Skip to main content

The Theory of a Local Ignition

  • Chapter
  • First Online:
Ignition and Wave Processes in Combustion of Solids

Part of the book series: Heat and Mass Transfer ((HMT))

  • 464 Accesses

Abstract

It is shown that the problem on a local ignition comes down to the analysis of the dynamics of a reaction zone under condition of cooling of the ignition center with the inert environment; at the same time the power of a chemical heat source during the induction period can be considered approximately constant. The approximate analytical method is applied for analysis of the problem on a local chain-thermal explosion in the reaction of hydrogen oxidation in the presence of chemically active additive. The concept of an intermediate combustion wave with the maximum temperature equal to the initial temperature of the hot spot is introduced. It is shown that key parameters defining the critical size of a local source of ignition, are the temperature in the center of a local ignition zone, the quantity of the active centers of combustion created with the local source, and presence of active chemical additives in a combustible gaseous mixture. Comparison to experimental data has shown the applicability of the developed approach for the analysis of critical conditions of a local ignition in combustible gas mixtures.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Merzhanov, A.G.: On critical conditions for thermal explosion of a hot spot. Comb. Flame 9(3), 341 (1966)

    Article  Google Scholar 

  2. Seplyarsky, B.S., Afanasiev, S.Y.: On the theory of a local thermal explosion. Rus. J. Chem. Phys. B. 8(5), 646 (1989)

    Google Scholar 

  3. Seplyarsky, B.S., Afanasiev, S.Y.: On the theory of a local thermal explosion. Combus. Explosion, Shock Waves. 22(6), 9 (1989) (in Russian)

    Google Scholar 

  4. Zel’dovich, Y.B., Barenblatt, G.A., Librovich, V.B., Machviladze, D.V.: Mathematical Theory of Flame Propagation. Nauka. Moscow. (1980) (in Russian)

    Google Scholar 

  5. Aldushin A.P.: o-adiabatic waves of combustion of condensed systems with dissociating products. Combust. Explosion Shock Waves (3), 10 (in Russian) (1984)

    Google Scholar 

  6. Semenov N.N.: On some problems of chemical kinetics and reaction ability. Academy of Sciences USSR. Moscow (1958) (in Russian)

    Google Scholar 

  7. Markstein, G.H. (ed.) Nonsteady Flame Propagation. Pergamon Press, Oxford, London (1964)

    Google Scholar 

  8. Lewis, B., Von Elbe, G.: Combustion, Explosions and Flame in Gases. Academic Press, London, New York (1987)

    Google Scholar 

  9. Sokolik, A.S.: Self-ignition, flame and detonation in gases. Academy of Sciences USSR, Moscow (1960) (in Russian)

    Google Scholar 

  10. Rubtsov, N.M., Seplyarsky, B.S., Tsvetkov, G.I., Chernysh, V.I.: Influence of inert additives on the time of formation of steady spherical fronts of laminar flames of mixtures of natural gas and isobutylene with oxygen under spark initiation, Mendeleev Commun. 19, 15 (2009)

    Google Scholar 

  11. Zel’dovich, Y.B., Simonov, N.N.: On the theory of spark ignition of gaseous combustible mixtures. Rus. J. Phys. chem. A. 23(11), 1361 (in Russian) (1949)

    Google Scholar 

  12. Schetinkov, E.S.: Physics of Gaseous Combustion, Moscow (1965) (in Russian)

    Google Scholar 

  13. Rubtsov, N.M.,Tsvetkov, G.I., Chernysh, V.I.: Different character of action of small chemically active additives on the ignition of hydrogen and methane. Rus. J. Kinet. Catal. 49(3), 363 (2007)

    Google Scholar 

  14. Warnatz, J., Maas, U., Dibble, R.W.: Combustion Physical and Chemical Fundamentals, Modeling and Simulation, Experiments, Pollutant Formation, 4th edn. Springer, Berlin, Heidelberg (1996, 1999, 2001 and 2006) (Printed in Germany)

    Google Scholar 

  15. Ono, R., Nifuku, M., Fujiwara, S., Horiguchi, S., Oda, T.: Gas temperature of capacitance spark discharge in the air, J. Appl. Phys. 97(12), 123307–123314 (2005)

    Google Scholar 

  16. Kikoin, E.K. (ed): Tables of Physical Values, Handbook. Atomizdat, Moscow (1976) (in Russian)

    Google Scholar 

  17. Germann, T.C.,Miller, W.H.: Quantum mechanical pressure dependent reaction and recombination rates for OH + O → O2 + H. J. Phys. Chem. A. 101, 6358–6367 (1997)

    Google Scholar 

  18. Halstead, C.J., Jenkins, D.R.: Rates of H + H + M and H + OH + M reactions in flames. Combust. Flame 14, 321–324 (1970)

    Google Scholar 

  19. Atkinson, R., Baulch, D.L., Cox, R.A., Hampson, R.F. Jr., Kerr, J.A., Rossi, M.J., Troe, J.: Evaluated kinetic and photochemical data for atmospheric chemistry: supplement VI. IUPAC subcommittee on gas kinetic data evaluation for atmospheric chemistry. J. Phys. Chem. Ref. Data 26, 1329 (1997)

    Google Scholar 

  20. Azatyan, V.V., Alexandrov, E.N., Troshin, A.F.: On the velocity of chain initiation in reactions of hydrogen and deuterium combustion. Rus. J. Kinet. Catal. 16, 306 (1975) (in Russian)

    Google Scholar 

  21. Rubtsov, N.M., Seplyarsky, B.S.,Tsvetkov, G.I.,Chernysh, V.I.: Flame propagation limits in H2—air mixtures in the presence of small inhibitor additives. Mendeleev Commun. 18, 105–108 (2008)

    Google Scholar 

  22. Voevodsky, V.V., Soloukhin, R. I.: On the mechanism and explosion limits of hydrogen-oxygen chain self-ignition in shock waves. In: International symposium on combustion. The Combustion Institute, Pittsburgh, p. 279 (1965)

    Google Scholar 

  23. Borisov, A.A., Zamanski, V.M., Lisyanski, V.V., Troshin, K.Y.: On the promotion in branched chain reactions. II acceleration of chain branching. Rus. J. Chem. Phys. B. 11(9), 1235 (1992)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nickolai M. Rubtsov .

Appendix

Appendix

Analytical determination of τ del of hydrogenair mix at atmospheric pressure.

We consider the branched chain mechanism of hydrogen oxidation, described above. We neglect the consumption of initial reagents during τ del. Then we have:

$$ \begin{aligned} & \frac{{{\text{d}}H(t)}}{{{\text{d}}t}} = l_{0} + l_{1} H(t) - 2k_{11} MH(t)^{2} \\ & C_{\text{p}} \rho \frac{{{\text{d}}T(t)}}{{{\text{d}}t}} = Q_{1} k_{6} \text{O}_{20} MH(t) + Q_{2} k_{11} MH(t)^{2} \\ \end{aligned} $$
(3.7)

where l 0 = k i H20O20 и l 1 = 2k 2O20k 5In0k 6O20 M, H20, O20 и In0—initial concentration of initial reagents and an additive, C p is molar thermal capacity at a constant pressure, ρ-density. In the first equation of the system (3.7) we put \( H\left( t \right) = \frac{1}{{k_{11} My(t)^{2} }}\frac{{{\text{d}}y(t)}}{{{\text{d}}t}} \), then we get:

$$ \frac{{{\text{d}}^{2} y(t)}}{{{\text{d}}t^{2} }} = l_{0} k_{11} My(t) + l_{1} \frac{{{\text{d}}y(t)}}{{{\text{d}}t}} $$

Its solution under initial condition H(0) = H 0 (the local source generates only hydrogen atoms) is: \( H(t) = \frac{{ - \xi_{1} \,\exp \,(\xi_{1} t)m + n\xi_{2} \,\exp \,(\xi_{2} t)}}{{k_{11} M( - \exp \,(\xi_{1} t)m + n\,\exp \,(\xi_{2} t))}} \) where \( \xi_{1} = \frac{1}{2}l_{1} + \sqrt {l_{1}^{2} + 4k_{11} Ml_{0} } \), \( \xi_{2} = \frac{1}{2}l_{1} - \sqrt {l_{1}^{2} + 4k_{11} Ml_{0} } ,\quad m = \xi_{1} - k_{11} H_{0}M,\quad n = \xi_{2} - k_{11} H_{0}M \).

Integration of the second equation of the set for T(0) = T 0 gives:

$$ \begin{aligned} T(t) & = T_{0} + \left( {\frac{{(\xi_{1} + \xi_{2} )\beta }}{{2\xi_{1}^{2} \xi_{2}^{2} }} + \frac{{Q_{1} k_{6} O_{2} }}{{k_{11} M\rho C_{p} }}} \right)\ln \left( {\frac{{ - \exp (\xi_{1} t)m + n\exp (\xi_{2} t)}}{n - m}} \right) \\ & \quad - \frac{\beta t}{{2\xi_{1} \xi_{2} }} - \frac{{\beta mn(\xi_{1} - \xi_{2} )(\exp (\xi_{1} t) + \exp (\xi_{2} t))}}{{2(n - m)\xi_{1}^{2} \xi_{2}^{2} ( - \exp (\xi_{1} t)m + n\exp (\xi_{2} t))}}\quad {\text{where}}\quad \beta = \frac{{Q_{2} }}{{C_{p} \rho k_{11} M}} \\ \end{aligned} $$
(3.8)

According to [23] we will consider that the delay period expires when self-heating exceeds one characteristic interval, namely \( \Delta T = T(t) - T_{0} = \frac{{ {RT}_{0}^{2} }}{E} \). We consider the activation energy of the linear branching reaction (k 2, a limiting stage) as the activation energy.

During the delay period, it is possible to neglect concentration of accumulated hydrogen atoms. In addition, direct calculation shows that it is possible to ignore also the term \( \frac{\beta t}{{2\xi_{1} \xi_{2} }} \). The Eq. (3.5) after substituting the values ξ 1 and ξ 2 takes a form:

$$ \begin{aligned} \frac{{ {RT}_{0}^{2} }}{E} = \Delta T & = \left( {\frac{{\beta l_{1} }}{{2k_{11}^{2} M^{2} l_{0}^{2} }} + \frac{{Q_{1} k_{6} O_{2} }}{{k_{11} M\rho C_{p} }}} \right) \\ & \quad \ln \left( { - \frac{{ - \exp \left( {\left( {l_{1} + \frac{{k_{11} Ml_{0} }}{{l_{1} }}} \right)t} \right)\left( { - \xi_{2} + k_{11} H_{0}M} \right) + \left( { - \xi_{1} + k_{11} H_{0}M} \right)\exp (\xi_{2} t)}}{{\left( {l_{1} + \frac{{2k_{11} Ml_{0} }}{{l_{1} }}} \right)}}} \right) \\ \end{aligned} $$
(3.9)

We simplify the Eq. (3.9) to get the equation for the delay period in an explicit form:

$$ \begin{aligned} \frac{{ {RT}_{0}^{2} }}{E} = \Delta T & = \left( {\frac{{\beta l_{1} }}{{2k_{11}^{2} M^{2} l_{0}^{2} }} + \frac{{Q_{1} k_{6} O_{2} }}{{k_{11} M\rho C_{p} }}} \right) \\ & \quad \ln \left( {\frac{{\exp (l_{1} t)k_{11} M(H_{0}l_{1} + l_{0} )}}{{l_{1}^{2} }} + 1 - \frac{{k_{11} MH_{0} }}{{l_{1} }} - \frac{{k_{11} Ml_{0} t}}{{l_{1} }}} \right) \\ \end{aligned} $$
(3.10)

Further, we will calculate the value \( {RT}_{0}^{2} /E \) for the given conditions (T 0 = 1000 K, E = 16.7 kcal/mol): \( {RT}_{0}^{2} /E \approx 120 \). The point of intersection of the dependence (3.11) with a line y = 120 also will give the required value of the delay period τ del (Fig. 10a, b). As is seen the value of the delay period depends both on the amount of the active centers introduced into a gas mixture at initiation and on the concentration of additive in the gas mixture. We solve the Eq. (3.10) for t, substituting \( \frac{{ {RT}_{0}^{2} }}{E} \) instead of ΔT. Then by definition t = τ del the value of the delay period. We get:

$$ \begin{aligned} \tau_{\text{del}} = & \frac{1}{{k_{11} Ml_{0} l_{1} }}\left( {{\text{Lambert}}W\left( { - \frac{{H_{0}l_{1} + l_{0} }}{{l_{0} }}\exp \left( {\frac{{ - l_{1} \left( {l_{1} \exp \left( {\frac{{ {RT}_{0}^{2} }}{E\alpha }} \right) - l_{1} - k_{11} MH_{0}} \right)}}{{k_{11} Ml_{0} }}} \right)} \right)} \right. \\ \times & \quad \left. {k_{11} Ml_{0} + l_{1}^{2} (\exp \left( {\frac{{ {RT}_{0}^{2} }}{E\alpha }} \right) - 1) + k_{11} MH_{0}l_{1} } \right) \\ \end{aligned} $$
(3.11)

In the Eq. (3.11) LambertW(x) + exp(LambertW(x)) = x by definition,

$$ \alpha = \left( {\frac{{\beta l_{1} }}{{2k_{11}^{2} M^{2} l_{0}^{2} }} + \frac{{Q_{1} k_{6} O_{2} }}{{k_{11} M\rho C_{p} }}} \right) $$

It is easy to show that the results of the calculation by Eqs. (3.9)–(3.11) practically coincide.

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Rubtsov, N.M., Seplyarskii, B.S., Alymov, M.I. (2017). The Theory of a Local Ignition. In: Ignition and Wave Processes in Combustion of Solids. Heat and Mass Transfer. Springer, Cham. https://doi.org/10.1007/978-3-319-56508-8_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-56508-8_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-56507-1

  • Online ISBN: 978-3-319-56508-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics