Skip to main content

LCA of Nanomaterials

  • Chapter
  • First Online:
Book cover Life Cycle Assessment

Abstract

Application of nanomaterials in products has led to an increase in number of nanoproducts introduced to the consumer market. However, along with new and improved products, there is a concern about the potential life cycle environmental impacts. Life cycle assessment is able to include a wide range of environmental impacts but, due to data limitations, it is commonly applied with focus on the cradle-to-gate part of the nanoproducts life cycle, neglecting use and disposal of the products. These studies conclude that nanomaterials are more energy demanding and have an inferior environmental profile than conventionally used materials, but functional units of these comparisons need to consider the use stage benefits attained through nanomaterials. A particular assessment challenge is the lack of understanding of the toxicological mechanisms related to potential release, fate and effects of nanomaterials when penetrating into living organisms. This is especially relevant for the freshwater compartment, as it is a common recipient.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Aitken, R.A., Bassan, A., Friedrichs, S., et al.: Specific Advice on Exposure Assessment and Hazard/Risk Characterisation for Nanomaterials Under REACH (RIP-oN 3). Final Project Report, RNC/RIP-oN3/FPR/1/FINAL. http://ec.europa.eu/environment/chemicals/nanotech/pdf/report_ripon3.pdf (2011). Accessed 9 Nov 2011

  • Babaizadeh, H., Hassan, M.: Life cycle assessment of nano-sized titanium dioxide coating on residential windows. Constr. Build. Mater. 40(March), 314–321 (2012)

    Google Scholar 

  • Batley, E.G., McLaughlin, J.M.: Fate of Manufactured Nanomaterials in the Australian Environment. CSIRO Niche Manufacturing Flagship Report. Department of the Environment, Water, Heritage and the Arts. http://www.environment.gov.au/system/files/pages/371475a0-2195-496d-91b2-0a33f9342a6d/files/manufactured-nanomaterials.pdf (2010). Accessed 5 Oct 2013

  • Bauer, C., Burchgeister, J., Hischier, R., Poanietz, W.R., Schebek, L., Warsen, J.: Towards a framework for life cycle thinking in the assessment of nanotechnology. J. Clean. Prod. 16(8–9), 910–926 (2008)

    Article  Google Scholar 

  • Brant, J., Lecoanet, H., Wiesner, M.: Aggregation and deposition characteristics of fullerene nanoparticles in aqueous systems. J. Nanopart. Res. 7(4–5), 545–553 (2005)

    Article  Google Scholar 

  • Buzea, C., Blandino, P. II, Robbie, K.: Nanomaterials and Nanoparticles: Sources and Toxicity. Department of Physics, Gastrointestinal Diseases Research Unit & Department of Physiology, Queens University at Kingston General Hospital, Kingston, ON, Canada (2007)

    Article  Google Scholar 

  • Durucan, S., Korre, A., Munoz-Melendez, G.: Mining life cycle modelling: a cradle-to-gate approach to environmental management in the industry. J. Clean. Prod. 14(12–13), 1057–1070 (2006)

    Article  Google Scholar 

  • European Chemicals Agency (ECHA): Guidance on information requirements and chemical safety assessment. http://guidance.echa.europa.eu/docs/guidance_document/information_requirements_en.htm?time=1289468158 (2010). Accessed 9 Nov 2011

  • European Communities (2007) Corrigendum to Regulation (EC) No1907/2006 of the European Parliament and of the Council of 18 December 2006 concerning the Registration, Evaluation, Authorisation and Restriction of Chemicals (REACH), establishing a European Chemicals Agency, amending Directive 1999/45/EC and repealing Council Regulation (EEC) No793/93 and Commission Regulation (EC) No1488/94 as well as Council Directive 76/769/EEC and Commission Directives 91/155/EEC, 93/67/EEC, 93/105/EC and 2000/21/EC (OJ L 396, 30.12.2006). Off. J. Eur. Union. L136:3–280

    Google Scholar 

  • Farré, M., Sanchís, J., Barceló, D.: The fate and the behavior of nanomaterials in the environment, analysis and assessment of the occurrence. TrAC Anal. Chem. 30(3), 517–527 (2011)

    Article  Google Scholar 

  • Franklin, N.M., Rogers, N.J., Apte, S.C., Batley, G.E., Gadd, G.E., Casey, P.S.: Comparative toxicity of nanoparticulate ZnO, Bulk ZnO, and ZnCl2 to a freshwater microalga (Pseudokirchneriella subcapitata): the importance of particle solubility. Environ. Sci. Technol. 41(24), 8484–8490 (2007)

    Article  Google Scholar 

  • Geranio, L., Heuberger, M., Nowack, M.: The behaviour of silver nanotextiles during washing. J. Environ. Sci. Technol. 43(21), 8113–8118 (2009)

    Article  Google Scholar 

  • Grieger, K.D., Laurent, A., Miseljic, M., Christensen, F., Baun, A., Olsen, S.I.: Analysis of current research addressing complementary use of life-cycle assessment and risk assessment for engineered nanomaterials: Have lessons been learned from previous experience with chemicals? J. Nanopart. Res. 14, 958 (2012)

    Article  Google Scholar 

  • Grubb, F.G., Bakshi, R.B.: Life cycle of titanium dioxide nanoparticle production. J. Ind. Ecol. 15(1), 81–95 (2010)

    Article  Google Scholar 

  • Gutowski, T.G., Liow, J.Y.H., Sekulic, D.P.: Minimum energy requirements for the manufacturing of carbon nanotubes. In: 2010 IEEE International Symposium on Sustainable Systems and Technology (ISSST), vol. 1(6), pp. 17–19 (2010)

    Google Scholar 

  • Hankin, S.M., Peters, S.A.K., Poland, C.A., et al.: Specific Advice on Fulfilling Information Requirements for Nanomaterials Under REACH (RIP-No. 2). Final Project Report, RNC/RIP-oN2/FPR/1/FINAL. http://ec.europa.eu/environment/chemicals/nanotech/pdf/report_ripon2.pdf. Accessed 9 Nov 2011

  • Hansen, S.F.: Regulation and risk assessment of nanomaterials—too little, too late? Ph.D. Thesis. Department of Environmental Engineering. Technical University of Denmark (2009)

    Google Scholar 

  • Healy, M.: Environmental and economic comparison of single-wall carbon nanotube production alternatives. Master’s thesis. Northeastern University, Boston. United States of America (2006)

    Google Scholar 

  • Healy, M.L., Dahlben, L.J., Isaacs, J.A.: Environmental assessment of single-walled carbon nanotube processes. J. Ind. Ecol. 12(3), 376–393 (2008)

    Article  Google Scholar 

  • Heinlaan, M., Ivask, A., Blinova, I., Dubourguier, H.C., Kahru, A.: Toxicity of nanosized and bulk ZnO, CuO and TiO2 to bacteria Vibrio fischeri and crustaceans Daphnia magna and Thamnocephalus platyurus. Chemosphere 71(7), 1308–1316 (2008)

    Article  Google Scholar 

  • Hischier, R., Walser, T.: Life cycle assessment of engineered nanomaterials: state of the art and strategies to overcome existing gaps. Sci. Total Environ. 425(15), 271–282 (2012)

    Article  Google Scholar 

  • Hussain, S.M., Braydich-Stolle, L.K., Schrand, A.M., Murdock, R.C., Yu, K.O., Mattie, D.M., Schlager, J.J., Terrones, M.: Toxicity evaluation for safe use of nanomaterials: recent achievements and technical challenges. Adv. Mater. 21(16), 1549–1559 (2009)

    Article  Google Scholar 

  • Hwang, C.-L., Ting, J., Chiang, J.-S., Chuang, C.: Process of direct growth of carbon nanotubes on a substrate at low temperature. U.S. Patent 6,855,376, Industrial Technology Research Institute, Chutung (Taiwan). http://www.freepatentsonline.com/6855376.html (2005). Accessed 20 Nov 2012

  • Illés, E., Tombácz, E.: The effect of humic acid adsorption pH-dependent surface charging and aggregation of magnetite nanoparticles. J. Colloid Interface Sci. 295(1), 115–123 (2006)

    Article  Google Scholar 

  • Isaacs, A.J., Tanwani, A., Healy, L.M.: Environmental assessment of SWNT production. In: Proceedings of the 2006 IEEE International Symposium on Electronics and the Environment, pp. 38–41. ISEE (2006)

    Google Scholar 

  • ISO: Environmental management—life cycle assessment—principles and framework (ISO 14040). ISO, The International Organization for Standardization, Geneva (2006)

    Google Scholar 

  • ISO: Technical Specifications ISO/TS 27687:2008 (E): Nanotechnologies—Terminology and Definitions for Nano-objects–Nanoparticle, Nanofibre and Nanoplate. ISO, The International Organization for Standardization, Geneva (2008)

    Google Scholar 

  • Jolliet, O., Rosenbaum, R.K., Laurent, A.: Life cycle risks and impacts of nanotechnologies. In: Malsch, I., Edmond, C. (eds.) Nanotechnology and Human Health, pp. 213–277. Taylor & Francis, London (2013)

    Chapter  Google Scholar 

  • Jones, C.F., Grainger, D.W.: In vitro assessments of nanomaterial toxicity. Adv. Drug Deliv. Rev. 61(6), 438–456 (2009)

    Article  Google Scholar 

  • Joshi, S.: Can nanotechnology improve the sustainability of biobased products? J. Ind. Ecol. 12(3), 474–489 (2008)

    Article  Google Scholar 

  • Kashiwada, S.: Distribution of nanoparticles in the see-through medeka (Oryzias latipes). Environ. Health Perspect. 114(11), 1697–1702 (2006)

    Google Scholar 

  • Khanna, V., Bakshi, B.R., Lee, L.J.: Life cycle energy analysis and environmental life cycle assessment of carbon nanofibers production. In: Proceedings of the 2007 IEEE International Symposium on Electronics & the Environment, 7–10 May 2007, pp. 128–133 (2007)

    Google Scholar 

  • Khanna, V., Bakshi, B.R., Lee, L.J.: Assessing life cycle environmental implications of polymer nanocomposites. In: Proceedings of the 2008 IEEE International Symposium on Electronics and the Environment, pp. 1–6. IEEE Computer Society, Washington, DC, USA (2008)

    Google Scholar 

  • Klaine, S.J., Alvarez, P.J.J., Batley, G.E., Fernandes, T.F., Handy, R.D., Lyon, D.Y., Mahendra, S., McLaughlin, M.J., Lead, J.R.: Nanomaterials in the environment: behavior, fate, bioavailability, and effects. Environ. Toxicol. Chem. 27(9), 1825–1851 (2008)

    Article  Google Scholar 

  • Köhler, R.A., Som, C., Helland, A., Gottshalk, F.: Studying the potential release of carbon nanotubes throughout the application life cycle. J. Clean. Prod. 16(8–9), 927–937 (2008)

    Article  Google Scholar 

  • Künninger, T., Fischer, A., Gerecke, A., Heeb, M., Kunz, P., Ulrich, A., Vonbank, R.: Release of Conventional and Nano-Sized Biocides from Coated Wooden Façades during Weathering: Consequences for Functionality and Aquatic Environment Proceedings of the International Convention of Society of Wood Science and Technology and United Nations Economic Commission for Europe—Timber Committee October 11–14, 2010, Geneva, Switzerland (2010)

    Google Scholar 

  • Kushnir, D., Sandén, B.A.: Energy requirements of carbon nanoparticle production. J. Ind. Ecol. 12(3), 360–375 (2008)

    Article  Google Scholar 

  • Lloyd, M.S., Lave, B.L.: Life cycle economic and environmental implications of using nanocomposites in automobiles. Environ. Sci. Technol. 37(15), 3458–3466 (2003)

    Article  Google Scholar 

  • Lloyd, M.S., Lave, B.L., Matthews, H.S.: Life cycle benefits of using nanotechnology to stabilize platinum-group metal particles in automotive catalysts. Environ. Sci. Technol. 39(5), 1384–1392 (2005)

    Article  Google Scholar 

  • Lowry, G.V., Casman, E.A.: Nanomaterial transport, transformation, and fate in the environment. NATO Science for Peace and Security Series. Nanomaterials: Risks and Benefits, pp. 125–137 (2009)

    Google Scholar 

  • Lowry, G.V., Gregory, K.B., Apte, S.C., Lead, J.R.: Transformations of nanomaterials in the environment. Environ. Sci. Technol. 46(13), 6893–6899 (2012)

    Article  Google Scholar 

  • Manda, B.M., Blok, K., Patel, M.K.: Innovations in papermaking: an LCA of printing and writing paper from conventional and high yield pulp. Sci. Total Environ. 15(439), 307–320 (2012)

    Article  Google Scholar 

  • Merugula, A.L., Khanna, V., Bakshi, R.B.: Comparative life cycle assessment: reinforcing wind turbine blades with carbon nanofibers. In: Proceedings of the 2010 IEEE International Symposium on Sustainable Systems and Technology (ISSST 2010). 5507724 (2010)

    Google Scholar 

  • Meyer, E.D., Curran, M.A., Gonzalez, M.A.: An examination of silver nanoparticles in socks using screening-level life cycle assessment. J. Nanopart. Res. 13(1), 147–156 (2010)

    Article  Google Scholar 

  • Miseljic, M.: Improvement of methodological and data background for life cycle assessment of nano-metaloxides, Ph.D. thesis, Handed in November 2014 & Defended in February 2015, Technical University of Denmark (2014)

    Google Scholar 

  • Miseljic, M., Olsen, S.I.: Life-cycle assessment of engineered nanomaterials: a literature review of assessment status. J. Nanopart. Res. 16(6), 2427 (2014)

    Article  Google Scholar 

  • Moign, A., Vardelle, A., Themelis, N.J., Legoux, J.G.: Life cycle assessment of using powder and liquid precursors in plasma spraying: the case of yttria-stabilized zirconia. Surf. Coat. Technol. 205(2), 668–673 (2010)

    Article  Google Scholar 

  • Oberdörster, G., Stone, V., Donaldson, K.: Toxicology of nanoparticles: a historical perspective. Nanotoxicology 1(1), 2–25 (2007)

    Article  Google Scholar 

  • Osterwalder, N., Capello, C., Hungerbühler, K., Stark, J.W.: Energy consumption during nanoparticle production: How economic is dry synthesis? J. Nanopart. Res. 8(1), 1–9 (2006)

    Article  Google Scholar 

  • PoEN (Project on Emerging Nanotechnologies): Consumer products inventory. http://www.nanotechproject.org/cpi (2014). Accessed 5 Aug 2014

  • Quik, T.K.J., Vonk, A.J., Hansen, F.S., Baun, A., Van De Meent, D.: How to assess exposure of aquatic organisms to manufactured nanoparticles? Environ. Int. 37(2011), 1068–1077 (2011)

    Article  Google Scholar 

  • Ratte, H.T.: Bioaccumulation and toxicity of silver compounds: a review. Environ. Toxicol. Chem. 18, 89–108 (1999)

    Article  Google Scholar 

  • Roes, A.L., Marsili, E., Nieuwlaar, E., Patel, M.K.: Environmental and cost assessment of a polypropylene nanocomposite. J. Polym. Environ. 15(3), 212–226 (2007)

    Article  Google Scholar 

  • Rupasinghe, R.-A.-T.P.: Dissolution and aggregation of zinc oxide nanoparticles at circumneutral pH; a study of size effects in the presence and absence of citric acid. Master thesis, University of Iowa (2011)

    Google Scholar 

  • SCENIHR: The existing and proposed definitions relating to products of nanotechnologies. Scientific Committee on Emerging and Newly Identified Health Risks. http://ec.europa.eu/health/ph_risk/committees/04_scenihr/docs/scenihr_o_012.pdf (2007). Accessed 20 Sept 2012

  • Scheringer, M., Macleod, M., Behra, R., Sigg, L., Hungerbühler, K.: Environmental risk associated with nanoparticulate silver used as biocide. H and PC Compendium on Detergency, vol. 6(2), April/June 2011, pp. 27–29 (2010)

    Google Scholar 

  • Som, C., Berges, M., Chaudry, Q., Dusinska, M., Fernandes, F.T., Olsen, S.I., Nowack, B.: The importance of life cycle concepts for the development of safe nanoproducts. Toxicology 269(2–3), 160–169 (2010)

    Article  Google Scholar 

  • Som, C., Wick, P., Krug, H., Nowack, B.: Environmental and health effects of nanomaterials in nanotextiles and façade coatings. Environ. Int. 37, 1131–1142 (2011)

    Article  Google Scholar 

  • Steinfeldt, M., von Gleich, A., Henkle, J.L.L., Endo, M., Morimoto, S., Momosaki, E.: Environmental relief effects of nanotechnologies by the example of CNT composite materials and films. In: International Conference; 9th, Ecobalance; Towards and Beyond 2020 (2010)

    Google Scholar 

  • Suppen, N., Carranza, M., Huerta, M., Hernández, A.M.: Environmental management and life cycle approaches in the Mexican mining industry. J. Clean. Prod. 14(12–13), 1101–1115 (2005)

    Google Scholar 

  • Sweet, L., Strohm, B.: Nanotechnology—life-cycle risk management. Hum. Ecol. Risk Assess. 12, 528–551 (2006)

    Article  Google Scholar 

  • Tibbetts, G.G., Bernardo, C.A., Gorkiewicz, D.W., Alig, R.A.: Role of sulfur in the production of carbon fibers in the vapor phase. Carbon 32(4), 569–576 (1994)

    Article  Google Scholar 

  • Vonk, J.A., Struijs, J., van de Meent, D., Peijnenburg, W.J.G.M.: Nanomaterials in the Aquatic Environment: Toxicity. Exposure and Risk Assessment. RIVM Report 607794001/2009, RIVM Bilthoven, Nederlands. http://www.rivm.nl/bibliotheek/rapporten/607794001.pdf (2009). Accessed 10 Oct 2012

  • Walser, T., Demou, E., Lang, J.D., Hellweg, S.: Prospective environmental life cycle assessment of nanosilver t-shirts. Environ. Sci. Technol. 45(10), 4570–4578 (2011)

    Article  Google Scholar 

  • Zhu, X., Chang, Y., Chen, Y.: Toxicity and bioaccumulation of TiO2 nanoparticle aggregates in Daphnia magna. Chemosphere 78, 209–215 (2009)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mirko Miseljic .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Cite this chapter

Miseljic, M., Olsen, S.I. (2018). LCA of Nanomaterials. In: Hauschild, M., Rosenbaum, R., Olsen, S. (eds) Life Cycle Assessment. Springer, Cham. https://doi.org/10.1007/978-3-319-56475-3_32

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-56475-3_32

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-56474-6

  • Online ISBN: 978-3-319-56475-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics