Skip to main content

Water Deficit Estimation Under Climate Change and Irrigation Conditions in the Fergana Valley, Central Asia

  • Chapter
  • First Online:
Climate Change, Extreme Events and Disaster Risk Reduction

Part of the book series: Sustainable Development Goals Series ((SDGS))

Abstract

We evaluated changes in irrigation water deficit in the Fergana Valley, Central Asia under different scenarios of climate change and water management. The Fergana Valley is located within the Syr Darya river basin and is shared between Uzbekistan, Kyrgyzstan, and Tajikistan. The main driver of economic activity in the Valley is cotton farming, which consumes large volumes of water. Growing population drives irrigation water demand with plans to modernize the irrigation system increasing the irrigated areas by 10–15% underway. However, climate change may alter projected water demand increase in the Valley. We estimated the climate-related changes in irrigational water demand in the Fergana Valley in 2020s, 2050s, and 2080s using future weather patterns generated with five global circulation models (GCMs) run under the A1FI, A2, and B1SRES scenarios. Considerably higher temperatures and a moderate change in precipitation lead to increasing potential evapotranspiration (PET), which nearly doubles irrigation water demand by the 2080s. In turn, the area under persistent water deficits increases from current 12% to 18.3% by 2020s, 27% by 2050s, and to 38.2% by 2080s. That is driving demand for a scientifically substantiated scheme of irrigation keeping in mind the quality of soils and groundwater table, correction of water consumption norms for different crops, and change of crop composition in favor of the winter horticulture plantations and cereals. On a long run, a radical modernization of the irrigation system will be needed to cope with climate change in the Fergana Valley.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Anarbekov O, Pinkhasov M et al. (2007) Guideline for WUA Business Plan Development (in Russian). Guideline is produced along “IWRM Fergana” project jointly together with two partner institutions IWMI and SIC. ICWC. Tashkent

    Google Scholar 

  • Babu S (2000) Food Policy Reforms in Central Asia: Setting the Research Priorities. In: Tashmatov A (ed) International Food Policy Research Institute Washington, DC: [Online book]. Available from: http://www.ifpri.org/pubs/books/fprca.pdf. (Accessed 28 Oct 2016)

  • Baknell D (2003) Irrigation in Central Asia. Social, Economic and Ecological aspects (in Russian).In: Baknell D, Klychnikov I, Lampetti D (eds): Report of the department of Europe and Central Asia, sector of ecological and social-sustainable development of the world bank: p 120

    Google Scholar 

  • Cai X, McKinneyb DC, Rosegranta MW (2006) Sustainability analysis for irrigation water management in the aral sea region. International Food Policy Research Institute, Washington

    Google Scholar 

  • Chub VY (2002) Climate change and its influence on the natural resource potential of the Republic Of Uzbekistan. Glavgidromet, Tashkent (In Russian)

    Google Scholar 

  • Chub VY (2007) Climate change and its influence on hydro-and meteorological processes, agro-climate resources and water resources of Uzbekistan. (in Russian) Tashkent: Voris-Nashriyot: p 133

    Google Scholar 

  • Dronin NM, Kirilenko AP (2008) Climate change and food stress in Russia: what if the market transforms as it did during the past century. Clim Change J 86(1–2):123–150

    Article  Google Scholar 

  • Döll P, Siebert S (2000) A digital global map of irrigated areas. ICID J 49(2):55–66

    Google Scholar 

  • Dukhovny VA (2008) Introduction. Sources. In: Dukhovny V.A, Sokolov V.I, Mantritilake Kh (eds) Integrated water resources management: From theory to real practice. experience of Central Asia (in Russian).Tashkent: NITS MKVK: p 364

    Google Scholar 

  • EC (European Commission) (1995) Water resource management and agricultural production in Central Asian Republics. WARMAP project Report. vol. 1–6

    Google Scholar 

  • FAO AQUASTAT [On-line database] Available from: http://www.fao.org/nr/water/aquastat/didyouknow/index3.stm (Accessed 28 October 2014)

  • Friend AD (1998) Parameterization of a global daily weather generator for terrestrial ecosystem modeling. Ecol Model 109:121–140

    Article  Google Scholar 

  • ICG (International Crisis Group) (2002) Central Asia: Water and Conflict. ICG Asia Report#34. Osh, Brussels: International Crisis Group

    Google Scholar 

  • Izrayel’ YuA, Anokhin YuA (1991) Issues of estimating the ecological, social, and economic consequences of the degradation of the natural environment in the near aral region. monitoring the natural environment in the basin of the aral sea. (In Russian) Leningrad: Gidrometeoizdat

    Google Scholar 

  • Кirilenko A P, Dronin N M, Ashakeeva GZh (2009) Projecting water security in the Aral Sea Basin countries natural resources: Economics, management and policy. In: White JR, Robinson WH (eds) Nova Science Publishers, Inc. 1–37

    Google Scholar 

  • Laktaev NT (1978) Poliv khlopchatnika [Irrigation of cotton crops]. Kolos, Moscow

    Google Scholar 

  • Micklin P (2006) The Aral Sea crisis and its future: An assessment in 2006. Eurasian Geogr Econ 47(5):505–634

