Skip to main content

Variability of Temperature and Rainfall in the Upper Beas Basin, Western Himalaya

  • Chapter
  • First Online:
Climate Change, Extreme Events and Disaster Risk Reduction

Part of the book series: Sustainable Development Goals Series ((SDGS))

Abstract

Temperature and rainfall affect both the spatial and temporal patterns of water availability, especially in the Himalayan environment. Hence, it is imperative to analyse the trends in temperature and rainfall. The present study aimed to quantify the inter-annual and intra-seasonal variability in these climate variables at Manali and Bhuntar of the upper Beas river basin. Daily temperature data, including minimum temperature \( (T_{\hbox{min} } ) \), maximum temperature \( (T_{ \hbox{max} } ) \), mean temperature \( (T_{\text{mean}} ) \), lowest minimum temperature \( (L_{ \hbox{min} } ) \), highest maximum temperature \( (H_{ \hbox{max} } ) \), amount of rainfall and number of rainy days of Manali and Bhuntar for the period 1980–2010, were obtained from the India Meteorological Department. The Mann–Kendall and Theil–Sen’s slope nonparametric tests were used for the determination of trends and their magnitude. The findings indicate that the upper Beas basin experienced a warming trend at the rate of 0.031 ℃/year during the period of analysis. Range of temperature showed a significant decline in the basin. Rainfall showed a significant decreasing trend at Manali. The number of rainy days also showed a reduction at Manali during the period of study. Significant variation has been observed in rainfall intensity in the region over the study period. It is not possible to rule out the link between the warming trend and increase in anthropogenic activities in lower part of basin.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Notes

  1. 1.

    http://imd.gov.in/section/nhac/wxfaq.pdf.

  2. 2.

    Ibid.

References

  • Acharya P, Sreekesh S (2013) Seasonal variability in aerosol optical depth over India: a spatio-temporal analysis using the MODIS aerosol product. Int J Remote Sens 34(13):4832–4849. doi:10.1080/01431161.2013.782114

    Article  Google Scholar 

  • Arora M, Goel N, Singh P (2005) Evaluation of temperature trends over India. Hydrol Sci 50(1):81–93. doi:10.1623/hysj.50.1.81.56330

    Article  Google Scholar 

  • BBMB (Bhakra Beas Management Board) (1988) Snow hydrology studies in India with particular reference to the Satluj and Beas catchments. In: Proceeding of workshop on snow hydrology, Manali, India, pp 1–14. Bhakra Beas Management Board 23–26 November 1988

    Google Scholar 

  • Babar SHR (2013) Analysis of south west monsoon rainfall trend using statistical techniques over Nethravathi Basin. Int J Adv Civ Eng Architecture Res 2(1): 130–136

    Google Scholar 

  • Bhatt A, Joshi G, Joshi G (2013) Impact of climate changes on catchment hydrology and rainfall-runoff correlations in Karjan Reservoir basin, Gujarat. In: 2012 international swat conference proceedings pp 118–130. Indian Institute of Technology, Delhi, [online]. Available from: http://swat.tamu.edu/media/69009/swat-proceedings-2012-india.pdf. Accessed 28 Oct 2013

  • Bhutiyani M, Kale V, Pawar N (2007) Long-term trends in maximum, minimum and mean annual air temperatures across the north western Himalaya during the twentieth century. Clim Change 85(1–2):159–177. doi:10.1007/s00704-009-0167-0

    Article  Google Scholar 

  • Bhutiyani M, Kale V, Pawar N (2010) Climate change and the precipitation variations in the northwestern Himalaya:1866–2006. Int J Climatol 30(4):535–548. doi:10.1002/joc.1920

    Google Scholar 

  • Boyer C, Chaumont D, Chartierc I, Roy A (2010) Impact of climate change on the hydrology of St. Lawrence tributaries J Hydrol 384(1–4):65–83. doi:10.1016/j.jhydrol.2010.01.011

    Article  Google Scholar 

  • India Meteorological Department (2010) Climatological Tables Observatories of India 1961-1990. Government of India, New Delhi

    Google Scholar 

  • Dash S, Hunt J (2007) Variability of climate change in India. Curr Sci 93(6):782–788

    Google Scholar 

  • Dash S, Jenamani R, Kalsi S, Panda S (2007) Some evidence of climate change in twentieth-century India. Clim Change 85:299–321. doi:10.1007/s10584-007-9305-9

    Article  Google Scholar 

  • Dash S, Saraswat V, Panda S, Sharma N (2013) A study of changes in rainfall and temperature patterns at four cities and corresponding meteorological subdivisions over coastal regions of India. Glob Planet Change 108:175–194. doi:10.1016/j.gloplacha.2013.06.004

    Article  Google Scholar 

  • Diaz H, Bradley R, Eischeid J (1989) Precipitation fluctuations over global land areas since the late 1800’s. J Geophys Res 94(D1):1195–1210

    Article  Google Scholar 

  • Dimri AP, Dash S (2012) Winter time climate trends in the western Himalayas. Clim Change 111(3–4):775–800

    Google Scholar 

  • Duhan D, Pandey A, Gahalaut K, Pandey R (2013) Spatial and temporal variability in maximum, minimum and mean air temperatures at Madhya Pradesh in central India. CR Geosci 345(1):3–21. doi:10.1016/j.crte.2012.10.016

    Article  Google Scholar 

  • Gadgil A, Dhorde A (2005) Temperature trends in twentieth century at Pune. India Atmos Environ 39:6550–6556. doi:10.1016/j.atmosenv.2005.07.032

    Article  CAS  Google Scholar 

  • Ghosh S, Luniya V, Gupta A (2009) Trend analysis of Indian summer monsoon rainfall at different spatial scales. Atmos Sci Lett 10:285–290. doi:10.1002/asl

    Google Scholar 

  • Guhathakurta P, Rajeevan M (2008) Trends in the rainfall pattern over India. Int J Climatol 28:1453–1469. doi:10.1002/joc

    Article  Google Scholar 

  • IPCC (1996) Climate Change 1995: the IPCC Scientific Assessment, Contribution of Working Group I to Second Assessment Report of Intergovernmental of Climate Change (IPCC). Cambridge University Press, Cambridge, UK. In: Houghton JT, Meira Filho LG, Callander BA, Harris N, Kattenberg A, Maskell K (eds) [online]. Available from: https://www.ipcc.ch/ipccreports/sar/wg_I/ipcc_sar_wg_I_full_report.pdf. Accessed 1 Jan 2013

  • IPCC (2001) Climate Change 2001: the Scientific Basis Contribution of Working Group I to the Third Assessment Report of the Intergovernmental Panel on Climate Change. IPCC, Cambridge University Press, UK, [online]. Available from: http://www.grida.no/publications/other/ipcc_tar/. Accessed 1 Jan 2013

  • IPCC (2007) Climate Change 2007: impacts, adaptation and vulnerability. Contribution of Working Group II to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. In: Parry ML, Canziani OF, Palutik JP, van der Linden PJ, Hanson CE (eds), Cambridge University Press, Cambridge, UK, [online]. Available from: https://www.ipcc.ch/publications_and_data/ar4/wg2/en/frontmattersintroduction-to.html. Accessed 1 Jan 2013

  • IPCC (2013) Climate Change 2013: the physical science basis, contribution of working group i to the fifth assessment report of the intergovernmental panel on climate change (IPCC) In: Stocker TF, Qin D, Plattner G-K, Tignor M, Allen SK, Boschung J, Nauels A, Xia Y, Bex V, Midgley PM (eds), Cambridge University Press, Cambridge, UK, [online]. Available from: https://www.ipcc.ch/report/ar5/wg1/. Accessed 1 May 2014

  • Jain S, Kumar V (2012) Trend analysis of rainfall and temperature data for India. Curr Sci 102(1):37–49

    Google Scholar 

  • Jain S, Goswami A, Saraf A (2009) Role of elevation and aspect in snow distribution in Western Himalaya. Water Resour Manag 23:71–83. doi:10.1007/s11269-008-9265-5

    Article  Google Scholar 

  • Jhajharia D, Yadav B, Maske S, Chattopadhyay S, Kar A (2012) Identification of trends in rainfall, rainy days and 24 h maximum rainfall over subtropical Assam in northeast India. CR Geosci 344(1):1–13. doi:10.1016/j.crte.2011.11.002

    Article  Google Scholar 

  • Jhajharia D, Singh V (2011) Trends in temperature, diurnal temperature range and sunshine duration in Northeast India. Int J Climatol 31(9):1353–1367. doi:10.1002/joc.2164

    Article  Google Scholar 

  • Kendall M (1975) Rank Correlation Methods. Charles Griffin, London, U.K

    Google Scholar 

  • Kumar V, Jain S (2011) Trends in rainfall amount and number of rainy days in river basins of India (1951-2004). Hydrol. Res. 42(4):290–306. doi:10.2166/nh.20n.067

    Article  Google Scholar 

  • Kumar V, Jain S, Singh Y (2010) Analysis of long-term rainfall trends in India. Hydrol Sci J 55(4):484–496. doi:10.1080/02626667.2010.481373

    Article  Google Scholar 

  • Luo Y, Ficklin D, Liu X (2013) Assessment of climate change impacts on hydrology and water quality with a watershed modeling approach. Sci Total Environ 450–451:72–82. doi:10.1016/j.scitotenv.2013.02.004

    Article  Google Scholar 

  • Mann H (1945) Non-parametric test against trend. Econometrica. 13:245–259

    Article  Google Scholar 

  • Naidu C, Rao B, Rao D (1999) Climatic trends and periodicities of annual rainfall over India. Meteorological Applications. 6:395–404

    Article  Google Scholar 

  • Pal I, Al-Tabbaa A (2009) Trends in seasonal precipitation extremes—an indicator of ‘climate change’ in Kerala. India J Hydrol 367:62–69. doi:10.1016/j.jhydrol.2008.12.025

    Article  Google Scholar 

  • Pal I, Al-Tabbaa A (2010) Long-term changes and variability of monthly extreme temperatures in India. Theor Appl Climatol 100:45–56. doi:10.1007/s00704-009-0167-0

    Article  Google Scholar 

  • Pal I, Al-Tabbaa A (2011) Assessing seasonal precipitation trends in India using parametric and non-parametric statistical techniques. Theor Appl Climatol 103:1–11. doi:10.1007/s00704-010-0277-8

    Article  Google Scholar 

  • Rana A, Uvo C, Bengtsson L, Sarthi P (2012) Trend analysis for rainfall in Delhi and Mumbai. India Climate Dynam 38:45–56. doi:10.1007/s00382-011-1083-4

    Article  Google Scholar 

  • Rani S (2014) Assessment of the influence of climate variability on the snow cover area of the upper Beas river basin. Unpublished M. Phil. Dissertation, Centre for the Study of Regional Development, Jawaharlal Nehru University, New Delhi

    Google Scholar 

  • Ratna S (2012) Summer monsoon rainfall variability over Maharashtra. India Pure Appl Geophys 169:259–273. doi:10.1007/s00024-011-0276-4

    Article  Google Scholar 

  • Sen P (1968) Estimates of the regression coefficient based on Kendall’s tau. J Am Stat Assoc 63(324):1379–1389

    Article  Google Scholar 

  • Singh O, Arya P, Chaudhary B (2013) On rising temperature trends at Dehradun in Doon valley of Uttarakhand. India J Earth Syst Sci 122(3):613–622. doi:10.1007/s12040-013-0304-0

    Article  Google Scholar 

  • Singh P, Kumar V, Thomas T, Arora M (2008) Basin-wide assessment of temperature trends in northwest and central India. Hydrolog Sci J 53(2):421–433. doi:10.1623/hysj.53.2.421

    Article  Google Scholar 

  • Tank A, Peterson T, Quadi D, Dorji S, Zou X, Tang H, Spektorman T (2006) Changes in daily temperature and precipitation extremes in central and south Asia. J Geophys Res 111:1–8. doi:10.1029/2005JD006316

    Google Scholar 

  • Theil H (1950) A rank-invariant method of linear and polynomial regression analysis. Koninkluke Nederlandse Akademie Van Wetenschappen. 53:467–482

    Google Scholar 

  • Westra S, Alexander L, Zwiers F (2013) Global increasing trends in annual maximum daily precipitation. J Climate 26:3904–3918. doi:10.1175/JCLI-D-12-00502.1

    Article  Google Scholar 

Download references

Acknowledgement

The first author is thankful to the University Grant Commission for providing the fellowship to carry out the research work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Sreekesh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Rani, S., Sreekesh, S. (2018). Variability of Temperature and Rainfall in the Upper Beas Basin, Western Himalaya. In: Mal, S., Singh, R., Huggel, C. (eds) Climate Change, Extreme Events and Disaster Risk Reduction. Sustainable Development Goals Series. Springer, Cham. https://doi.org/10.1007/978-3-319-56469-2_7

Download citation

Publish with us

Policies and ethics