Skip to main content

LCA of Biofuels and Biomaterials

  • Chapter
  • First Online:
Life Cycle Assessment

Abstract

Biofuels and biomaterials can today substitute many commodities produced from fossil resources, and the bio-based production is increasing worldwide. As fossil resources are limited, and the use of such resources is a major contributor to global warming and other environmental impacts, the potential of bio-products as substitutes for fossil-based products is receiving much attention. According to many LCA studies, bio-products are environmentally superior to fossil products in some life cycle impact categories, while the picture is often opposite in others. Bio-products is a highly diverse group of products and the environmental profile of bio-products relative to their fossil counterparts is case specific and to a high degree depending on the feedstock used. This illustrates the importance of conducting case specific LCAs for determining the environmental profile of bio-products relative to fossil ones, and emphasises the importance of including all relevant impact categories, in order to avoid problem shifting.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Notes

  1. 1.

    0.01 kg CO2-eq per kg CO2 stored 1 year corresponds to the GWP100 for 1 kg CO2 of 1 kg CO2-eq over 100 years, if assuming linearity, and considering a short-term perspective, rather than the normal infinite one, as explained in the text.

References

  • Anderson-Teixeira, K.J., Davis, S.C., Masters, M.D., Delucia, E.H.: Changes in soil organic carbon under biofuel crops. GCB Bioenergy 1, 75–96 (2009)

    Article  Google Scholar 

  • Archer, D., Kheshgi, H., Maier-Reimer, E.: Multiple timescales for neutralization of fossil fuel CO2. Geophys. Res. Lett. 24(4), 405–408 (1997)

    Article  Google Scholar 

  • Bala, G., Caldeira, K., Wickett, M., Phillips, T.J., Lobell, D.B., Delire, C., Mirin, A.: Combined climate and carbon cycle-cycle effects of large-scale deforestation. PNAS 104, 6550–6555 (2007)

    Article  Google Scholar 

  • Bessou, C., Ferchaud, F., Gabrielle, B., Mary, B.: Biofuels, greenhouse gases and climate change. In: Lichtfouse, E., et al. (eds.) Sustainable Agriculture, vol. 2 (2011). Springer, New York—EDP Sciences 2011. doi: 10.1007/978-94-007-0394-0_20

    Chapter  Google Scholar 

  • Brandão, M., Levasseur, A., Kirschbaum, M.U.F., Weidema, B.P., Cowie, A.L., Jørgensen, S.V., Hauschild, M.Z., Pennington, D.W., Chomkhamsri, K.: Key issues and options in accounting for carbon sequestration and temporary storage in life cycle assessment and carbon footprinting. Int. J. Life Cycle Assess. 18, 230–240 (2013)

    Article  Google Scholar 

  • Brehmer, B., Boom, R.M., Sanders, J.: Maximum fossil fuel feedstock replacement potential of petrochemicals via biorefineries. Chem. Eng. Res. Des. 87(9), 1103–1119 (2009)

    Article  Google Scholar 

  • Bright, R.M., Cherubini, F., Strømman, A.H.: Climate impacts of bioenergy: Inclusion of carbon cycle and albedo dynamics in life cycle impact assessment. Environ. Impact Assess. Rev. 37, 2–11 (2012a)

    Article  Google Scholar 

  • Bright, R.M., Cherubini, F., Astrup, R., Bird, N., Cowie, A.L., Ducey, M.J., Marland, G., Pingoud, K., Savolainen, I., Strømman, A.H.: A comment to “Large-scale bioenergy from additional harvest of forest biomass is neither sustainable nor greenhouse gas neutral”: important insights beyond greenhouse gas accounting. GCB Bioenergy 4(6), 617–619 (2012b)

    Article  Google Scholar 

  • Carus, M., Dammer, L.: Food or non-food: which agricultural feedstocks are best for industrial uses? Nova-Institut GmbH, nova paper#2 on bio-based economy 2013-07 (2013)

    Article  Google Scholar 

  • Carus, M., Baltus, W., Carrez, D., Kaeb, H., Ravenstijn, J., Zepnik, S.: Market study on bio-based polymers in the world, capacities, production and applications: Status Quo and Trends towards 2020 (leaflet). Nova-Institut GmbH, Version 2013-07 (2013)

