Skip to main content

Manganese Toxicity Hardly Affects Sulfur Metabolism in Brassica rapa

  • Conference paper
  • First Online:
Book cover Sulfur Metabolism in Higher Plants - Fundamental, Environmental and Agricultural Aspects

Abstract

Manganese (Mn) is an essential plant nutrient, though at elevated levels in plant tissues it may become toxic. The physiological basis for phytotoxicity is largely unclear. Exposure of Brassica rapa to elevated levels of Mn2+ in the nutrient solution resulted in decreased biomass production at ≥20 μM and chlorosis. The Mn content in the shoot increased with the Mn2+ concentration in the nutrient solution and became toxic when it exceeded a four-fold concentration of the control. In contrast to observations with Cu and Zn, elevated and toxic Mn2+ levels did not affect the water-soluble non-protein thiols in both root and shoot and the expression the sulfate transporters, Sultr1;1 and Sultr1;2, in the root.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aghajanzadeh T, Hawkesford MJ, De Kok LJ (2014) The significance of glucosinolates for sulfur storage in Brassicaceae seedlings. Front Plant Sci 5:704

    Article  PubMed  PubMed Central  Google Scholar 

  • Asrar Z, Khavari-Nejad RA, Heidari H (2005) Excess manganese effects on pigments of Mentha spicata at flowering stage. Arch Agron Soil Sci 51:101–107

    Article  CAS  Google Scholar 

  • Clairmont KB, Hagar WG, Davis EA (1986) Manganese toxicity to chlorophyll synthesis in tobacco callus. Plant Physiol 80:291–293

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ernst WHO (2000) Agriculture aspects of sulfur. In: Lens P, Pol LH (eds) Environmental technologies to treat sulfur pollution. IWA Publishing, London, pp 355–376

    Google Scholar 

  • Ernst WHO, Krauss G-J, Verkleij JAC, Wesenberg D (2008) Interaction of heavy metals with the sulphur metabolism in angiosperms from an ecological point of view. Plant Cell Environ 31:123–143

    CAS  PubMed  Google Scholar 

  • Foy CD, Chaney RL, White MC (1978) The physiology of metal toxicity in plants. Annu Rev Plant Physiol 29:511–566

    Article  CAS  Google Scholar 

  • González MB, López JG (2013) Beneficial plant-microbial interactions: ecology and applications. CRC Press, London

    Book  Google Scholar 

  • Humphries JM, Stangoulis CR, Graham Robin D (2006) Manganese. In: Allen V, Barker DJP (eds) Handbook of plant nutrition. CRC Press, Boca Raton, pp 351–374

    Chapter  Google Scholar 

  • Kováčik J, Štêrbova D, Babula P, Švec P, Hedbavny J (2014) Toxicity of naturally-contaminated manganese soil to selected crops. J Agric Food Chem 62:7287–7296

    Google Scholar 

  • Lee TJ, Luitel BP, Kang WH (2011) Growth and physiological response to manganese toxicity in Chinese cabbage (Brassica rapa L. ssp campestris). Hortic Environ Biotechnol 52:252–258

    Article  CAS  Google Scholar 

  • Leitenmaier B, Küpper H (2013) Compartmentation and complexation of metals in hyperaccumulator plants. Front Plant Sci 4:374

    Article  PubMed  PubMed Central  Google Scholar 

  • Marschner H (1995) Mineral nutrition of higher plants. Academic, London

    Google Scholar 

  • Millaleo R, Reyes-Diaz M, Alberdi M, Ivanov AG, Krol M, Huner NP (2013) Excess manganese differentially inhibits photosystem I versus II in Arabidopsis thaliana. J Exp Bot 64:343–354

    Article  CAS  PubMed  Google Scholar 

  • Mukhopadhyay MJ, Sharma A (1991) Manganese in cell metabolism of higher plants. Bot Rev 57:117–149

    Google Scholar 

  • Mundus S, Lombi E, Holm PE, Zhang H, Husted S (2012) Assessing the plant availability of manganese in soils using Diffusive Gradients in Thin films (DGT). Geoderma 183-184:92–99

    Article  CAS  Google Scholar 

  • Na G, Salt DE (2011) The role of sulfur assimilation and sulfur-containing compounds in trace element homeostasis in plants. Environ Exp Bot 72:18–25

    Article  CAS  Google Scholar 

  • Nocito FF, Pirovano L, Cocucci M, Sacchi GA (2002) Cadmium-induced sulfate uptake in maize roots. Plant Physiol 129:1872–1879

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pedas P, Hebbern CA, Schjoerring JK, Holm PE, Husted S (2005) Differential capacity for high-affinity manganese uptake contributes to differences between barley genotypes in tolerance to low manganese availability. Plant Physiol 139:1411–1420

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Peng K, Luo C, You W, Lian C, Li X, Shen Z (2008) Manganese uptake and interactions with cadmium in the hyperaccumulator Phytolacca americana L. J Hazard Mater 154:674–681