    Article  Google Scholar 

  • Micklin PA (2007) The Aral Sea Disaster. Annu Rev Earth Planet Sci 35:47–72

    Article  CAS  Google Scholar 

  • Mitchell TD, Carter TR, Jones PD, Hulme M, New M (2004) A Comprehensive Set of High-Resolution Grids of Monthly Climate for Europe and the Globe: The Observed Record (1901–2000) and 16 Scenarios (2001–2100). Tyndall Centre for Climate Change Research: Working Paper 55

    Google Scholar 

  • Moller LCh (2005) Transboundary water conflicts over hydropower and irrigation: can multilateral development banks help?. University of Nottingham, Nottingham

    Google Scholar 

  • Mukhamedzhanov Sh (2007) Spreading of modernized technologies for increasing of water productivity efficiency [Rasprostranenie usovershenstvovannih technologiy popovisheniyu productivnosti vody] (In Russian) Tashkent: Scientific-Information Center ICWC: p 70

    Google Scholar 

  • Mukhamedzhanov Sh, Nerozin SA (2008) Water use – aimed to water and land productivity. In: Dukhovny VA, Sokolov VI, Mantritilake Kh (eds) Integrated water resources management: from theory to real practice (pp 218–250). Experience of Central Asia. NITS MKVK, Tashkent, 364 p (in Russian)

    Google Scholar 

  • Murray-Rust H, Abdullaev I, ul Hassan M, Horinkova V (2003) Water Productivity in the Syr-Darya River Basin. Research Report 67. International water management institute Colombo, Sri Lanka

    Google Scholar 

  • Nerozin AE (1980) Agricultural meliorations: Central Asian zone. (in Russian) Tashkent: Ukituvchi: p 269

    Google Scholar 

  • Nakićenović N, Alcamo J, Davis G, de Vries B, Fenhann J, Gaffin S, Gregory K, Grübler A, Jung TY, Kram T, Lebre La Rovere E, Michaelis L, Mori S, Morita T, Pepper W, Pitcher H, Price L, Riahi K, Roehrl A, Rogner HH, Sankovski A, Schlesinger M, Shukla P, Smith S, Swart R, van Rooijen S, Victor N, Dadi Z (2000) Special report on emissions scenarios: A special report of working group iii of the intergovernmental panel on climate change. Cambridge University Press, Cambridge

    Google Scholar 

  • Ohlsson L (1999). Environment, Scarcity and Conflict: A study of malthusian concerns. Department of peace and development research, University of Göteburg [On-line report]. Available from: http://www.padrigu.gu.se/ohlsson/eng.html (Accessed 28 Oct 2016)

  • Ososkova T, Gorelkin N, Chub V (2000) Water resources of central asia and adaptation measures for climate change. Environ Monit Assess 61(1):161–166

    Article  Google Scholar 

  • Severskiy IV (2004) Water-Related problems of central asia: Some results of the (giwa) international water assessment program. Roy Swed Acad Sci Ambio 33(1–2):52–61

    Google Scholar 

  • Ian Small, van der Meer J, Upshur REG (2001) Acting on an environmental health disaster: The case of the Aral Sea. Environ Health Perspect 109(6):547–549

    Article  Google Scholar 

  • Smith DR (1995) Environmental security and shared water resources in post-soviet Central Asia. Post Soviet Geogr 36:351–370

    Google Scholar 

  • Sokolov V (2009) Future of Irrigation in Central Asia. IWMI-FAO workshop on trends and transitions in Asian irrigation. What are the prospects for the future? Bangkok

    Google Scholar 

  • Spoor M, Krutov A (2003) The “Power of Water” in a divided Central Asia. Perspect Glob Dev Technol 2(3–4):593–614

    Article  Google Scholar 

  • Stulina GV (2010) Recommendations on hydromodul regionalization and regime of irrigation of agricultural crops (in Russian) Tashkent: MKVK: p 48

    Google Scholar 

  • Valentini KL (2004) Water Problems of Central Asia. (in Russian)Bishkek: SOTSINFORBURO: p 142

    Google Scholar 

  • Wegerich K (2001) Not a simple path. A sustainable future for Central Asia. Occasional paper No 28. Water Issues Study Group: University of London

    Google Scholar 

  • Weinthal E (2002) State-making and environmental cooperation: Linking domestic and international politics in Central Asia. The MIT Press, Cambridge

    Google Scholar 

  • World Bank (2003) Irrigation in Central Asia: Social. Economic and Environmental Considerations, Washington DC

    Google Scholar 

  • Yuldashbaev N (2014) Fruit and vegetable overview and increasing exports to Russia. GAIN Report. 08.12.2014. Tashkent

    Google Scholar 

  • Zonn SV (1986) Science of tropical soils [Tropicheskoe pochvovedenie] (in Russian) Moscow: Izdatelstvo “UDN”: p 400

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elena Milanova .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Milanova, E., Nikanorova, A., Kirilenko, A., Dronin, N. (2018). Water Deficit Estimation Under Climate Change and Irrigation Conditions in the Fergana Valley, Central Asia. In: Mal, S., Singh, R., Huggel, C. (eds) Climate Change, Extreme Events and Disaster Risk Reduction. Sustainable Development Goals Series. Springer, Cham. https://doi.org/10.1007/978-3-319-56469-2_5

Download citation

Publish with us

Policies and ethics