    Google Scholar 

  • Charpentier, A.D., Bergerson, J.A., MacLean, H.A.: Understanding the Canadian oil sands industry’s greenhouse gas emissions. Environ. Res. Lett. 4 (2009)

    Article  Google Scholar 

  • Chaudhary, A., Verones, F., de Baan, L., Hellweg, S.: Quantifying land use impacts on biodiversity: combining species-area models and vulnerability indicators. Environ. Sci. Technol. 49, 9987–9995 (2015)

    Article  Google Scholar 

  • Cherubini, F.: The biorefinery concept: using biomass instead of oil for producing energy and chemicals. Energy Convers. Manage. 51, 1412–1421 (2010)

    Article  Google Scholar 

  • Cherubini, F., Jungmeier, G.: LCA of a biorefinery concept producing bioethanol, bioenergy, and chemicals from switchgrass. Int. J. LCA 15(1), 53–66 (2010)

    Article  Google Scholar 

  • Cherubini, F., Strømman, A.H.: Life cycle assessment of bioenergy systems: state of the art and future challenges. Bioresour. Technol. 102, 437–451 (2011)

    Article  Google Scholar 

  • Cherubini, F., Bird, N.D., Cowie, A., Jungmeier, G., Schlamadinger, B., Woess-Gallasch, S.: Energy and greenhouse gas-based LCA of biofuel and bioenergy systems: key issues, ranges and recommensations. Resour. Conserv. Recycl. 53, 434–447 (2009)

    Article  Google Scholar 

  • Cherubini, F., Bright, R.M., Strømman, A.H.: Site-specific global warming potentials of biogenic CO2 for bioenergy: contributions from carbon fluxes and albedo dynamics. Environ. Res. Lett. 7, 045902 (2012a)

    Article  Google Scholar 

  • Cherubini, F., Guest, G., Strømman, A.H.: Application of probability distributions to the modeling of biogenic CO2 fluxes in life cycle assessment. GCB Bioenergy 4, 784–798 (2012b)

    Article  Google Scholar 

  • Clarens, A.F., Resurreccion, E.P., White, M.A., Colosi, L.M.: Environmental life cycle comparison of algae to other bioenergy feedstocks. Environ. Sci. Technol. 44, 1813–1819 (2010)

    Article  Google Scholar 

  • Claussen, M., Brovkin, V., Ganopolski, A.: Biogeophysical versus biogeochemical feedbacks of large-scale land cover change. Geophys. Res. Lett. 28, 1011–1014 (2001)

    Article  Google Scholar 

  • Clift, R., Brandão, M.: Carbon Storage and Timing of Emissions. Centre for Environmental Strategy, University of Surrey, GU2 7XH (2008). ISSN: 1464-8083

    Google Scholar 

  • Collet, P., Hélias, A., Lardon, L., Steyer, J.-P., Bernard, O.: Recommendations for life cycle assessment of algal fuels. Appl. Energy 154, 1089–1102 (2015)

    Article  Google Scholar 

  • Collet, P., Spinelli, D., Lardon, L., Hélias, A., Steyer, J.P., Bernard, O.: Life-Cycle Assessment of Microalgal-Based Biofuels. In: Pandey, A., Lee, D.-J., Chisti, Y., Soccol, C.R. (eds.) Biofuels from Algae, pp. 287–312. Elsevier, Amsterdam (2013)

    Google Scholar 

  • Crutzen, P.J., Mosier, A.R., Smith, K.A., Winiwarter, W.: N2O release from agro-biofuel production negates global warming reduction by replacing fossil fuels. Atmos. Chem. Phys. 8, 389–395 (2008)

    Article  Google Scholar 

  • Davis, S.C., Anderson-Teixeira, K.J., DeLucia, E.H.: Life-cycle analysis and the ecology of biofuels. Trends Plant Sci. 14(3), 140–146 (2009)