    Article  CAS  PubMed  Google Scholar 

  • Pittman JK (2005) Managing the manganese: molecular mechanisms of manganese transport and homeostasis. New Phytol 167:733–742

    Article  CAS  PubMed  Google Scholar 

  • Pittman JK (2008) Mechanisms of manganese accumulation and transport. In: Jaiwal PK, Singh RP, Dhankher OP (eds) Plant membrane and vacuolar transporters, 1st edn. CABI, Wallingford/Cambridge, pp 173–204

    Chapter  Google Scholar 

  • Reich M, Aghajanzadeh T, Helm J, Parmar S, Hawkesford MJ, De Kok LJ (2017) Chloride and sulfate salinity differently affect biomass, mineral nutrient composition and expression of sulfate transport and assimilation genes in Brassica rapa. Plant Soil 411:319–332

    Article  CAS  Google Scholar 

  • Sadana US, Samal D, Claassen N (2003) Differences in manganese efficiency of wheat (Triticum aestivum L) and raya (Brassica juncea L) as related to root-shoot relations and manganese influx. J Plant Nutr Soil Sci 166:385–389

    Article  CAS  Google Scholar 

  • Schiavon M, Pilon-Smits EA, Wirtz M, Hell R, Malagoli M (2008) Interactions between chromium and sulfur metabolism in Brassica juncea. J Environ Qual 37:1536–1545

    Article  CAS  PubMed  Google Scholar 

  • Shahbaz M, Tseng MH, Stuiver CEE, Koralewska A, Posthumus FS, Venema JH, Parmar S, Schat H, Hawkesford MJ, De Kok LJ (2010) Copper exposure interferes with the regulation of the uptake, distribution and metabolism of sulfate in Chinese cabbage. J Plant Physiol 167:438–446

    Article  CAS  PubMed  Google Scholar 

  • Shahbaz M, Parmar S, Stuiver CEE, Hawkesford MJ, De Kok LJ (2013) Copper toxicity and sulfur metabolism in Chinese cabbage are affected by UV radiation. Environ Exp Bot 88:60–70

    Article  CAS  Google Scholar 

  • Shahbaz M, Stuiver CEE, Posthumus FS, Parmar S, Hawkesford MJ, De Kok LJ (2014) Copper toxicity in Chinese cabbage is not influenced by plant sulphur status, but affects sulphur metabolism-related gene expression and the suggested regulatory metabolites. Plant Biol 16:68–78

    Article  CAS  PubMed  Google Scholar 

  • Shenker M, Plessner OE, Tel-Or E (2004) Manganese nutrition effects on tomato growth, chlorophyll concentration, and superoxide dismutase activity. J. Plant Physiol 161:197–202

    Article  CAS  Google Scholar 

  • Sinha S, Mukherji S, Dutta J (2002) Effect of manganese toxicity on pigment content, Hill activity and photosynthetic rate of Vigna radiata L. Wilczek seedlings. J Environ Biol 23:253–257

    CAS  PubMed  Google Scholar 

  • Socha AL, Guerinot ML (2014) Mn-euvering manganese: the role of transporter gene family members in manganese uptake and mobilization in plants. Front Plant Sci 5:106

    Article  PubMed  PubMed Central  Google Scholar 

  • Stuiver CEE, Posthumus FS, Parmar S, Shahbaz M, Hawkesford MJ, De Kok LJ (2014) Zinc exposure has differential effects on uptake and metabolism of sulfur and nitrogen in Chinese cabbage. J Plant Nutr Soil Sci 177:748–757

    Article  CAS  Google Scholar 

  • Sun XM, Lu B, Huang SQ, Mehta SK, Xu LL, Yang ZM (2007) Coordinated expression of sulfate transporters and its relation with sulfur metabolites in Brassica napus exposed to cadmium. Bot Stud 48:43–54

    CAS  Google Scholar 

  • Yadav SK (2010) Heavy metals toxicity in plants: an overview on the role of glutathione and phytochelatins in heavy metal stress tolerance of plants. S Afr J Bot 76:167–179

    Article  CAS  Google Scholar 

  • Yoshimoto N, Takahashi H, Smith FW, Yamaya T, Saito K (2002) Two distinct high-affinity sulfate transporters with different inducibilities mediate uptake of sulfate in Arabidopsis roots. Plant J 29:465–473

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgement

Rothamsted Research is supported via the 20:20 Wheat® Programme by the UK Biotechnology and Biological Sciences Research Council.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luit J. De Kok .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Neves, M.I., Prajapati, D.H., Parmar, S., Aghajanzadeh, T.A., Hawkesford, M.J., De Kok, L.J. (2017). Manganese Toxicity Hardly Affects Sulfur Metabolism in Brassica rapa . In: De Kok, L., Hawkesford, M., Haneklaus, S., Schnug, E. (eds) Sulfur Metabolism in Higher Plants - Fundamental, Environmental and Agricultural Aspects. Proceedings of the International Plant Sulfur Workshop. Springer, Cham. https://doi.org/10.1007/978-3-319-56526-2_15

Download citation

Publish with us

Policies and ethics