Skip to main content

Information Geometry and Statistics

  • Chapter
  • First Online:
Information Geometry

Abstract

We apply the functional analytical and differential geometric results of the preceding chapters to the field of statistics and obtain very general versions of the basic classical results. In a narrower sense, the term statistic refers to a mapping from a given sample space \(\varOmega\) to another \(\varOmega'\), and it is called sufficient for a parametric family, if the parameter can be estimated as well from that statistic as from samples taken on the original space \(\varOmega\). More generally, a Markov kernel associates to a sample from \(\varOmega\) a probability measure on \(\varOmega'\). We prove a general version of Chentsov’s theorem, saying that the Fisher metric and the Amari–Chentsov tensor are characterized by their invariance under sufficient statistics. The Cramér–Rao inequality, of which we also prove a new general version, controls the variance of an unbiased estimator from below by the inverse of the Fisher metric. When the estimator is possibly biased, additional terms enter, which we likewise handle in our framework.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    More precisely, a semiparametric model is a statistical model that has both parametric and nonparametric components. (This distinction is only meaningful when the parametric component is considered to be more important than the nonparametric one.)

References

  1. Amari, S.: Differential geometry of curved exponential families curvature and information loss. Ann. Stat. 10, 357–385 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  2. Amari, S.: Differential-Geometric Methods in Statistics. Lecture Notes in Statistics, vol. 28. Springer, Heidelberg (1985)

    Book  MATH  Google Scholar 

  3. Amari, S.: Differential geometrical theory of statistics. In: Differential Geometry in Statistical Inference, Institute of Mathematical Statistics, California. Lecture Notes–Monograph Series, vol. 10 (1987)

    Google Scholar 

  4. Amari, S., Nagaoka, H.: Methods of Information Geometry. Translations of Mathematical Monographs, vol. 191. Am. Math. Soc./Oxford University Press, Providence/London (2000)

    MATH  Google Scholar 

  5. Ay, N., Jost, J., Lê, H.V., Schwachhöfer, L.: Information geometry and sufficient statistics. Probab. Theory Relat. Fields 162, 327–364 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  6. Ay, N., Jost, J., Lê, H.V., Schwachhöfer, L.: Parametrized measure models. Bernoulli (2015). To appear, arXiv:1510.07305

  7. Ay, N., Jost, J., Lê, H.V., Schwachhöfer, L.: Invariant geometric structures on statistical models. In: Nielsen, F., Barbaresco, F. (eds.) Proceedings of Geometric Science of Information, Second International Conference, GSI 2015, Palaiseau, France, October 28–30, 2015. Springer Lecture Notes in Computer Sciences, vol. 9389 (2015)

    Google Scholar 

  8. Barndorff-Nielsen, O.: Information and Exponential Families in Statistical Theory. Wiley Series in Probability and Mathematical Statistics. John Wiley & Sons, Ltd., Chichester (2014)

    Book  MATH  Google Scholar 

  9. Bauer, H.: Probability Theory. de Gruyter, Berlin (1996). Translated from the German by R.B. Burckel

    Book  MATH  Google Scholar 

  10. Bickel, P.J., Klaassen, C.A.J., Ritov, Y., Wellner, J.A.: Efficient and Adaptive Estimation for Semiparametric Models. Springer, New York (1998)

    MATH  Google Scholar 

  11. Bogachev, V.I.: Measure Theory, vols. I, II. Springer, Berlin (2007)

    Book  MATH  Google Scholar 

  12. Borovkov, A.A.: Mathematical Statistics. Gordon & Breach, New York (1998)

    MATH  Google Scholar 

  13. Chentsov, N.: Category of mathematical statistics. Dokl. Akad. Nauk SSSR 164, 511–514 (1965)

    MathSciNet  Google Scholar 

  14. Chentsov, N.: A systematic theory of exponential families of probability distributions. Teor. Veroâtn. Primen. 11, 483–494 (1966) (Russian)

    MathSciNet  MATH  Google Scholar 

  15. Chentsov, N.: Statistical Decision Rules and Optimal Inference, vol. 53. Nauka, Moscow (1972) (in Russian); English translation in: Math. Monograph., vol. 53. Am. Math. Soc., Providence (1982)

    Google Scholar 

  16. Cover, T.M., Thomas, J.A.: Elements of Information Theory, 2nd edn. Wiley, New York (2006)

    MATH  Google Scholar 

  17. Cramer, H.: Mathematical Methods of Statistics. Princeton University Press, Princeton (1946)

    MATH  Google Scholar 

  18. Dudley, R.M.: Real Analysis and Probability. Cambridge University Press, Cambridge (2004)

    MATH  Google Scholar 

  19. Fisher, R.A.: On the mathematical foundations of theoretical statistics. Philos. Trans. R. Soc. Lond. Ser. A 222, 309–368 (1922)

    Article  MATH  Google Scholar 

  20. Jost, J., Lê, H.V., Schwachhöfer, L.: Cramér–Rao inequality on singular statistical models I. arXiv:1703.09403

  21. Jost, J., Lê, H.V., Schwachhöfer, L.: Cramér–Rao inequality on singular statistical models II. Preprint (2017)

    Google Scholar 

  22. Lauritzen, S.: General exponential models for discrete observations. Scand. J. Stat. 2, 23–33 (1975)

    MathSciNet  MATH  Google Scholar 

  23. Lê, H.V.: The uniqueness of the Fisher metric as information metric. Ann. Inst. Stat. Math. 69, 879–896 (2017). doi:10.1007/s10463-016-0562-0

    Article  MathSciNet  Google Scholar 

  24. Morozova, E., Chentsov, N.: Natural geometry on families of probability laws. Itogi Nauki Tekh. Ser. Sovrem. Mat. Prilozh. Temat. Obz. 83, 133–265 (1991)

    MathSciNet  MATH  Google Scholar 

  25. Morse, N., Sacksteder, R.: Statistical isomorphism. Ann. Math. Stat. 37, 203–214 (1966)

    Article  MathSciNet  MATH  Google Scholar 

  26. Neveu, J.: Mathematical Foundations of the Calculus of Probability. Holden-Day Series in Probability and Statistics (1965)

    MATH  Google Scholar 

  27. Neyman, J.: Sur un teorema concernente le cosidette statistiche sufficienti. G. Ist. Ital. Attuari 6, 320–334 (1935)

    MATH  Google Scholar 

  28. Rao, C.R.: Information and the accuracy attainable in the estimation of statistical parameters. Bull. Calcutta Math. Soc. 37, 81–89 (1945)

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Ay, N., Jost, J., Lê, H.V., Schwachhöfer, L. (2017). Information Geometry and Statistics. In: Information Geometry. Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge / A Series of Modern Surveys in Mathematics, vol 64. Springer, Cham. https://doi.org/10.1007/978-3-319-56478-4_5

Download citation

Publish with us

Policies and ethics