Skip to main content

Experimental Equipment and Technique

  • Chapter
  • First Online:
  • 1040 Accesses

Part of the book series: Springer Series in Advanced Microelectronics ((MICROELECTR.,volume 60))

Abstract

This chapter presents the field emission electron microscope, its technical characteristics and various modern construction of microscopes. A particular attention is paid to analyzing full energies of the electrons and universal constructions of field electron microscopes that are the main branch of development of microscopy and spectroscopy. The most popular practical techniques of manufacture of tip field emitters from different materials.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. E.W. Mueller, Electronenmicroskopishe Beobachtungen von Feldkathoden. Zs. f. Phys. 106, 541–550 (1937)

    Google Scholar 

  2. M. Drechsler, Erwin Miller and the early development of field emission microscopy. Surf. Sci. 70, 18 (1978)

    Google Scholar 

  3. R. Gomer, Field Emission and Field Ionization (Harvard University Press, 1961)

    Google Scholar 

  4. R. Comer, Field emission and field ionization and field desorption. Surf. Sci. 299/300, 129–152 (1994)

    Google Scholar 

  5. Y. Groshkovsky, Equipment of High Vacuum (M. Mir, 1975)

    Google Scholar 

  6. M. Benjamin, R.O. Jenkins, The distribution of autelectronic emission from single crystal metal points. Proc. Rotal Soc. Ser. A. 18(981), 225–236 (1942)

    Google Scholar 

  7. V.I. Makuha, Research of adsorption and electron emission of films of cesium on a tungsten monocrystal. Phys. Solid Body 9(1), 150–156 (1967)

    Google Scholar 

  8. B.V. Bondarenko, V.A. Kyznetsov, Research of mechanical strength of film field emission cathode from chrome. GTF XLII, 1093–1095 (1972)

    Google Scholar 

  9. E.P. Sheshin, N.B. Pogibelskay, in Research of mechanical strength of film field emission cathode from niobium. Physical Processes in Devices of Electronic Equipment, pp. 15–18 (M. MIPT, 1980)

    Google Scholar 

  10. D. Zimmerlan, R. Gomer, Temperature regulator for holders of field emission cathodes. Devices Sci. Res. 7, 171–173 (1965)

    Google Scholar 

  11. M. Pichand, A. Mueller, M. Drecheer, Temperature distribution along metal tips (for field emission microscopy and the study of surface phenomena). Surf. Sci. 26(1), 14–20 (1971)

    Google Scholar 

  12. O.P. Astahov, E.P. Sheshin, others, Direct measurement of temperature of the graphite field emission cathode. Radio Tech. Electron Electron. 31(5), 1045–1046 (1986)

    Google Scholar 

  13. O.P. Astahov, V.I. Makyha, E.P. Sheshin, Temperature condition of graphite field emission cathode with the developed working surface. Radio Tech. Electron. (USSR) XXXIV(6), 1310–1312 (1989)

    Google Scholar 

  14. B.H. Mosienkov, V.A. Seliverstov, E.P. Sheshin, other, System for measurement of field emission characteristics of the field emitter. PTE 2, 204–206 (1991)

    Google Scholar 

  15. S.V. Denbnovetskiy, A.B. Leshinin, G.F. Semenov, Transformation of information on the new memorable EBT (M.: Energoizdat, 1984)

    Google Scholar 

  16. S.V. Denbnovetskiy, B.H. Mosienkov, T.V. Temirazeva, other, Selection and information transfer. Kiev: Sci. Thought 45, 114 (1978)

    Google Scholar 

  17. V.A. Kyznetsov, E.P. Sheshin, Technique and application of analyzers of a power range of field emission electrons. PTE 5, 7–16 (1972)

    Google Scholar 

  18. E.W. Mueller, Z. Physik. 120, 261 (1943)

    Google Scholar 

  19. A.L. Suvorov, A.F. Bobkov, B.Y. Kyznetsov, S.B. Zaytsev, Field emission microscope for research of emission properties of faces of monocrystals. PTE 4, 248–250 (1979)

    Google Scholar 

  20. E.W. Plummer, R.D. Yong, Field emission studies of electronic energy levels of absorbed atoms. Phys. Rev. B1, 2088–2109 (1970)

    Google Scholar 

  21. L.W. Swanson, L.C. Crouser, Phys. Rev. 163, 622 (1967)

    Article  ADS  Google Scholar 

  22. D.R. Bowman, R. Gomer, K. Mutelib, M. Tringides, Surf. Sci. 138, 581 (1984)

    Google Scholar 

  23. R. Gomer, A. Auerbach, Surf. Sci. 167, 493 (1986)

    Google Scholar 

  24. R.D. Young, E.W. Mueller, Experimental measurement of the total-energy distribution of field-emitted electrons. Phys. Rev. 113, 115–120 (1959)

    Google Scholar 

  25. K. Kowasaki, K. Senzaki, Y. Kumashiro, A. Okada, Energy distribution of field-emitted electron from TiC single crystal. Surf. Sci. 62, 313–316 (1977)

    Google Scholar 

  26. M.I. Elinson, Radio Technician Electron. 4, 140 (1959)

    Google Scholar 

  27. A.G. Ghdan, M.I. Elinson, Radio Technician Electron. 6, 671 (1961)

    Google Scholar 

  28. A.G. Ghdan, M.I. Elinson, A.B. Sandomirsky, Radio Technician Electron. 7, 670 (1963)

    Google Scholar 

  29. I.L. Sokolskay, G.P. Sherbakov, Solid State Phys. 3, 167 (1961)

    Google Scholar 

  30. G.P. Sherbakov, I.L. Sokolskay, Solid State Phys. 4, 3526 (1962)

    Google Scholar 

  31. I.V. Mileshkina, I.L. Sokolskay, Solid State Phys. 5, 2501 (1963)

    Google Scholar 

  32. G.N. Fursey, P.G. Shlahtenko, Solid State Phys. 12, 2645 (1970)

    Google Scholar 

  33. F.G.I. Van Oostrom, Validity of the Fowler–Nordheim model for field electron emission. Philips Res. Rept. 21(1), 1–102 (1966)

    Google Scholar 

  34. V.A. Kyznetsov, E.P. Sheshin, Power range of the field emission electrons emitted from microledges on tungsten, an edge. Radio Eng. Edektronik. 20(7), 1550–1553 (1975)

    Google Scholar 

  35. G.L.R. Mair, D.C. Grindrod, M.S. Mousa, Deam-energy distribution measurements of liquid gallium field-ion sources. J. Phys. D: Appl. Phys. 16, 209–213 (1983)

    Google Scholar 

  36. V.A. Ivanov, T.S. Kirsanova, T.A. Tumareva, Field emission spectroscopy of the tungsten covered with layers of barium and an oxide of barium. Phys. Solid Body 23(3), 664–668 (1981)

    Google Scholar 

  37. C.I. Workowski, I.J. Czyzewski, Field emission spectrometer whis an electron multiplier operating in the phase-sensitive detection system. Acta Physia Polonica. A39(5), 523–529 (1971)

    Google Scholar 

  38. A.S. Kypryshkin, L. Rybakov Yu, E.P. Sheshin, The analyzer of total energies of field emissions electrons with the retarding potential. PTE 1, 151–153 (1990)

    Google Scholar 

  39. A.S. Kupryashkin, L. Rybakov Yu, E.P. Shehin, Field-electron total energy analyzer with retarding potential. Instr. Experim. Tech. 33(1), 155–157 (1990)

    Google Scholar 

  40. R.D. Young, C.E. Kuyatt, Resolution determination in field emission energy analysers. Rev. Scient. Instrum. 39(10), 1477–1480

    Google Scholar 

  41. R.Z. Bahtizin, U.M. Ymagyzin, Analyzer of a energy spectrum of field emission electrons. PTE 3, 212–216 (1984)

    Google Scholar 

  42. R.Z. Bahtizin, V.M. Lobanov, K.G. Yu, M. Umagyzin Yu, Calculation of trajectories of electrons in electrostatistical lenses. Radio Technician Electron. 4, 1556–1558 (1988)

    Google Scholar 

  43. C. Kuyatt, E. Plammer, The reflecting analyzer energy for research of field emission electrons. Devices Sci. Res. 1, 122–126 (1972)

    Google Scholar 

  44. N. Kempin, K. Klapper, G. Ertl, The analyzer for removal of energy distributions of field emission electrons. Devices Sci. Invest. 9, 52–55 (1978)

    Google Scholar 

  45. S.I. Shkyratov, S.H. Ivanov, S.N. Shilimanov, Field emission laboratory—the field emission electronic spectrometer combined with a field ionic/electronic microscope. PTE 4, 126–134 (1999)

    Google Scholar 

  46. C. Oshima, H. Fujii, T. Yamashita et al., Construction of low-temperature gun and high-resolution field emission spectra from a Nb superconductor. Appl. Surt. Sci. 146, 143–147 (1999)

    Google Scholar 

  47. V.I. Maryin, E.G. Kalinychev, N. Lahov Yu, The vacuum lock unit with the AVSh-1 manipulator. PTE 3, 263–264 (1981)

    Google Scholar 

  48. A.A. Isaev, Installation for transfer of the holder with samples from a lock on the manipulator of the ultrahigh-vacuum camera. PTE 6, 185–186 (1987)

    Google Scholar 

  49. R.I.-G. Garber, G.I. Dranova, I.M. Mihaylovsky, G.G. Chechelnickiy. A.S. USSR № 410488, of 13.04.1971. Cl N01j 37/285

    Google Scholar 

  50. M. Wada, M. Konishi, O. Nishikawa, Binding states of Ga and Sn on W and Mo: structures, evaporation field and its temperature dependence. Surt. Sci. 100(2), 439–452 (1980)

    Google Scholar 

  51. M.P. Ardashev, A.O. Golubok, N.F. Fedorov others, Folding electronic and ion microscope. PTE 1, 222–223 (1981)

    Google Scholar 

  52. V.N. Ilin, E.P. Sheshin, D.A. Shomin, Universal field electron—field ion microscope. PTE 2, 193–197 (1983)

    Google Scholar 

  53. A.c. 652403 USSR, Cl. F16K51/02 of 24.06.77. The ultrahigh-vacuum all-metal bakeable lock valve. K.D. Danilov—It is published 15.03.1979, Bulletin No. 10

    Google Scholar 

  54. A.c. 610081 USSR, Cl. G05F1/12 of 08.07.76. Stabilizer of alternating current. E.P. Sheshin, V.A. Kyznetsov—It is published 05.06.78, Bulletin No. 21

    Google Scholar 

  55. A.c. 528637 USSR, Cl. N01 j37/26. The camera of the combined field emission-field ion microscope. V.A. Kuznetsov, E.P. Sheshin—It is published 15.09.76, Bulletin No. 34

    Google Scholar 

  56. M.K. Dib, The precision manipulator for movement of a sample and Faraday’s cylinder in a low-voltage elektronograf. Devices Sci. Res. 1, 43–48 (1976)

    Google Scholar 

  57. V.A. Roer, Installation of the manipulator for movement of a sample in ultrahigh vacuum of an electronic spectrometer for research of spatial distribution of photoemission. Devices Sci. Res. 3, 128–130 (1980)

    Google Scholar 

  58. H. Dusterhort, B. Vishot, The manipulator for movement of samples in ultrahigh-vacuum installations. PTE 1, 124–125 (1983)

    Google Scholar 

  59. I. Dey, H. Li, F. Dgoyna, The ultra high vacuum three-axis manipulator for research surfaces. Prib. Sci. Res. 6, 107–111 (1990)

    Google Scholar 

  60. Ac. 764007 SSSR, Cl. HO1 J37/285. The turning cartridge for samples of an field ion field electron microscope. S.M. Borisov, E.P. Sheshin, D.A. Shomin

    Google Scholar 

  61. E.W. Mueller, Feldemission. Ergebnisse d. exat. Naturwiss. XXVII, 290–360 (1953)

    Google Scholar 

  62. B.V. Bondarenko, C.A. Yu, E.P. Sheshin, The controlled high-voltage power supply. PTE 1, 206–207 (1986)

    Google Scholar 

  63. A.S. Kyprashkin, A.G. Shahovskoy, E.P. Sheshin, The stabilized high-voltage power supply. PTE 4, 238–223 (1991)

    Google Scholar 

  64. V.A. Granovsky, T.N. Siraya, Methods of Processing of Experimental Data at Measurements (L.: Energoizdat, Leningr. otd., 1990)

    Google Scholar 

  65. G. Maks, Methods and Technology of Processing of Signals at Physical Measurements (World, 1983)

    Google Scholar 

  66. B.V. Bondarenko, A.U. Cherepanov, E.P. Sheshin, System for measurement of emissive characteristics of field emission cathodes. PTE 1, 245 (1987)

    Google Scholar 

  67. M.K. Miller, G.D.W. Smith, Atom Probe Microanalysis: Principles and Applications to Materials Problems (M.R.S., Pittsburg, Pennsylvania, 1989) [Translation: M. Miller, G. Smith, The Probe Analysis in Field Ion Microscopy, M.: World, 1993]

    Google Scholar 

  68. S.J. Savage, F.H. Froes, Metals 36(4), 20 (1984)

    Google Scholar 

  69. A.J. Melmed, R.J. de Klein, Physique 47(2), 287 (1986)

    Google Scholar 

  70. T. Masumoto, I. Ohnaka, A. Inoue, M. Hagiwara, Scripta. Metall 15, 293 (1981)

    Google Scholar 

  71. I. Ohnaka, I. Yamauchi, T. Ohmichi, T. Ichiryu, T. Mitsushima, T. Fukusako, in Rapidly Quenched Metals, ed. by S. Steeb, H. Warlimont (1985)

    Google Scholar 

  72. I. Ohnaka, T. Fukusako, T. Ohmschi, T. Masumoto, A. Inoue, M. Hagiwara, in Proceedings of 4th International Conference on Rapidly Quenched Metals, ed. T. Masumoto, K. Suzuki (Japan Institute of Metals, 1982), p. 31

    Google Scholar 

  73. J. Liu, L. Arnberg, N. Backstrom, S. Savage, Mater Sci. Eng. 98, 21 (1988)

    Article  Google Scholar 

  74. R. Maringer, C.E. Mobley, in Proceedings of 3rd International Conference on Rapidly Quenched Metals, vol. 1, ed. by B. Cantror (Metals Society, London, 1978), p. 49

    Google Scholar 

  75. Y. Jashiro, T. Terao, A new method of specimen preparation for FIM and FEM. Surf. Sci. 67(2), 605–610 (1977)

    Google Scholar 

  76. A.R. Bhatti, B. Cantor, D.S. Joag, G.D.W. Smith, Phil. Mag. B. 52, 63 (1985)

    Google Scholar 

  77. Pat. USA 414 3292 Cl/ 313-336, 25.06.76. Field emission cathode of glassy carbon and method of preparation. S. Hosoki, H. Okano

    Google Scholar 

  78. R.J. Morgan, Sci. Instrum. 44, 808 (1967)

    Google Scholar 

  79. M.I. Elinson, G.F. Vasiliev, Field Electron Emission (GIFML, Moscow, 1958)

    Google Scholar 

  80. I.S. Andreev, Gyrn. Tehnich. Fiz. 22(9), 1428–1441 (1952)

    Google Scholar 

  81. E.W. Mueller, Zs. F. Phys. 108(9–10), 668–680 (1938)

    Google Scholar 

  82. E.W. Mueller, Zs. F. Phys. 102, (11–12), 734–761 (1936)

    Google Scholar 

  83. R. Haefez, Zs. F. Phys. 116(9–10), 604–609 (1940)

    Google Scholar 

  84. M. Benjamin, R.O. Jenkins, Nature 143, 599 (1939)

    Google Scholar 

  85. M. Benjamin, R.O. Jenkins, Phil. Mag. 26(12), 1049–1062 (1938)

    Google Scholar 

  86. M. Benjamin, R.O. Jenkins, Proc. Roy. Soc. 176(10), 262–279 (1940)

    Google Scholar 

  87. W.J. Tegart, The electrolytic and Chemical Polishing of Metals (Pergamon Press, Oxford, 1959)

    Google Scholar 

  88. P.A. Jacquet, Metall. Rev. 1, 157 (1961)

    Google Scholar 

  89. B.M. Tsarev, Achievements Phys. Sci. 36(2), 181–209 (1948)

    Google Scholar 

  90. M.I. Elinson, V.A. Gorkov, G.F. Vasiliev, Mag. Radio Eng. Electron. 2(2) (1957)

    Google Scholar 

  91. M.B. Benyminovich, B.G. Smirnov, G.N. Shyppe, Mag. Phys. Phys. (release 10) 23, 1690–1699 (1953)

    Google Scholar 

  92. A.L. Syvorov, Devices Technol. Exp. 5, 5 (1969)

    Google Scholar 

  93. E.P. Sheshin, Structure of a Surface and Field Emission Properties of Carbon Materials (MIPT-fizmatgiz Publishing House, 2001)

    Google Scholar 

  94. G.H. Freyberg, Production of thin field emitters. PTE 6, 176 (1967)

    Google Scholar 

  95. H.A. Hubner, Field emitter etching facility with good reproducibility. Optik 63(2), 179–183 (1983)

    Google Scholar 

  96. G.N. Freyberg, The improved semiconductor scheme of etching tips. PTE 5, 233–234 (1970)

    Google Scholar 

  97. A.J. Melmed, J.J. Carroll, Vac. Sci. Technol. 2, 1388 (1984)

    Google Scholar 

  98. A.J.J. Melmed, Chem. Phys. 38, 607 (1963)

    ADS  Google Scholar 

  99. R.-I.G. Garber, G.I. Dranova, N.A. Mansyrov, I.M. Mihaylovsky, Devices Technol. Exp. 1, 196 (1969)

    Google Scholar 

  100. A.S. Kypryshkin, A.G. Shahovskoy, E.P. Sheshin, The stabilized high-voltage power supply. PTE 4, 238–239 (1991)

    Google Scholar 

  101. H. Lemke, T. Goddenbenrich, H.P. Bochem, U. Hartmann, C. Heiden, Improved microtips for scanning probe microscopy. Rev. Sci. Instrum. 61(10), 2538–2541 (1990)

    Google Scholar 

  102. V.Y. Fridman, Production field emission tips by etching. PTE 1, 227 (1974)

    Google Scholar 

  103. G.N. Freybrg, The improved semiconductor scheme of etching tips. PTE 5, 233–234

    Google Scholar 

  104. A.c. №293515 USSR. Method of production of needle cold emitters. N.I. Komyak, V.G. Pavlov, A.A. Rabinovich, V.N. Shrednik, Publication in B.I. 1975.31

    Google Scholar 

  105. A.c. №568981 SSSR. The device for etching field emitters. D.M. Pautov, A.V. Kocheryzhnikov. C. HO1 J 9/02 of 04.01.76. Publication in B.I., 1977, No. 30

    Google Scholar 

  106. G.N. Freyberg, Double bath for automatic etching tips. PTE 4, 244–245 (1972)

    Google Scholar 

  107. E. Mueller, T. Tsong, Field Jon Microcopy (American Elsevier Publishing Company, Juc., New York, 1969)

    Google Scholar 

  108. V.I. Afanasev, V.M. Tybaev, T.I. Karpenko, T.I. Ivchenko, Electrochemical receiving thin needles in a stream of electrolyte. PTE 1, 195–196 (1983)

    Google Scholar 

  109. H. Morikawa, K. Goto, Rev. Sci. V. Instrum. 59, 2195 (1988)

    Google Scholar 

  110. H. Morikawa, K. Goto, F. Iwatsu, T.J. de Terao, Physique 46(6), 589 (1987)

    Google Scholar 

  111. A.C. USSR 213200 Kl.HO1 J 1/30 of 8.06.66. A way of production of needle fieldemitters. R.-I.G. Garber, V.I. Afanasyev, I.M. Mikhaylovsky

    Google Scholar 

  112. J.M. Walls, H.N. Southworth, B.J. Rushton, The preparation of Field electron/field ion emitters by ion etching. Vacuum 24(10), 475 (1975)

    Google Scholar 

  113. M. Hellsing, Mater. Sci. Technol. 4, 824 (1988)

    Google Scholar 

  114. M. Drechsler, J.P. Prulhiere, Procedes et dispositifs pour usiner, reaffuter, chanffer et nettoger des pointes par bombardment electronigue, patent of France No. 2098954, kl. B 23 K 15/00 of 30.07.70

    Google Scholar 

  115. G.I. Dranova, B.V. Kylko, I.M. Mihaylovsky, Method of production of the needle field emission cathode, a.s. 630669, Cl. HO1 J9/02, of 27.06.77

    Google Scholar 

  116. J.A. Liddle, A. Norman, A. Cerezo, C.R.M.J. de Grovenor, Physique 49(6), 509 (1988)

    Google Scholar 

  117. V.A. Kyznetsov, E.P. Sheshin, Energy spectrum of the field electrons emitted from microledges on a tungsten tip. Radio Technician Electron. XX(7), 1550–1553 (1975)

    Google Scholar 

  118. T. Gurney, F. Hutchinson, R.D.J. Young, Chem. Phys. 42, 3939 (1965)

    Google Scholar 

  119. J.P. Jones, Nature 211, 479 (1966)

    Google Scholar 

  120. G.D.W. Smith, J.S. Anderson, Surf. Sci. 24, 459 (1971)

    Google Scholar 

  121. W.R. Graham, R.A. Reed, F.J. Hutchinson, Appl. Phys. 43, 295 (1972)

    Google Scholar 

  122. J.P. Jones, A.D. Martin, Surf. Sci. 41, 559 (1974)

    Google Scholar 

  123. A.P. Janssen, J.P. Jones, Surf. Sci. 41, 257 (1974)

    Google Scholar 

  124. G.L. Kellogg, Surf. Sci. 192, 879 (1987)

    Google Scholar 

  125. O. Nishikawa, Y. Tsunahima, E. Nomura, M. Wada, S. Horie, M. Shitata, T. Yoshimara, R. Uemori, Surf. Sci. 126, 529 (1983)

    Google Scholar 

  126. T.T. Tsong, S.C. Wang, F.H. Liu, H. Chung, M. Ahmad, J. Vac. Sci. Technol. B1, 915 (1983)

    Article  Google Scholar 

  127. E.D.J. Boyes, Comm. Metals 26, 207 (1972)

    Article  Google Scholar 

  128. A.L. Emmanue, A.R. Moore, H.M. Pollock, Phys. Stat. Sol. 28a, 511 (1975)

    Google Scholar 

  129. R.D. French, M.H. Richman, Phil. Mag. 18, 471 (1968)

    Google Scholar 

  130. M.H. Richman, W.D. Sproul, Metallography 2, 149 (1969)

    Article  Google Scholar 

  131. N. Ohmae, A. Nakamure, S. Koike, M.J. Umeno, Vac. Sci. Technol. A5, 1367 (1987)

    Article  ADS  Google Scholar 

  132. S.V. Krishnaswamy, R. Messier, Y.S. Ng, T.T. Tsong, S.B.J. McLane, Non Cryst. Solids. 35(36), 531 (1980)

    Google Scholar 

  133. S.V. Krishnaswamy, R. Messier, S.B. Mclane, Y.S. Ng, T.T. Tsong, Thin Solid Film 79(21) (1981)

    Google Scholar 

  134. S.V. Krishnaswamy, R. Messier, C.S. Wu, S.B. McLane, T.T. Tsong, J. Vac. Set Technol. 18, 309 (1981)

    Google Scholar 

  135. K. Rendulic, E.W. Mueller, J. Appl. Phys. 38, 550 (1967)

    Article  ADS  Google Scholar 

  136. C.C. Schubert, C.L. Page, B. Ralph, Eiectrochima Acta 18, 33 (1973)

    Article  Google Scholar 

  137. G. Bauer, M.J. de Keisch, Physique 47(7), 189 (1986)

    Google Scholar 

  138. O. Nishikawa, T. Utsumi, J. Appl. Phys. 44, 955 (1983)

    Article  ADS  Google Scholar 

  139. W.R. Graham, F. Hutchinson, D.A. Reed, J. Appl. Phys. 44, 5155 (1973)

    Article  ADS  Google Scholar 

  140. E.S. Machlin, A. Freilich, D.C. Agrawal, J.J. Burton, C.L. Briant, J. Microsc. 104, 127 (1975)

    Article  Google Scholar 

  141. J.A. Panitz, Rev. Sci. Instrum. 56, 572 (1985)

    Article  ADS  Google Scholar 

  142. J.A. Panitz, I. Giaever, Ultramicroscopy 6, 3 (1988)

    Article  Google Scholar 

  143. H. Norden, K.M. Bowkett, J. Sci. Instrum. 44, 238 (1967)

    Article  ADS  Google Scholar 

  144. B. Loberg, H. Norden, Phil. Mag. 16, 1147 (1967)

    Article  ADS  Google Scholar 

  145. B. Loberg, H. Norden, Proceedings of 4th European Regional Conference on Electron Microscopy, Rome, p. 251 (1968)

    Google Scholar 

  146. D.A. Smith, K.M. Bowkett, Proceedings of 4th European Regional Conference on Electron Microscopy, Rome, p. 261 (1968)

    Google Scholar 

  147. K.M. Bowkett, D.A. Smith, Field-Ion Microscopy (North-Holland, Amsterdam, 1970), p. 215

    Google Scholar 

  148. M.J. Goringe, D.A. Smith, Jernkont. Ann. 155, 502 (1971)

    Google Scholar 

  149. R.M. Hatapova, L.L. Demskay, V.H. Romanova, Manufacturing techniques of carbon field emitters. PTE 3, 205-2-7 (1985)

    Google Scholar 

  150. G.N. Shyppe, Electron Emission of Metal Crystals (SAGA Publishing House, Tashkent, 1959)

    Google Scholar 

  151. I.L. Sokolskay, Application of an field emission microscope for studying of surface diffusion and self-diffusion. “Surface diffusion and spreading” under the editorship of Y.E. Geguzin, M. Nauk of pp. 108–148

    Google Scholar 

  152. V. Zayt, Diffusion in Metals (M, Il., 1958)

    Google Scholar 

  153. J.E. Lennard-Jones, Proc. Phys. Soc. 49, 140 (1937)

    Google Scholar 

  154. I.N. Staranski, R. Suhrmann, Ann. Phys. 6 Folge 1, 153 (1947)

    Google Scholar 

  155. M. Drechsler, H.-Z. Angew, Phys. 6, 341 (1954)

    Google Scholar 

  156. R. Gomer, R. Wortman, R. Lundy, J. Chem. Phys. 26, 1147 (1957)

    Google Scholar 

  157. R. Comer, J.K. Hulm, J. Chem. Phys. 27, 1363 (1957)

    Google Scholar 

  158. G. Ehrlich, F.G. Hudda, Chem. Phus. 35, 1421 (1961)

    Google Scholar 

  159. H. Fujita, J. Chem. Phys. 21, 700 (1953)

    Google Scholar 

  160. S.S. Brenner, Surl. Sci. 2, 496 (1964)

    Google Scholar 

  161. R. Gomer, R. Wortman, R. Lundy, J. Chem. Phus. 27, 1009 (1957)

    Google Scholar 

  162. E.W. Mueller, Z. Elektrochemie 59, 372 (1955)

    Google Scholar 

  163. R. Klein, L.B. Leder, J. Chem. Phys. 38, 1866 (1963)

    Google Scholar 

  164. R. Gomer. Field Emission and Field Ionisation (Harvard University Press, 1961)

    Google Scholar 

  165. A.J. Melmed, J. Appl. Phys. 37, 275 (1966)

    Google Scholar 

  166. L.W. Swanson, R.W. Strayer, F.M. Charbonnier-, Surf. Sci. 2, 177 (1964)

    Article  ADS  Google Scholar 

  167. A.G. Naymovec, Solid State Phys. 6, 2088 (1964)

    Google Scholar 

  168. H. Utsugi, R. Gomer, J. Chem. Phys. 37, 1706 (1962)

    Google Scholar 

  169. Y.V. Zybenko, I.L. Sokolskay, Radio Technician Electron. 9, 1467 (1962)

    Google Scholar 

  170. B.V. Bondarenko, V.Y. Raevsky, E.P. Sheshin, Field electron emission carbon fibers. Theses of reports of ShM of the All-Union symposium on not heated cathodes, Tomsk, pp. 47–48 (1980)

    Google Scholar 

  171. E.P. Sheshin, in Emission characteristics carbon fibers. Physical Processes in Devices Electronic and Laser (Tekhnikiyu-M: MFTI, 1980), pp. 6–10

    Google Scholar 

  172. E.P. Sheshin, Field emission of carbon fibers. Ultramicroscopy 79, 101–108 (1999)

    Google Scholar 

  173. B.V. Bondarenko, Y.L. Rybakov, E.P. Sheshin, Field electron emission of carbon fiber. Radio Technician Electron. Eng. 27(8), 1593–1597 (1982)

    Google Scholar 

  174. B.V. Bondarenko, Y.L. Pybakov, E.P. Sheshin, Field electron and field ion microscopy of the emitting surface of carbon fiber. Theses of reports of III conference on field ionic microscopy, Sverdlovsk, p. 30 (1982)

    Google Scholar 

  175. F.G.L. Van Oostrom, Validity of the Fowler–Nordheim model for field electron emission. Philips Res. Rept. 21(1), 1–102 (1966)

    Google Scholar 

  176. A.L. Suvorov, E.P. Sheshin, V.P. Babaev, Influence of adsorption of residual gases on emission properties of carbon materials. ZhTF 66(9), 164–169 (1966)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nikolay Egorov .

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Egorov, N., Sheshin, E. (2017). Experimental Equipment and Technique. In: Field Emission Electronics. Springer Series in Advanced Microelectronics, vol 60. Springer, Cham. https://doi.org/10.1007/978-3-319-56561-3_2

Download citation

Publish with us

Policies and ethics