    Article  Google Scholar 

  • de Baan, L., Alkemade, R., Koellner, T.: Land use impacts on biodiversity in LCA: a global approach. Int. J. Life Cycle Assess. 18, 1216–1230 (2013)

    Article  Google Scholar 

  • Dohleman, F.G., Heaton, E.A., Long, S.P.: Perennial Grasses as second-generation sustainable feedstocks without conflict with food production. In: Khanna, M., et al. (eds.) Handbook of Bioenergy Economics and Policy Natural Resource Management and Policy, vol. 3. Springer, New York (2010). doi:10.1007/978-1-4419-0369-3_3

    Chapter  Google Scholar 

  • Dornburg, V., Lewandowski, I., Patel, M.: Comparing the land requirements, energy savings, and greenhouse gas emissions reduction of biobased polymers and bioenergy: An analysis and system extension of life-cycle assessment studies. J. Ind. Ecol. 7(3–4), 93–116 (2003)

    Article  Google Scholar 

  • Dornburg, et al.: Scenario projections for future market potentials of biobased bulk chemicals. Environ. Sci. Technol. 42, 2261–2267 (2008)

    Article  Google Scholar 

  • EIA.: US Energy Information Administration (2012) as presented by Index Mundi on www.indexmundi.com/energy.aspx. Accessed on 23 July 2012

  • European Commission.: International Reference Life Cycle Data System (ILCD) Handbook—General guide for Life Cycle Assessment—Detailed guidance, 1st edn. March 2010. EUR 24708 EN. European Commission—Joint Research Centre—Institute for Environment and Sustainability. Publications Office of the European Union, Luxembourg (2010)

    Google Scholar 

  • European Parliament.: Directive 2009/28/EC of the European Parliament and of the Council. Off. J. Eur. Union L 140/16–62 (2009)

    Google Scholar 

  • Germer, J., Sauerborn, J.: Estimation of the impact of oil palm plantation establishment on greenhouse gas balance. Environ. Dev. Sustain. 10, 697–716 (2008)

    Article  Google Scholar 

  • Gnansounou, E.: Production and use of lignocellulosic bioethanol in Europe: Current situation and perspectives. Bioresour. Technol. 101, 4842–4850 (2010)

    Article  Google Scholar 

  • Hansen, S.B., Olsen, S.I., Ujang, Z.: Carbon balance impacts of land use changes related to the life cycle of Malaysian palm oil-derived biodiesel. Int. J. Life Cycle Assess. 19, 558–566 (2014)

    Article  Google Scholar 

  • Hermann, B.G., Debeer, L., deWilde, B., Blok, K., Patel, M.K.: To compost or not to compost: LCA of biodegradable materials’ waste treatment. Polym. Degrad. Stab. 96(6), 1159–1171 (2011)

    Article  Google Scholar 

  • IPCC.: 2006 IPCC Guidelines for National Greenhouse Gas Inventories. National Greenhouse Gas Emissions Programme, IGES (2006)

    Google Scholar 

  • IPCC.: Climate Change 2007—the physical science basis. In: Solomon, S., Qin, D., Manning, M., Chen, Z., Marquis, M., Averyt, K.B., Signor, M., Miller, H.L. (eds.) Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change (IPCC). Cambridge University Press, Cambridge, New York (2007)

    Google Scholar 

  • IPCC.: 2013 Supplement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories: Wetlands. In: Hiraishi, T., Krug, T., Tanabe, K., Srivastava, N., Baasansuren, J., Fukuda, M., Troxler, T.G. (eds.). IPCC, Switzerland (2014)

    Google Scholar 

  • Jordaan, S.M.: Land and water impacts of oil sands production in Alberta. Environ. Sci. Technol. 46, 3611–3617 (2012)

    Article  Google Scholar 

  • Jørgensen, S.V., Hauschild, M.Z.: Need for relevant timescales when crediting temporary carbon storage. Int. J. Life Cycle Assess. 18, 747–754 (2013)

    Article  Google Scholar 

  • Jørgensen, S.V.: Environmental assessment of biomass based materials: with special focus on the climate effect of temporary carbon storage. Ph.D. thesis, Department of Management Engineering, Technical University of Denmark (2014)

