Skip to main content

The Effect of Sulfur Nutrition on Glucosinolate Patterns and Their Breakdown Products in Vegetable Crops

  • Conference paper
  • First Online:
Sulfur Metabolism in Higher Plants - Fundamental, Environmental and Agricultural Aspects

Abstract

Glucosinolates (GSLs) are amino acid derived secondary metabolites naturally occurring in the order of Brassicales. They represent an important class of phytochemicals involved in plant–microbe, plant–insect, plant–animal and plant–human interactions. In Brassica vegetables GSL are known as the bioactive compounds giving the typical flavor and odor, being involved in natural pest control. Still, in high doses GSL remain highly toxic. Even though the GSL content in Brassica species is genetically fixed, breeding programs already aimed for reducing the GSL content, with the engineering of 00-varieties of rapeseed (Brassica napus) being the most prominent example. Contrary to their negative effects, GSLs are also discussed to have beneficial nutritional and health effects. But it is more their breakdown products, particularly isothiocyanates (ITCs) and nitriles, formed after hydrolysis within the glucosinolate-myrosinase-system, which the health-promoting effects can be ascribed to when taken up in low doses. Besides genetic approaches to influence GSL content and pattern and their breakdown products, little is yet known about how agronomic and particularly plant nutritional factors can alter the GSL content and pattern of their different hydrolysis products in the context of improving food quality. Therefore, the influence of the sulfur (S) supply on GSLs, ITCs and nitriles in various Brassica species, such as Indian mustard (Brassica juncea), kohlrabi (Brassica oleracea), and Chinese cabbage (Brassica rapa spp. pekinensis), are exemplarily discussed in relation to nitrogen nutrition.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ahmad A, Abraham G, Abdin MZ (1999) Physiological investigation of the impact of nitrogen and sulphur application on seed and oil yield of rapeseed (Brassica campestris L.) and mustard (Brassica juncea L. Czern. and Coss.) genotypes. J Agron Crop Sci 183:19–25

    Article  CAS  Google Scholar 

  • Bartlet E, Kiddle G, Williams I, Wallsgrove R (1999) Wound-induced increases in the glucosinolate content of oilseed rape and their effect on subsequent herbivory by a crucifer specialist. In: Simpson SJ, Mordue AJ, Hardie J (eds) Proceedings of the 10th international symposium on insect-plant relationships. Springer Netherlands, Dordrecht, pp 163–167

    Chapter  Google Scholar 

  • Bergmann W (1993) Ernährungsstörungen bei Kulturpflanzen, 3rd edn. Gustav Fischer Verlag, Jena

    Google Scholar 

  • Bilsborrow PE, Evans EJ, Zhao FJ (1993) The influence of spring nitrogen on yield, yield components and glucosinolate content of autumn-sown oilseed rape (Brassica napus). J Agric Sci 120:219–224

    Article  CAS  Google Scholar 

  • Boddupalli SS, Mein JR, James DR, Lakkanna S (2012) Induction of phase 2 antioxidant enzymes by broccoli sulforaphane: perspectives in maintaining the antioxidant activity of vitamins A, C, and E. Front Genet 3:7

    Article  PubMed  PubMed Central  Google Scholar 

  • Bones AM, Rossiter JT (1996) The myrosinase-glucosinolate system, its organisation and biochemistry. Physiol Plant 97:194–208

    Article  CAS  Google Scholar 

  • Bonnesen C, Eggleston IM, Hayes JD (2001) Dietary indoles and isothiocyanates that are generated from cruciferous vegetables can both stimulate apoptosis and confer protection against DNA damage in human colon cell lines. Cancer Res 61:6120–6130

    CAS  PubMed  Google Scholar 

  • Brown PD, Morra MJ (1995) Glucosinolate-containing plant tissues as bioherbicides. J Agric Food Chem 43:3070–3074

    Article  CAS  Google Scholar 

  • Brudenell AJP, Griffiths H, Rossiter JT, Baker DA (1999) The phloem mobility of glucosinolates. J Exp Bot 50:745–756

    Article  CAS  Google Scholar 

  • Burow M, Zhang Z-Y, Ober JA, Lambrix VM, Wittstock U, Gershenzon J, Kliebenstein DJ (2008) ESP and ESM1 mediate indol-3-acetonitrile production from indol-3-ylmethyl glucosinolate in Arabidopsis. Phytochemistry 69:663–671

