. Dolan, J.K. Trolan et al., Space-charge effects in field emission. Phys. Rev. 92(1), 45–51 (1953)ADSCrossRefGoogle Scholar
  83. 83.
    N.B. Eisenberg, On the role of the space charge in spherical electronic projectors. ZTP. 24(11), 2079–2082 (1964)Google Scholar
  84. 84.
    N.B. Eisenberg, On the influence of the space charge in the form of characteristics lnJ(1/Va) of field emission cathodes. Radiotehnika i Elektronika. 9(12), 2147–155 (1964)Google Scholar
  85. 85.
    A.S. Kompaneets, Effect of space charge on the field emission. Radiotehnika i Elektronika. V.5. 6 y 3JK56. N8, 1315–1317 (1960)Google Scholar
  86. 86.
    R.P. Poplavskiy, The potential distribution in a spherical capacitor in the case of saturation current. ZTP 20, 149–159 (1950)Google Scholar
  87. 87.
    V.A. Godyak, L.V. Dubovoy, G.R. Zabolotskaya, Calculation of the field emission current that limited by space charge. ZETP. 57(11), 1795–1798 (1969)Google Scholar
  88. 88.
    A.N. Tikhonov, V.J. Arsenin, Methods of solving of ill-posed problems. M.: Nauka (1974), 286 pGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Saint Petersburg State UniversitySt. PetersburgRussia
  2. 2.MIPTDolgoprudny, Moscow regionRussia

Personalised recommendations