    Google Scholar 

  • Jørgensen, S.V., Hauschild, M.Z., Nielsen, P.H.: The potential contribution to climate change mitigation from temporary carbon storage in biomaterials. Int. J. Life Cycle Assess. 20, 451–462 (2015)

    Article  Google Scholar 

  • Kim, H., Kim, S., Dale, B.E.: Biofuels, land use change, and greenhouse gas emissions: some unexplored variables. Environ. Sci. Technol. 43, 961–967 (2009)

    Article  Google Scholar 

  • King, C., Webber, M.: Water intensity of transportation. Environ. Sci. Technol. 42(21), 866–7872 (2008)

    Article  Google Scholar 

  • Koellner, T., de Baan, L., Beck, T., Brandão, M., Civit, B., Margni, M., Milà i Canals, L., Saad, R., de Souza, D.M., Müller-Wenk, R.: UNEP-SETAC guideline on global land use impact assessment on biodiversity and ecosystem services in LCA. Int. J. Life Cycle Assess. 18, 1188–1202 (2013)

    Article  Google Scholar 

  • Lardon, L., Hélias, A., Sialve, B., Steyer, J.-P., Bernard, O.: Life-cycle assessment of biodiesel production from microalgae. Environ. Sci. Technol. 43, 6475–6481 (2009)

    Article  Google Scholar 

  • Lehmann, J.: A handful of carbon. Nature 447, 143–144 (2007)

    Article  Google Scholar 

  • Luo, L., Voet, E., Huppes, G., Udo de Haes, H.A.: Allocation issues in LCA methodology: a case study of corn stover-based fuel ethanol. Int. J. Life Cycle Assess. 14, 529–539 (2009)

    Article  Google Scholar 

  • Majer, S., Mueller-Langer, F., Zeller, V., Kaltschmitt, M.: Implications of biodiesel production and utilization on global climate—a literature review. Eur. J. Lipid Sci. Technol. 111, 747–762 (2009)

    Article  Google Scholar 

  • Malca, J., Freire, F.: Life-cycle studies of biodiesel in Europe: a review addressing the variability ofresults and modeling issues. Renew. Sustain. Energy Rev. 15, 338–351 (2011)

    Article  Google Scholar 

  • Mascia, P.N., et al. (eds.) Plant Biotechnology for Sustainable Production of Energy and Co-products. Biotechnology in Agriculture and Forestry 66, Springer, Berlin (2010). doi:10.1007/978-3-642-13440-1_15

    Chapter  Google Scholar 

  • Michelsen, O.: Assessment of Land use impact on biodiversity. Proposal of a new methodology exemplified with forestry operations in Norway. Int. J. Life Cycle Assess. 13, 22–31 (2008)

    Google Scholar 

  • Moura-Costa, P.: Carbon accounting, trading and the temporary nature of carbon storage. The Nature Conservancy U.S. (2002)

    Google Scholar 

  • National Energy Technology Laboratory (NETL):. Development of Baseline Data and Analysis of Life Cycle Greenhouse Gas Emissions of Petroleum-Based Fuels. DOE/NETL-2009/1346 (2008)

    Google Scholar 

  • Patel, M., Bastioli, C., Marini, L., Wuerdinger, E.: Life cycle assessment of bio-based polymers and natural fiber composites. Bioploymers (2005, online)

    Google Scholar 

  • PlasticsEurope.: The plastics portal, Q&As (2013). Accessible at http://www.plasticseurope.org/what-is-plastic/types-of-plastics-11148/bio-based-plastics/qas.aspx. Accessed Feb 2016

  • Posten, C., Schaub, G.: Microalgae and terrestrial biomass as source for fuels—a process view. J. Biotechnol. 142, 64–69 (2009)

    Article  Google Scholar 

  • Randerson, J.T., Liu, H., Flanner, M.G., Chambers, S.D., Jin, Y., Hess, P.G., Pfister, G., Mack, M.C., Treseder, K.K., Welp, L.R., Chapin, F.S., Harden, J.W., Goulden, M.L., Lyons, E., Neff, J.C., Schuur, E.A.G., Zender, C.S.: The impact of boreal forest fire on climate warming. Science 314, 1130–1132 (2006)