    Article  CAS  PubMed  Google Scholar 

  • Charron CS, Saxton AM, Sams CE (2005) Relationship of climate and genotype to seasonal variation in the glucosinolate–myrosinase system. II. Myrosinase activity in ten cultivars of Brassica oleracea grown in fall and spring seasons. J Sci Food Agric 85:682–690

    Article  CAS  Google Scholar 

  • Chen SX, Halkier BA (2000) Characterization of glucosinolate uptake by leaf protoplasts of Brassica napus. J Biol Chem 275:22955–22960. doi:10.1074/jbc.M002768200

    Article  CAS  PubMed  Google Scholar 

  • Chen X-J, Zhu Z-J, Ni X-L, Qian Q-Q (2006) Effect of nitrogen and sulfur supply on glucosinolates in Brassica campestris ssp. chinensis. Agric Sci China 5:603–608

    Article  CAS  Google Scholar 

  • Chung FL, Morse MA, Eklind KI, Lewis J (1992) Quantitation of human uptake of the anticarcinogen phenethyl isothiocyanate after a watercress meal. Cancer Epidemiol Biomark Prev 1:383–388

    CAS  Google Scholar 

  • Conaway CC, Jiao D, Chung F-L (1996) Inhibition of rat liver cytochrome P450 isozymes by isothiocyanates and their conjugates: a structure-activity relationship study. Carcinogenesis 17:2423–2427

    Article  CAS  PubMed  Google Scholar 

  • Conaway C, Yang Y, Chung F (2002) Isothiocyanates as cancer chemopreventive agents: their biological activities and metabolism in rodents and humans. Curr Drug Metab 3:233–255

    Article  CAS  PubMed  Google Scholar 

  • De Pascale S, Maggio A, Pernice R, Fogliano V, Barbieri G (2007) Sulphur fertilization may improve the nutritional value of Brassica rapa L. subsp. sylvestris. Eur J Agron 26:418–424

    Article  Google Scholar 

  • Fahey JW, Zalcmann AT, Talalay P (2001) The chemical diversity and distribution of glucosinolates and isothiocyanates among plants. Phytochemistry 56:5–51

    Article  CAS  PubMed  Google Scholar 

  • Falk KL, Tokuhisa JG, Gershenzon J (2007) The effect of sulfur nutrition on plant glucosinolate content: physiology and molecular mechanisms. Plant Biol 9:573–581

    Article  CAS  PubMed  Google Scholar 

  • Fallovo C, Colla G, Schreiner M, Krumbein A, Schwarz D (2009) Effect of nitrogen form and radiation on growth and mineral concentration of two Brassica species. Sci Hortic 123:170–177

    Article  CAS  Google Scholar 

  • FAOSTAT (2013) Food and Agricultural Organization of the United Nations, Rome. http://faostat.fao.org/

  • Gerendás J, Breuning S, Stahl T, Mersch-Sundermann V, Mühling KH (2008a) Isothiocyanate concentration in kohlrabi (Brassica oleracea L. Var. gongylodes) plants as influenced by sulfur and nitrogen supply. J Agric Food Chem 56(18):8334–8342

    Article  PubMed  Google Scholar 

  • Gerendás J, Sailer M, Fendrich M-L, Stahl T, Mersch-Sundermann V, Mühling KH (2008b) Influence of sulfur and nitrogen supply on growth, nutrient status and concentration of benzyl-isothiocyanate in cress (Lepidium sativum L.) J Sci Food Agric 88:2576–2580

    Article  Google Scholar 

  • Gerendás J, Podestát J, Stahl T, Kübler K, Brückner H, Mersch-Sundermann V, Mühling KH (2009) Interactive effects of sulfur and nitrogen supply on the concentration of sinigrin and allyl isothiocyanate in Indian mustard (Brassica juncea L.) J Agric Food Chem 57:3837–3844

    Article  PubMed  Google Scholar 

  • Glenn MG, Chew FS, Williams PH (1988) Influence of glucosinolate content of Brassica (Cruciferae) roots on growth of vesicular–arbuscular mycorrhizal fungi. New Phytol 110:217–225. doi:10.1111/j.1469-8137.1988.tb00255.x

    Article  CAS  Google Scholar 

  • Griffiths DW, Birch ANE, Macfarlane-Smith WH (1994) Induced changes in the indole glucosinolate content of oilseed and forage rape (Brassica napus) plants in response to either turnip root fly (Delia floralis) larval feeding or artificial root damage. J Sci Food Agric 65:171–178

    Article  CAS  Google Scholar 

  • Halkier BA, Gershenzon J (2006) Biology and biochemistry of glucosinolates. Annu Rev Plant Biol 57:303–333

    Article  CAS  PubMed  Google Scholar 

  • Hanschen FS, Lamy E, Schreiner M, Rohn S (2014) Reactivity and stability of glucosinolates and their breakdown products in foods. Angew Chem Int Ed 53:11430–11450

    Article  CAS  Google Scholar 

  • Hecht SS (2000) Inhibition of carcinogenesis by isothiocyanates. Drug Metab Rev 32:395–411

    Article  CAS  PubMed  Google Scholar 

  • Holst B, Williamson G (2004) A critical review of the bioavailability of glucosinolates and related compounds. Nat Prod Rep 21:425–447

    Article  CAS  PubMed  Google Scholar 

  • James D, Devaraj S, Bellur P, Lakkanna S, Vicini J, Boddupalli S (2012) Novel concepts of broccoli sulforaphanes and disease: induction of phase II antioxidant and detoxification enzymes by enhanced-glucoraphanin broccoli. Nutr Rev 70:654–665

    Article  PubMed  Google Scholar 

  • Jang M, Hong E, Kim G-H (2010) Evaluation of antibacterial activity of 3-butenyl, 4-pentenyl, 2-phenylethyl, and benzyl isothiocyanate in Brassica vegetables. J Food Sci 75:M412–M416

    Article  CAS  PubMed  Google Scholar 

  • Khemani L, Srivastava M, Srivastava S (eds) (2012) Chemistry of phytopotentials: health, energy and environmental perspectives, 1st edn. Springer, Berlin/Heidelberg

    Google Scholar 

  • Kim S-J, Matsuo T, Watanabe M, Watanabe Y (2002) Effect of nitrogen and sulphur application on the glucosinolate content in vegetable turnip rape (Brassica rapa L.) Soil Sci Plant Nutr 48:43–49

    Article  CAS  Google Scholar 

  • Kleinwächter M, Selmar D (2004) A novel approach for reliable activity determination of ascorbic acid depending myrosinases. J Biochem Biophys Methods 59:253–265

    Article  PubMed  Google Scholar 

  • Kliebenstein DJ, Kroymann J, Mitchell-Olds T (2005) The glucosinolate–myrosinase system in an ecological and evolutionary context. Curr Opin Plant Biol 8:264–271

    Article  CAS  PubMed  Google Scholar 

  • Krumbein A, Schonhof I, Rühlmann J, Widell S (2001) Influence of sulphur and nitrogen supply on flavour and health-affecting compounds in Brassicaceae. In: Horst WJ, Schenk MK, Bürkert A et al (eds) Plant nutrition: food security and sustainability of agro-ecosystems through basic and applied research. Springer Netherlands, Dordrecht, pp 294–295

    Chapter  Google Scholar 

  • Lambrix V, Reichelt M, Mitchell-Olds T, Kliebenstein DJ, Gershenzon J (2001) The Arabidopsis epithiospecifier protein promotes the hydrolysis of glucosinolates to nitriles and influences Trichoplusia ni herbivory. Plant Cell 13:2793–2807

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McMillan M, Spinks EA, Fenwick GR (1986) Preliminary observations on the effect of dietary brussels sprouts on thyroid function. Hum Exp Toxicol 5:15–19

    Article  CAS  Google Scholar 

  • Mewis I, Appel HM, Hom A, Raina R, Schultz JC (2005) Major signaling pathways modulate Arabidopsis glucosinolate accumulation and response to both phloem-feeding and chewing insects. Plant Physiol 138:1149–1162

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mithen RF, Dekker M, Verkerk R, Rabot S, Johnson IT (2000) The nutritional significance, biosynthesis and bioavailability of glucosinolates in human foods. J Sci Food Agric 80:967–984

    Article  CAS  Google Scholar 

  • Omirou MD, Papadopoulou KK, Papastylianou I, Constantinou M, Karpouzas DG, Asimakopoulos I, Ehaliotis C (2009) Impact of nitrogen and sulfur fertilization on the composition of glucosinolates in relation to sulfur assimilation in different plant organs of broccoli. J Agric Food Chem 57:9408–9417

    Article  CAS  PubMed  Google Scholar 

  • Palaniswamy U, McAvoy R, Bible B, Singha S, Hill D (1995) Phenylethyl isothiocyanate concentration in watercress (Nasturtium officinale R.Br.) is altered by the nitrogen to sulfur ratio in hydroponic solution. In: Gustine DL, Flores HE (eds) Phytochemicals and health, vol 15. American Society of Plant Physiologists, Rockville, pp 280–283

    Google Scholar 

  • Reuter DJ, Robinson JB (1988) Plant analysis – an interpretation manual, 2nd edn. Inkata Press, Sydney

    Google Scholar 

  • Schnug E (1990) Sulphur nutrition and quality of vegetables. Sulphur Agric 14:3–7

    Google Scholar 

  • Schnug E, Haneklaus S (2016) Chapter Ten – Glucosinolates – the agricultural story. In: Kopriva S (ed) Glucosinolates, Advances in botanical research, vol 80. Academic, London, pp 281–302

    Chapter  Google Scholar 

  • Schnug E, Haneklaus S, Borchers A, Polle A (1995) Relations between sulphur supply and glutathione and ascorbate concentrations in Brassica napus. Z Pflanzenernähr Bodenkd 158:67–69

    Article  CAS  Google Scholar 

  • Schonhof I, Krumbein A, Brückner B (2004) Genotypic effects on glucosinolates and sensory properties of broccoli and cauliflower. Food/Nahrung 48:25–33

    Article  CAS  Google Scholar 

  • Schonhof I, Blankenburg D, Müller S, Krumbein A (2007) Sulfur and nitrogen supply influence growth, product appearance, and glucosinolate concentration of broccoli. J Plant Nutr Soil Sci 170:65–72

    Article  CAS  Google Scholar 

  • Schreiner M (2005) Vegetable crop management strategies to increase the quantity of phytochemicals. Eur J Nutr 44:85–94

    Article  CAS  PubMed  Google Scholar 

  • Steinbrecher A, Linseisen J (2009) Dietary intake of individual glucosinolates in participants of the EPIC-Heidelberg Cohort Study. Ann Nutr Metab 54:87–96

    Article  CAS  PubMed  Google Scholar 

  • Tripathi MK, Mishra AS (2007) Glucosinolates in animal nutrition: a review. Anim Feed Sci Technol 132:1–27

    Article  CAS  Google Scholar 

  • USDA (2015) USDA nutritional database for standard reference. U.S. Department of Agriculture, Washington, DC

    Google Scholar 

  • Vallejo F, Tomás-Barberán FA, Benavente-García AG, García-Viguera C (2003) Total and individual glucosinolate contents in inflorescences of eight broccoli cultivars grown under various climatic and fertilisation conditions. J Sci Food Agric 83:307–313

    Article  CAS  Google Scholar 

  • Vermorel M, Heaney RK, Fenwick GR (1988) Antinutritional effects of the rapeseed meals, darmor and jet neuf, and progoitrin together with myrosinase, in the growing rat. J Sci Food Agric 44:321–334

    Article  CAS  Google Scholar 

  • Wagner AE, Rimbach G (2009) Ascorbigen: chemistry, occurrence, and biologic properties. Clin Dermatol 27:217–224

    Article  PubMed  Google Scholar 

  • Watzl B, Leitzmann C (2005) Bioaktive Substanzen in Lebensmitteln. Georg Thieme Verlag, Stuttgart

    Google Scholar 

  • Wolfson JL (1982) Developmental responses of Pieris rapae and Spodoptera eridania to environmentally induced variation in Brassica nigra. Environ Entomol 11:207–213

    Article  CAS  Google Scholar 

  • Zhao F, Evans EJ, Bilsborrow PE, Syers JK (1993) Influence of sulphur and nitrogen on seed yield and quality of low glucosinolate oilseed rape (Brassica napus L). J Sci Food Agric 63:29–37

    Article  CAS  Google Scholar 

  • Zhao F, Evans EJ, Bilsborrow PE, Syers JK (1994) Influence of nitrogen and sulphur on the glucosinolate profile of rapeseed (Brassica napus L). J Sci Food Agric 64:295–304

    Article  CAS  Google Scholar 

  • Zhou C, Zhu Y, Luo Y (2013) Effects of sulfur fertilization on the accumulation of health-promoting phytochemicals in radish sprouts. J Agric Food Chem 61:7552–7559

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karl H. Mühling .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Pitann, B., Heyer, C., Mühling, K.H. (2017). The Effect of Sulfur Nutrition on Glucosinolate Patterns and Their Breakdown Products in Vegetable Crops. In: De Kok, L., Hawkesford, M., Haneklaus, S., Schnug, E. (eds) Sulfur Metabolism in Higher Plants - Fundamental, Environmental and Agricultural Aspects. Proceedings of the International Plant Sulfur Workshop. Springer, Cham. https://doi.org/10.1007/978-3-319-56526-2_6

Download citation

Publish with us

Policies and ethics