Advertisement

Basic Principles

  • Nikolay EgorovEmail author
  • Evgeny Sheshin
Chapter
Part of the Springer Series in Advanced Microelectronics book series (MICROELECTR., volume 60)

Abstract

This chapter describes the basic principles of Fowler–Nordheim theory of field emission from metals and classical Morgulis-Stratton theory of field emission from semiconductors. Then it discusses the theoretical basics of Müller field emission microscope as the first experimental device which allowed to test the main conclusions of the classical theory of field electron emission. Disadvantages of these classical theories and limits to their applicability are discussed.

Keywords

Field Emission Potential Barrier Work Function Field Electron Emission Field Emission Microscope 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    N. Mott, J. Sneddon, Wave Mechanics and Its Applications. M.: Nauka, (1966), 427 pGoogle Scholar
  2. 2.
    A. Messia, Quantum Mechanics (in 2 volumes). M.: Nauka (1979)Google Scholar
  3. 3.
    R.H. Fowler, L. Nordheim, Electron emission in intense electric field. Proc. Roy. Soc. A. 119(781), 173–181 (1928)Google Scholar
  4. 4.
    L. Nordheim, Die Theorie der Elektronemission der Metalle. Physikalische Leitschrift. (1929). Bd. 30. N7. S.117–196Google Scholar
  5. 5.
    A. Modinos, Field, thermo and secondary electron spectroscopy. M.: Nauka, (1990), 320 pGoogle Scholar
  6. 6.
    R. Fischer, H. Neumann, Field emission of Semiconductors. M.: Nauka, (1971), 216 pGoogle Scholar
  7. 7.
    M.I. Elinson (ed.), The cold cathodes. M.: Sov. Radio, (1974), 336 pGoogle Scholar
  8. 8.
    E.P. Sheshin, Surface structure and field emission properties of carbon materials. M.: Publishing House of the MIPT. Fizmatkniga (2001), 287 pGoogle Scholar
  9. 9.
    L.N. Dobretsov, M.V. Gomoyunova, Emission Electronics. M.: Nauka (1964), 364 pGoogle Scholar
  10. 10.
    M. Green (ed.), The Surface Properties of Solids. M.: Mir, (1972), 432 pGoogle Scholar
  11. 11.
    A.I. Anselm, Introduction to the Theory of Semiconductors. M.: Nauka (1978), 616 pGoogle Scholar
  12. 12.
    M. Szilagyi, Electron and Ion Optics. M.: Mir, (1990), 639 pGoogle Scholar
  13. 13.
    L.D. Landau, E.M. Livshits, Mechanics. M.: “Nauka” (1965), 204 pGoogle Scholar
  14. 14.
    L.D. Landau, E.M. Livshits, Statistical Physics. Part 1. M.: “Nauka” (1966)Google Scholar
  15. 15.
    Landau L.D., Lifshitz E.M. Quantum Mechanics. Non-relativistic theory. M.: Nauka (1974), 752 pGoogle Scholar
  16. 16.
    N.D. Lang, W. Kohn. Theory of metal surfaces. Phys. Rev. B. 1(12), 4555–4568 (1970)Google Scholar
  17. 17.
    M.I. Elinson, G.F. Vasiliev, Field emission. M.: Fizmatgiz (1958), 272 pGoogle Scholar
  18. 18.
    A.L. Suvorov, The structure and properties of the Surface Atomic Layers of Metal. M. : Energoizdat (1989), 296 pGoogle Scholar
  19. 19.
    D.A. Ovsyannikov, N.V. Egorov, Mathematical modeling of systems for formation of electron and ion beams. SPb.: Publishing of St. Petersburg State University (1998), 276 pGoogle Scholar
  20. 20.
    N.V. Egorov, A.G. Karpov, Diagnostic Information and Expert Systems. SPb., St. Petersburg State University Publishing House (2002), 472 pGoogle Scholar
  21. 21.
    G. Wentzel, Zeits. f. Phys. (1926), 38, 516Google Scholar
  22. 22.
    H.A. Kramers, Zeits. f. Phys. (1926), 39, 828Google Scholar
  23. 23.
    L. Brillouhin, Comptes rendus. (1926), 183, 549Google Scholar
  24. 24.
    H.A. Kramers, Zeit. A. Phys. (1926). Vol. 38. p. 516Google Scholar
  25. 25.
    N.V. Morgulis, To a question about the effect Schottky for compound semiconductor cathodes. ZETP, 16(11), 959–963 (1946)Google Scholar
  26. 26.
    R. Stratton, Field emission from semiconductor. Proc. Phys. Soc. B 68(430B), 746–757 (1955)ADSCrossRefGoogle Scholar
  27. 27.
    R. Stratton, Theory of field emission from semiconductors. Phys. Rev. 125(1), 67–82 (1962)ADSCrossRefzbMATHGoogle Scholar
  28. 28.
    R. Stratton, Phys. Rev. 135 (1964)Google Scholar
  29. 29.
    N.V. Egorov, V.R. Tolstyakov, Investigation of the effect of the surface state on the emission characteristics of semiconductor photo field cathodes. Surface (1996). (9), 10–13Google Scholar
  30. 30.
    N.V. Egorov, V.R. Tolstyakov, The effect of multi-particle tunneling in the field electron emission from semiconductors. Surface (1996). (9), 10–13Google Scholar
  31. 31.
    G.F. Vasiliev, Radiotehnika i Elektronika, 3(7), 962 (1958)Google Scholar
  32. 32.
    E. Mueller, T Field. Tson. Ion microscopy. M.: Metallurgia (1971), 360 pGoogle Scholar
  33. 33.
    E.V. Mueller, M. Sauton, D. Brandon et al. Field ion microscopy, ed. by J. Ren, S. Ranganathan. M .: Mir (1971), 270 pGoogle Scholar
  34. 34.
    E.W. Mueller, Phys. Z. (1936). 37, 838Google Scholar
  35. 35.
    E.W. Mueller, W. Z. Electrochem, (1957). 61, 43Google Scholar
  36. 36.
    S.A. Fridrihov, S.M. Movnin, Physical Fundamentals of Electronics. M.: Vyshaya Shkola (1982), 608 pGoogle Scholar
  37. 37.
    R. Gomer, Field Emission and Field Ionization. (Harvard University Press, Cambridge, MA, 1961)Google Scholar
  38. 38.
    R. Knox, A. Gold, Symmetry in Solids. M.: Nauka, (1970), 424 pGoogle Scholar
  39. 39.
    A. Brenac, R. Baptist, G. Chauvet, R. Meyer, Caracteristiques energetiques de cathodes a micropointes a emission de champ. Revue Phys. Appl. 22, 1819–1834 (1987)Google Scholar
  40. 40.
    C.A. Spindt, I. Brodie, L. Humphrey, E.R. Westerberg, Physical properties of thin film field emission molibdenium cones. J. Appl. Phys. 47, 5248 (1976)Google Scholar
  41. 41.
    K.L. Jensen, E.G. Zaidman, Field emission from an elliptical boss: Exact versus approximate treatment. Appl. Phys. Lett. 63 (1993) Google Scholar
  42. 42.
    M. Lampert, P. Mark, Injection Currents in Solids. M.: Mir (1973), 416 pGoogle Scholar
  43. 43.
    R.G. Forbes, Refining the application of Fowler–Nordheim theory. Ultramicroscopy. 79, 11–23 (1999)Google Scholar
  44. 44.
    E. Hantzsche, Beitrage zur Plazma-physik, 22, 325 (1982)Google Scholar
  45. 45.
    G.D. Yakovleva, Tables of Airy functions and their derivatives. M.: Nauka (1969)Google Scholar
  46. 46.
    Y.V. Kryuchenko, V.G. Litovchenko, Computer simulation of the field emission from multilayer cathodes. JVST. B14, 1934–1937 (1996)Google Scholar
  47. 47.
    M. Hollander, D. Wolfe, Non-parametric statistical methods. M.: Finansy i Statistika (1983), 518 pGoogle Scholar
  48. 48.
    S.G. Rabinovich, Measurement Errors. M.: Energia (1978), 261 pGoogle Scholar
  49. 49.
    Y. Linnik. The method of least squares and the foundations of mathematical and statistical evaluation of parameters. M.: Fizmatgiz (1962), 350 pGoogle Scholar
  50. 50.
    A. Brunetti. A fast and precise genetic algorithm for a non-linear fitting problem. Comp. Phys. Comm. 124, 204 (2000)Google Scholar
  51. 51.
    Enrico Fermi. Quantum mechanics. M.: Mir (1965). 242 pGoogle Scholar
  52. 52.
    Bohr. Atomic Physics and Human Knowledge. M.: GIIL (1961)Google Scholar
  53. 53.
    M. Kendall, A. Stewart, The Theory of Distributions. M.: Nauka (1966), 520 pGoogle Scholar
  54. 54.
    J.N. David, Probability Theory of Statistical Methods (Cambridge, 1951)Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Saint Petersburg State UniversitySt. PetersburgRussia
  2. 2.MIPTDolgoprudny, Moscow regionRussia

Personalised recommendations