    Article  Google Scholar 

  • Rothermel, J.: Raw material change in the chemical industry—The general picture. Presentation at HLG Chemicals—Working Group Feedstock, Energy & Logistics, February 7, 2008 Brussels (2008). Available at: http://ec.europa.eu/enterprise/sectors/chemicals/files/wg_7_8fer08/01rothermel_raw_material_change_en.pdf. Accessed Jan. 2014

  • Sala, O.E., Chapin III, F.S., Armesto, J.J., Berlow, E., Bloomfield, J., Dirzo, R., Huber-Sanwald, E., Huenneke, L.F., Jackson, R.B., Kinzig, A., Leemans, R., Lodge, D.M., Mooney, H.A., Oesterheld, M., Poff, N.L., Sykes, M.T., Walker, B.H., Walker, M., Wall, D.H.: Global biodiversity scenarios for the year 2100. Science 287, 1770–1774 (2000)

    Article  Google Scholar 

  • Sander, K., Murthy, G.S.: Life cycle analysis of algae biodiesel. Int. J. Life Cycle Assess. 15, 704–714 (2010)

    Article  Google Scholar 

  • Schnepf, R., Yacobucci, B.D.: Renewable fuel standard: overview and issues. CRS Report for Congress, Congressional Research Service (2012)

    Google Scholar 

  • Singh, A., Pant, D., Korres, N.E., Nizami, A.S., Prasad, S., Murphy, J.D.: Key issues in life cycle assessment of ethanol production from lignocellulosic biomass: challenges and perspectives. Bioresour. Technol. 101, 5003–5012 (2010)

    Article  Google Scholar 

  • Somerville, C., Youngs, H., Taylor, C., Davis, S.C., Long, S.P.: Feedstocks for lignocellulosic biofuels. Science 329, 790–792 (2010)

    Article  Google Scholar 

  • Song, J.H., Murphy, R.J., Narayan, R., Davies, G.B.H.: Biodegradable and compostable alternatives to conventional plastics. Philos. Trans. R. Soc. B 364, 2127–2139 (2009)

    Article  Google Scholar 

  • Tabone, M.D., Gregg, J.J., Beckman, E.J., Landis, A.E.: Sustainability metrics: life cycle assessment and green design in polymers. Environ. Sci. Technol. 44, 8264–8269 (2010)

    Article  Google Scholar 

  • USDA: S Biobased Products Market Potential and Projections Through 2025, OCE-2008-01, US Department of Agriculture (2008)

    Google Scholar 

  • Von Blottnitz, H., Curran, M.A.: A review of assessments conducted on bio-ethanol as a transportation fuel from a net energy, greenhouse gas, and environmental life cycle perspective. J. Clean. Prod. 15(7), 607–619 (2007)

    Article  Google Scholar 

  • Wang, M.: Life-cycle analysis of biofuels. Biotechnol. Agric. For. 66, 385–408

    Google Scholar 

  • Weiss, M., Patel, M.K., Heilmeier, H., Bringezu, S.: Applying distance-to-target weighing methodology to evaluate the environmental performance of bio-based energy, fuels, and materials. Resour. Conserv. Recycl. 50(3), 260–281 (2007)

    Article  Google Scholar 

  • Weiss, M., Haufe, J., Carus, M., Brandão, M., Bringezu, S., Hermann, B., Patel, M.K.: A review of the environmental impacts of biobased materials. J. Ind. Ecol. 16, S169–S181 (2012)

    Article  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the helpful inputs from Arnaud Hélias (Montpellier SupAgro/INRA) and Anthony Benoist (CIRAD).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Susanne Vedel Hjuler .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Cite this chapter

Hjuler, S.V., Hansen, S.B. (2018). LCA of Biofuels and Biomaterials. In: Hauschild, M., Rosenbaum, R., Olsen, S. (eds) Life Cycle Assessment. Springer, Cham. https://doi.org/10.1007/978-3-319-56475-3_30

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-56475-3_30

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-56474-6

  • Online ISBN: 978-3-319-56475-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics