Experimental Equipment and Technique

  • Nikolay EgorovEmail author
  • Evgeny Sheshin
Part of the Springer Series in Advanced Microelectronics book series (MICROELECTR., volume 60)


This chapter presents the field emission electron microscope, its technical characteristics and various modern construction of microscopes. A particular attention is paid to analyzing full energies of the electrons and universal constructions of field electron microscopes that are the main branch of development of microscopy and spectroscopy. The most popular practical techniques of manufacture of tip field emitters from different materials.


Field Emission Cone Angle Adsorbed Atom Electron Work Function Gear Wheel 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    E.W. Mueller, Electronenmicroskopishe Beobachtungen von Feldkathoden. Zs. f. Phys. 106, 541–550 (1937)Google Scholar
  2. 2.
    M. Drechsler, Erwin Miller and the early development of field emission microscopy. Surf. Sci. 70, 18 (1978)Google Scholar
  3. 3.
    R. Gomer, Field Emission and Field Ionization (Harvard University Press, 1961)Google Scholar
  4. 4.
    R. Comer, Field emission and field ionization and field desorption. Surf. Sci. 299/300, 129–152 (1994)Google Scholar
  5. 5.
    Y. Groshkovsky, Equipment of High Vacuum (M. Mir, 1975)Google Scholar
  6. 6.
    M. Benjamin, R.O. Jenkins, The distribution of autelectronic emission from single crystal metal points. Proc. Rotal Soc. Ser. A. 18(981), 225–236 (1942)Google Scholar
  7. 7.
    V.I. Makuha, Research of adsorption and electron emission of films of cesium on a tungsten monocrystal. Phys. Solid Body 9(1), 150–156 (1967)Google Scholar
  8. 8.
    B.V. Bondarenko, V.A. Kyznetsov, Research of mechanical strength of film field emission cathode from chrome. GTF XLII, 1093–1095 (1972)Google Scholar
  9. 9.
    E.P. Sheshin, N.B. Pogibelskay, in Research of mechanical strength of film field emission cathode from niobium. Physical Processes in Devices of Electronic Equipment, pp. 15–18 (M. MIPT, 1980)Google Scholar
  10. 10.
    D. Zimmerlan, R. Gomer, Temperature regulator for holders of field emission cathodes. Devices Sci. Res. 7, 171–173 (1965)Google Scholar
  11. 11.
    M. Pichand, A. Mueller, M. Drecheer, Temperature distribution along metal tips (for field emission microscopy and the study of surface phenomena). Surf. Sci. 26(1), 14–20 (1971)Google Scholar
  12. 12.
    O.P. Astahov, E.P. Sheshin, others, Direct measurement of temperature of the graphite field emission cathode. Radio Tech. Electron Electron. 31(5), 1045–1046 (1986)Google Scholar
  13. 13.
    O.P. Astahov, V.I. Makyha, E.P. Sheshin, Temperature condition of graphite field emission cathode with the developed working surface. Radio Tech. Electron. (USSR) XXXIV(6), 1310–1312 (1989)Google Scholar
  14. 14.
    B.H. Mosienkov, V.A. Seliverstov, E.P. Sheshin, other, System for measurement of field emission characteristics of the field emitter. PTE 2, 204–206 (1991)Google Scholar
  15. 15.
    S.V. Denbnovetskiy, A.B. Leshinin, G.F. Semenov, Transformation of information on the new memorable EBT (M.: Energoizdat, 1984)Google Scholar
  16. 16.
    S.V. Denbnovetskiy, B.H. Mosienkov, T.V. Temirazeva, other, Selection and information transfer. Kiev: Sci. Thought 45, 114 (1978)Google Scholar
  17. 17.
    V.A. Kyznetsov, E.P. Sheshin, Technique and application of analyzers of a power range of field emission electrons. PTE 5, 7–16 (1972)Google Scholar
  18. 18.
    E.W. Mueller, Z. Physik. 120, 261 (1943)Google Scholar
  19. 19.
    A.L. Suvorov, A.F. Bobkov, B.Y. Kyznetsov, S.B. Zaytsev, Field emission microscope for research of emission properties of faces of monocrystals. PTE 4, 248–250 (1979)Google Scholar
  20. 20.
    E.W. Plummer, R.D. Yong, Field emission studies of electronic energy levels of absorbed atoms. Phys. Rev. B1, 2088–2109 (1970)Google Scholar
  21. 21.
    L.W. Swanson, L.C. Crouser, Phys. Rev. 163, 622 (1967)ADSCrossRefGoogle Scholar
  22. 22.
    D.R. Bowman, R. Gomer, K. Mutelib, M. Tringides, Surf. Sci. 138, 581 (1984)Google Scholar
  23. 23.
    R. Gomer, A. Auerbach, Surf. Sci. 167, 493 (1986)Google Scholar
  24. 24.
    R.D. Young, E.W. Mueller, Experimental measurement of the total-energy distribution of field-emitted electrons. Phys. Rev. 113, 115–120 (1959)Google Scholar
  25. 25.
    K. Kowasaki, K. Senzaki, Y. Kumashiro, A. Okada, Energy distribution of field-emitted electron from TiC single crystal. Surf. Sci. 62, 313–316 (1977)Google Scholar
  26. 26.
    M.I. Elinson, Radio Technician Electron. 4, 140 (1959)Google Scholar
  27. 27.
    A.G. Ghdan, M.I. Elinson, Radio Technician Electron. 6, 671 (1961)Google Scholar
  28. 28.
    A.G. Ghdan, M.I. Elinson, A.B. Sandomirsky, Radio Technician Electron. 7, 670 (1963)Google Scholar
  29. 29.
    I.L. Sokolskay, G.P. Sherbakov, Solid State Phys. 3, 167 (1961)Google Scholar
  30. 30.
    G.P. Sherbakov, I.L. Sokolskay, Solid State Phys. 4, 3526 (1962)Google Scholar
  31. 31.
    I.V. Mileshkina, I.L. Sokolskay, Solid State Phys. 5, 2501 (1963)Google Scholar
  32. 32.
    G.N. Fursey, P.G. Shlahtenko, Solid State Phys. 12, 2645 (1970)Google Scholar
  33. 33.
    F.G.I. Van Oostrom, Validity of the Fowler–Nordheim model for field electron emission. Philips Res. Rept. 21(1), 1–102 (1966)Google Scholar
  34. 34.
    V.A. Kyznetsov, E.P. Sheshin, Power range of the field emission electrons emitted from microledges on tungsten, an edge. Radio Eng. Edektronik. 20(7), 1550–1553 (1975)Google Scholar
  35. 35.
    G.L.R. Mair, D.C. Grindrod, M.S. Mousa, Deam-energy distribution measurements of liquid gallium field-ion sources. J. Phys. D: Appl. Phys. 16, 209–213 (1983)Google Scholar
  36. 36.
    V.A. Ivanov, T.S. Kirsanova, T.A. Tumareva, Field emission spectroscopy of the tungsten covered with layers of barium and an oxide of barium. Phys. Solid Body 23(3), 664–668 (1981)Google Scholar
  37. 37.
    C.I. Workowski, I.J. Czyzewski, Field emission spectrometer whis an electron multiplier operating in the phase-sensitive detection system. Acta Physia Polonica. A39(5), 523–529 (1971)Google Scholar
  38. 38.
    A.S. Kypryshkin, L. Rybakov Yu, E.P. Sheshin, The analyzer of total energies of field emissions electrons with the retarding potential. PTE 1, 151–153 (1990)Google Scholar
  39. 39.
    A.S. Kupryashkin, L. Rybakov Yu, E.P. Shehin, Field-electron total energy analyzer with retarding potential. Instr. Experim. Tech. 33(1), 155–157 (1990)Google Scholar
  40. 40.
    R.D. Young, C.E. Kuyatt, Resolution determination in field emission energy analysers. Rev. Scient. Instrum. 39(10), 1477–1480Google Scholar
  41. 41.
    R.Z. Bahtizin, U.M. Ymagyzin, Analyzer of a energy spectrum of field emission electrons. PTE 3, 212–216 (1984)Google Scholar
  42. 42.
    R.Z. Bahtizin, V.M. Lobanov, K.G. Yu, M. Umagyzin Yu, Calculation of trajectories of electrons in electrostatistical lenses. Radio Technician Electron. 4, 1556–1558 (1988)Google Scholar
  43. 43.
    C. Kuyatt, E. Plammer, The reflecting analyzer energy for research of field emission electrons. Devices Sci. Res. 1, 122–126 (1972)Google Scholar
  44. 44.
    N. Kempin, K. Klapper, G. Ertl, The analyzer for removal of energy distributions of field emission electrons. Devices Sci. Invest. 9, 52–55 (1978)Google Scholar
  45. 45.
    S.I. Shkyratov, S.H. Ivanov, S.N. Shilimanov, Field emission laboratory—the field emission electronic spectrometer combined with a field ionic/electronic microscope. PTE 4, 126–134 (1999)Google Scholar
  46. 46.
    C. Oshima, H. Fujii, T. Yamashita et al., Construction of low-temperature gun and high-resolution field emission spectra from a Nb superconductor. Appl. Surt. Sci. 146, 143–147 (1999)Google Scholar
  47. 47.
    V.I. Maryin, E.G. Kalinychev, N. Lahov Yu, The vacuum lock unit with the AVSh-1 manipulator. PTE 3, 263–264 (1981)Google Scholar
  48. 48.
    A.A. Isaev, Installation for transfer of the holder with samples from a lock on the manipulator of the ultrahigh-vacuum camera. PTE 6, 185–186 (1987)Google Scholar
  49. 49.
    R.I.-G. Garber, G.I. Dranova, I.M. Mihaylovsky, G.G. Chechelnickiy. A.S. USSR № 410488, of 13.04.1971. Cl N01j 37/285Google Scholar
  50. 50.
    M. Wada, M. Konishi, O. Nishikawa, Binding states of Ga and Sn on W and Mo: structures, evaporation field and its temperature dependence. Surt. Sci. 100(2), 439–452 (1980)Google Scholar
  51. 51.
    M.P. Ardashev, A.O. Golubok, N.F. Fedorov others, Folding electronic and ion microscope. PTE 1, 222–223 (1981)Google Scholar
  52. 52.
    V.N. Ilin, E.P. Sheshin, D.A. Shomin, Universal field electron—field ion microscope. PTE 2, 193–197 (1983)Google Scholar
  53. 53.
    A.c. 652403 USSR, Cl. F16K51/02 of 24.06.77. The ultrahigh-vacuum all-metal bakeable lock valve. K.D. Danilov—It is published 15.03.1979, Bulletin No. 10Google Scholar
  54. 54.
    A.c. 610081 USSR, Cl. G05F1/12 of 08.07.76. Stabilizer of alternating current. E.P. Sheshin, V.A. Kyznetsov—It is published 05.06.78, Bulletin No. 21Google Scholar
  55. 55.
    A.c. 528637 USSR, Cl. N01 j37/26. The camera of the combined field emission-field ion microscope. V.A. Kuznetsov, E.P. Sheshin—It is published 15.09.76, Bulletin No. 34Google Scholar
  56. 56.
    M.K. Dib, The precision manipulator for movement of a sample and Faraday’s cylinder in a low-voltage elektronograf. Devices Sci. Res. 1, 43–48 (1976)Google Scholar
  57. 57.
    V.A. Roer, Installation of the manipulator for movement of a sample in ultrahigh vacuum of an electronic spectrometer for research of spatial distribution of photoemission. Devices Sci. Res. 3, 128–130 (1980)Google Scholar
  58. 58.
    H. Dusterhort, B. Vishot, The manipulator for movement of samples in ultrahigh-vacuum installations. PTE 1, 124–125 (1983)Google Scholar
  59. 59.
    I. Dey, H. Li, F. Dgoyna, The ultra high vacuum three-axis manipulator for research surfaces. Prib. Sci. Res. 6, 107–111 (1990)Google Scholar
  60. 60.
    Ac. 764007 SSSR, Cl. HO1 J37/285. The turning cartridge for samples of an field ion field electron microscope. S.M. Borisov, E.P. Sheshin, D.A. ShominGoogle Scholar
  61. 61.
    E.W. Mueller, Feldemission. Ergebnisse d. exat. Naturwiss. XXVII, 290–360 (1953)Google Scholar
  62. 62.
    B.V. Bondarenko, C.A. Yu, E.P. Sheshin, The controlled high-voltage power supply. PTE 1, 206–207 (1986)Google Scholar
  63. 63.
    A.S. Kyprashkin, A.G. Shahovskoy, E.P. Sheshin, The stabilized high-voltage power supply. PTE 4, 238–223 (1991)Google Scholar
  64. 64.
    V.A. Granovsky, T.N. Siraya, Methods of Processing of Experimental Data at Measurements (L.: Energoizdat, Leningr. otd., 1990)Google Scholar
  65. 65.
    G. Maks, Methods and Technology of Processing of Signals at Physical Measurements (World, 1983)Google Scholar
  66. 66.
    B.V. Bondarenko, A.U. Cherepanov, E.P. Sheshin, System for measurement of emissive characteristics of field emission cathodes. PTE 1, 245 (1987)Google Scholar
  67. 67.
    M.K. Miller, G.D.W. Smith, Atom Probe Microanalysis: Principles and Applications to Materials Problems (M.R.S., Pittsburg, Pennsylvania, 1989) [Translation: M. Miller, G. Smith, The Probe Analysis in Field Ion Microscopy, M.: World, 1993]Google Scholar
  68. 68.
    S.J. Savage, F.H. Froes, Metals 36(4), 20 (1984)Google Scholar
  69. 69.
    A.J. Melmed, R.J. de Klein, Physique 47(2), 287 (1986)Google Scholar
  70. 70.
    T. Masumoto, I. Ohnaka, A. Inoue, M. Hagiwara, Scripta. Metall 15, 293 (1981)Google Scholar
  71. 71.
    I. Ohnaka, I. Yamauchi, T. Ohmichi, T. Ichiryu, T. Mitsushima, T. Fukusako, in Rapidly Quenched Metals, ed. by S. Steeb, H. Warlimont (1985)Google Scholar
  72. 72.
    I. Ohnaka, T. Fukusako, T. Ohmschi, T. Masumoto, A. Inoue, M. Hagiwara, in Proceedings of 4th International Conference on Rapidly Quenched Metals, ed. T. Masumoto, K. Suzuki (Japan Institute of Metals, 1982), p. 31Google Scholar
  73. 73.
    J. Liu, L. Arnberg, N. Backstrom, S. Savage, Mater Sci. Eng. 98, 21 (1988)CrossRefGoogle Scholar
  74. 74.
    R. Maringer, C.E. Mobley, in Proceedings of 3rd International Conference on Rapidly Quenched Metals, vol. 1, ed. by B. Cantror (Metals Society, London, 1978), p. 49Google Scholar
  75. 75.
    Y. Jashiro, T. Terao, A new method of specimen preparation for FIM and FEM. Surf. Sci. 67(2), 605–610 (1977)Google Scholar
  76. 76.
    A.R. Bhatti, B. Cantor, D.S. Joag, G.D.W. Smith, Phil. Mag. B. 52, 63 (1985)Google Scholar
  77. 77.
    Pat. USA 414 3292 Cl/ 313-336, 25.06.76. Field emission cathode of glassy carbon and method of preparation. S. Hosoki, H. OkanoGoogle Scholar
  78. 78.
    R.J. Morgan, Sci. Instrum. 44, 808 (1967)Google Scholar
  79. 79.
    M.I. Elinson, G.F. Vasiliev, Field Electron Emission (GIFML, Moscow, 1958)Google Scholar
  80. 80.
    I.S. Andreev, Gyrn. Tehnich. Fiz. 22(9), 1428–1441 (1952)Google Scholar
  81. 81.
    E.W. Mueller, Zs. F. Phys. 108(9–10), 668–680 (1938)Google Scholar
  82. 82.
    E.W. Mueller, Zs. F. Phys. 102, (11–12), 734–761 (1936)Google Scholar
  83. 83.
    R. Haefez, Zs. F. Phys. 116(9–10), 604–609 (1940)Google Scholar
  84. 84.
    M. Benjamin, R.O. Jenkins, Nature 143, 599 (1939)Google Scholar
  85. 85.
    M. Benjamin, R.O. Jenkins, Phil. Mag. 26(12), 1049–1062 (1938)Google Scholar
  86. 86.
    M. Benjamin, R.O. Jenkins, Proc. Roy. Soc. 176(10), 262–279 (1940)Google Scholar
  87. 87.
    W.J. Tegart, The electrolytic and Chemical Polishing of Metals (Pergamon Press, Oxford, 1959)Google Scholar
  88. 88.
    P.A. Jacquet, Metall. Rev. 1, 157 (1961)Google Scholar
  89. 89.
    B.M. Tsarev, Achievements Phys. Sci. 36(2), 181–209 (1948)Google Scholar
  90. 90.
    M.I. Elinson, V.A. Gorkov, G.F. Vasiliev, Mag. Radio Eng. Electron. 2(2) (1957)Google Scholar
  91. 91.
    M.B. Benyminovich, B.G. Smirnov, G.N. Shyppe, Mag. Phys. Phys. (release 10) 23, 1690–1699 (1953)Google Scholar
  92. 92.
    A.L. Syvorov, Devices Technol. Exp. 5, 5 (1969)Google Scholar
  93. 93.
    E.P. Sheshin, Structure of a Surface and Field Emission Properties of Carbon Materials (MIPT-fizmatgiz Publishing House, 2001)Google Scholar
  94. 94.
    G.H. Freyberg, Production of thin field emitters. PTE 6, 176 (1967)Google Scholar
  95. 95.
    H.A. Hubner, Field emitter etching facility with good reproducibility. Optik 63(2), 179–183 (1983)Google Scholar
  96. 96.
    G.N. Freyberg, The improved semiconductor scheme of etching tips. PTE 5, 233–234 (1970)Google Scholar
  97. 97.
    A.J. Melmed, J.J. Carroll, Vac. Sci. Technol. 2, 1388 (1984)Google Scholar
  98. 98.
    A.J.J. Melmed, Chem. Phys. 38, 607 (1963)ADSGoogle Scholar
  99. 99.
    R.-I.G. Garber, G.I. Dranova, N.A. Mansyrov, I.M. Mihaylovsky, Devices Technol. Exp. 1, 196 (1969)Google Scholar
  100. 100.
    A.S. Kypryshkin, A.G. Shahovskoy, E.P. Sheshin, The stabilized high-voltage power supply. PTE 4, 238–239 (1991)Google Scholar
  101. 101.
    H. Lemke, T. Goddenbenrich, H.P. Bochem, U. Hartmann, C. Heiden, Improved microtips for scanning probe microscopy. Rev. Sci. Instrum. 61(10), 2538–2541 (1990)Google Scholar
  102. 102.
    V.Y. Fridman, Production field emission tips by etching. PTE 1, 227 (1974)Google Scholar
  103. 103.
    G.N. Freybrg, The improved semiconductor scheme of etching tips. PTE 5, 233–234Google Scholar
  104. 104.
    A.c. №293515 USSR. Method of production of needle cold emitters. N.I. Komyak, V.G. Pavlov, A.A. Rabinovich, V.N. Shrednik, Publication in B.I. 1975.31Google Scholar
  105. 105.
    A.c. №568981 SSSR. The device for etching field emitters. D.M. Pautov, A.V. Kocheryzhnikov. C. HO1 J 9/02 of 04.01.76. Publication in B.I., 1977, No. 30Google Scholar
  106. 106.
    G.N. Freyberg, Double bath for automatic etching tips. PTE 4, 244–245 (1972)Google Scholar
  107. 107.
    E. Mueller, T. Tsong, Field Jon Microcopy (American Elsevier Publishing Company, Juc., New York, 1969)Google Scholar
  108. 108.
    V.I. Afanasev, V.M. Tybaev, T.I. Karpenko, T.I. Ivchenko, Electrochemical receiving thin needles in a stream of electrolyte. PTE 1, 195–196 (1983)Google Scholar
  109. 109.
    H. Morikawa, K. Goto, Rev. Sci. V. Instrum. 59, 2195 (1988)Google Scholar
  110. 110.
    H. Morikawa, K. Goto, F. Iwatsu, T.J. de Terao, Physique 46(6), 589 (1987)Google Scholar
  111. 111.
    A.C. USSR 213200 Kl.HO1 J 1/30 of 8.06.66. A way of production of needle fieldemitters. R.-I.G. Garber, V.I. Afanasyev, I.M. MikhaylovskyGoogle Scholar
  112. 112.
    J.M. Walls, H.N. Southworth, B.J. Rushton, The preparation of Field electron/field ion emitters by ion etching. Vacuum 24(10), 475 (1975)Google Scholar
  113. 113.
    M. Hellsing, Mater. Sci. Technol. 4, 824 (1988)Google Scholar
  114. 114.
    M. Drechsler, J.P. Prulhiere, Procedes et dispositifs pour usiner, reaffuter, chanffer et nettoger des pointes par bombardment electronigue, patent of France No. 2098954, kl. B 23 K 15/00 of 30.07.70Google Scholar
  115. 115.
    G.I. Dranova, B.V. Kylko, I.M. Mihaylovsky, Method of production of the needle field emission cathode, a.s. 630669, Cl. HO1 J9/02, of 27.06.77Google Scholar
  116. 116.
    J.A. Liddle, A. Norman, A. Cerezo, C.R.M.J. de Grovenor, Physique 49(6), 509 (1988)Google Scholar
  117. 117.
    V.A. Kyznetsov, E.P. Sheshin, Energy spectrum of the field electrons emitted from microledges on a tungsten tip. Radio Technician Electron. XX(7), 1550–1553 (1975)Google Scholar
  118. 118.
    T. Gurney, F. Hutchinson, R.D.J. Young, Chem. Phys. 42, 3939 (1965)Google Scholar
  119. 119.
    J.P. Jones, Nature 211, 479 (1966)Google Scholar
  120. 120.
    G.D.W. Smith, J.S. Anderson, Surf. Sci. 24, 459 (1971)Google Scholar
  121. 121.
    W.R. Graham, R.A. Reed, F.J. Hutchinson, Appl. Phys. 43, 295 (1972)Google Scholar
  122. 122.
    J.P. Jones, A.D. Martin, Surf. Sci. 41, 559 (1974)Google Scholar
  123. 123.
    A.P. Janssen, J.P. Jones, Surf. Sci. 41, 257 (1974)Google Scholar
  124. 124.
    G.L. Kellogg, Surf. Sci. 192, 879 (1987)Google Scholar
  125. 125.
    O. Nishikawa, Y. Tsunahima, E. Nomura, M. Wada, S. Horie, M. Shitata, T. Yoshimara, R. Uemori, Surf. Sci. 126, 529 (1983)Google Scholar
  126. 126.
    T.T. Tsong, S.C. Wang, F.H. Liu, H. Chung, M. Ahmad, J. Vac. Sci. Technol. B1, 915 (1983)CrossRefGoogle Scholar
  127. 127.
    E.D.J. Boyes, Comm. Metals 26, 207 (1972)CrossRefGoogle Scholar
  128. 128.
    A.L. Emmanue, A.R. Moore, H.M. Pollock, Phys. Stat. Sol. 28a, 511 (1975)Google Scholar
  129. 129.
    R.D. French, M.H. Richman, Phil. Mag. 18, 471 (1968)Google Scholar
  130. 130.
    M.H. Richman, W.D. Sproul, Metallography 2, 149 (1969)CrossRefGoogle Scholar
  131. 131.
    N. Ohmae, A. Nakamure, S. Koike, M.J. Umeno, Vac. Sci. Technol. A5, 1367 (1987)ADSCrossRefGoogle Scholar
  132. 132.
    S.V. Krishnaswamy, R. Messier, Y.S. Ng, T.T. Tsong, S.B.J. McLane, Non Cryst. Solids. 35(36), 531 (1980)Google Scholar
  133. 133.
    S.V. Krishnaswamy, R. Messier, S.B. Mclane, Y.S. Ng, T.T. Tsong, Thin Solid Film 79(21) (1981)Google Scholar
  134. 134.
    S.V. Krishnaswamy, R. Messier, C.S. Wu, S.B. McLane, T.T. Tsong, J. Vac. Set Technol. 18, 309 (1981)Google Scholar
  135. 135.
    K. Rendulic, E.W. Mueller, J. Appl. Phys. 38, 550 (1967)ADSCrossRefGoogle Scholar
  136. 136.
    C.C. Schubert, C.L. Page, B. Ralph, Eiectrochima Acta 18, 33 (1973)CrossRefGoogle Scholar
  137. 137.
    G. Bauer, M.J. de Keisch, Physique 47(7), 189 (1986)Google Scholar
  138. 138.
    O. Nishikawa, T. Utsumi, J. Appl. Phys. 44, 955 (1983)ADSCrossRefGoogle Scholar
  139. 139.
    W.R. Graham, F. Hutchinson, D.A. Reed, J. Appl. Phys. 44, 5155 (1973)ADSCrossRefGoogle Scholar
  140. 140.
    E.S. Machlin, A. Freilich, D.C. Agrawal, J.J. Burton, C.L. Briant, J. Microsc. 104, 127 (1975)CrossRefGoogle Scholar
  141. 141.
    J.A. Panitz, Rev. Sci. Instrum. 56, 572 (1985)ADSCrossRefGoogle Scholar
  142. 142.
    J.A. Panitz, I. Giaever, Ultramicroscopy 6, 3 (1988)CrossRefGoogle Scholar
  143. 143.
    H. Norden, K.M. Bowkett, J. Sci. Instrum. 44, 238 (1967)ADSCrossRefGoogle Scholar
  144. 144.
    B. Loberg, H. Norden, Phil. Mag. 16, 1147 (1967)ADSCrossRefGoogle Scholar
  145. 145.
    B. Loberg, H. Norden, Proceedings of 4th European Regional Conference on Electron Microscopy, Rome, p. 251 (1968)Google Scholar
  146. 146.
    D.A. Smith, K.M. Bowkett, Proceedings of 4th European Regional Conference on Electron Microscopy, Rome, p. 261 (1968)Google Scholar
  147. 147.
    K.M. Bowkett, D.A. Smith, Field-Ion Microscopy (North-Holland, Amsterdam, 1970), p. 215Google Scholar
  148. 148.
    M.J. Goringe, D.A. Smith, Jernkont. Ann. 155, 502 (1971)Google Scholar
  149. 149.
    R.M. Hatapova, L.L. Demskay, V.H. Romanova, Manufacturing techniques of carbon field emitters. PTE 3, 205-2-7 (1985)Google Scholar
  150. 150.
    G.N. Shyppe, Electron Emission of Metal Crystals (SAGA Publishing House, Tashkent, 1959)Google Scholar
  151. 151.
    I.L. Sokolskay, Application of an field emission microscope for studying of surface diffusion and self-diffusion. “Surface diffusion and spreading” under the editorship of Y.E. Geguzin, M. Nauk of pp. 108–148Google Scholar
  152. 152.
    V. Zayt, Diffusion in Metals (M, Il., 1958)Google Scholar
  153. 153.
    J.E. Lennard-Jones, Proc. Phys. Soc. 49, 140 (1937)Google Scholar
  154. 154.
    I.N. Staranski, R. Suhrmann, Ann. Phys. 6 Folge 1, 153 (1947)Google Scholar
  155. 155.
    M. Drechsler, H.-Z. Angew, Phys. 6, 341 (1954)Google Scholar
  156. 156.
    R. Gomer, R. Wortman, R. Lundy, J. Chem. Phys. 26, 1147 (1957)Google Scholar
  157. 157.
    R. Comer, J.K. Hulm, J. Chem. Phys. 27, 1363 (1957)Google Scholar
  158. 158.
    G. Ehrlich, F.G. Hudda, Chem. Phus. 35, 1421 (1961)Google Scholar
  159. 159.
    H. Fujita, J. Chem. Phys. 21, 700 (1953)Google Scholar
  160. 160.
    S.S. Brenner, Surl. Sci. 2, 496 (1964)Google Scholar
  161. 161.
    R. Gomer, R. Wortman, R. Lundy, J. Chem. Phus. 27, 1009 (1957)Google Scholar
  162. 162.
    E.W. Mueller, Z. Elektrochemie 59, 372 (1955)Google Scholar
  163. 163.
    R. Klein, L.B. Leder, J. Chem. Phys. 38, 1866 (1963)Google Scholar
  164. 164.
    R. Gomer. Field Emission and Field Ionisation (Harvard University Press, 1961)Google Scholar
  165. 165.
    A.J. Melmed, J. Appl. Phys. 37, 275 (1966)Google Scholar
  166. 166.
    L.W. Swanson, R.W. Strayer, F.M. Charbonnier-, Surf. Sci. 2, 177 (1964)ADSCrossRefGoogle Scholar
  167. 167.
    A.G. Naymovec, Solid State Phys. 6, 2088 (1964)Google Scholar
  168. 168.
    H. Utsugi, R. Gomer, J. Chem. Phys. 37, 1706 (1962)Google Scholar
  169. 169.
    Y.V. Zybenko, I.L. Sokolskay, Radio Technician Electron. 9, 1467 (1962)Google Scholar
  170. 170.
    B.V. Bondarenko, V.Y. Raevsky, E.P. Sheshin, Field electron emission carbon fibers. Theses of reports of ShM of the All-Union symposium on not heated cathodes, Tomsk, pp. 47–48 (1980)Google Scholar
  171. 171.
    E.P. Sheshin, in Emission characteristics carbon fibers. Physical Processes in Devices Electronic and Laser (Tekhnikiyu-M: MFTI, 1980), pp. 6–10Google Scholar
  172. 172.
    E.P. Sheshin, Field emission of carbon fibers. Ultramicroscopy 79, 101–108 (1999)Google Scholar
  173. 173.
    B.V. Bondarenko, Y.L. Rybakov, E.P. Sheshin, Field electron emission of carbon fiber. Radio Technician Electron. Eng. 27(8), 1593–1597 (1982)Google Scholar
  174. 174.
    B.V. Bondarenko, Y.L. Pybakov, E.P. Sheshin, Field electron and field ion microscopy of the emitting surface of carbon fiber. Theses of reports of III conference on field ionic microscopy, Sverdlovsk, p. 30 (1982)Google Scholar
  175. 175.
    F.G.L. Van Oostrom, Validity of the Fowler–Nordheim model for field electron emission. Philips Res. Rept. 21(1), 1–102 (1966)Google Scholar
  176. 176.
    A.L. Suvorov, E.P. Sheshin, V.P. Babaev, Influence of adsorption of residual gases on emission properties of carbon materials. ZhTF 66(9), 164–169 (1966)Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Saint Petersburg State UniversitySt. PetersburgRussia
  2. 2.MIPTDolgoprudny, Moscow regionRussia

Personalised recommendations