Skip to main content

Application of Classification and Regression Trees for Spatial Prediction of Rainfall-Induced Shallow Landslides in the Uttarakhand Area (India) Using GIS

  • Chapter
  • First Online:
Climate Change, Extreme Events and Disaster Risk Reduction

Part of the book series: Sustainable Development Goals Series ((SDGS))

Abstract

Landslide is defined to be a mass movement of slope materials from up- to downslope under various geo-environmental conditions. It is well known as one of the most serious geo-hazards causing loss of human life and properties throughout the world. In the present study, we present an application of Classification and Regression Trees (CART) for spatial prediction of rainfall-induced shallow landslides in the Uttarakhand area (India) using GIS. A total of 430 historical landslide locations have been first identified to construct landslide inventory map. In addition, eleven landslide influencing factors (slope angle, slope aspect, elevation, curvature, lithology, soil type, land cover, distance to roads, distance to rivers, distance to lineaments, and rainfall) have been taken into account for analyzing the spatial relationship with landslide occurrences. Moreover, the predictive capability of the CART model has been validated using statistical analysis-based evaluations. Overall, the CART model performs well for spatial prediction of landslides. Its performance is even better than other landslide models (Naïve Bayes and Naïve Bayes Trees). Therefore, the CART indicates as encouraging alternative method which could be used for landslide prediction in landslide-prone areas. The results obtained from this study would be helpful for landslide preventing and combating activities in the study area.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Amor NB, Benferhat S, Elouedi Z (2004) Naive Bayes vs decision trees in intrusion detection systems. In: Proceedings of the 2004 ACM symposium on Applied computing, pp 420–424, doi:10.1145/967900.967989

  • Ayalew L, Yamagishi H (2005) The application of GIS-based logistic regression for landslide susceptibility mapping in the Kakuda-Yahiko Mountains Central Japan. Geomorphology 65(1):15–31. doi:10.1016/j.geomorph.2004.06.010

    Article  Google Scholar 

  • Breiman L, Friedman J, Stone CJ, Olshen RA (1984) Classification and regression trees. CRC press

    Google Scholar 

  • Chen J, Yang S, Li H, Zhang B, Lv J (2013) Research on geographical environment unit division based on the method of natural breaks (Jenks). In: International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences XL-4 (W3), pp 47–50, doi:10.5194/isprsarchives-XL-4-W3-47-2013

  • Choi J, Oh HJ, Won JS, Lee S (2010) Validation of an artificial neural network model for landslide susceptibility mapping. Environ Earth Sci 60(3):473–483. doi:10.1007/s12665-009-0188-0

    Article  Google Scholar 

  • Devkota KC, Regmi AD, Pourghasemi HR, Yoshida K, Pradhan B, Ryu IC, Dhital MR, Althuwaynee OF (2013) Landslide susceptibility mapping using certainty factor, index of entropy and logistic regression models in GIS and their comparison at Mugling-Narayanghat road section in Nepal Himalaya. Nat Hazards 65(1):135–165. doi:10.1007/s11069-012-0347-6

    Article  Google Scholar 

  • Felicísimo ÁM, Cuartero A, Remondo J, Quirós E (2013) Mapping landslide susceptibility with logistic regression, multiple adaptive regression splines, classification and regression trees, and maximum entropy methods: a comparative study. Landslides 10(2):175–189. doi:10.1007/s10346-012-0320-1

    Article  Google Scholar 

  • Hess KR, Abbruzzese MC, Lenzi R, Raber MN, Abbruzzese JL (1999) Classification and regression tree analysis of 1000 consecutive patients with unknown primary carcinoma. Clin Cancer Res 5(11):3403–3410

    CAS  Google Scholar 

  • Kavzoglu T, Sahin EK, Colkesen I (2014) Landslide susceptibility mapping using GIS-based multi-criteria decision analysis, support vector machines, and logistic regression. Landslides 11(3):425–439. doi:10.1007/s10346-013-0391-7

    Article  Google Scholar 

  • Knable M, Barci B, Bartko J, Webster M, Torrey E (2002) Molecular abnormalities in the major psychiatric illnesses: classification and regression tree (CRT) analysis of post-mortem prefrontal markers. Mol Psychiatry 7(4):392–404. doi:10.1038/sj/mp/4001034

    Article  CAS  Google Scholar 

  • Kohavi R (1996) Scaling up the accuracy of Naive–Bayes classifiers: a decision-tree hybrid, KDD. Citeseer, pp 202–207

    Google Scholar 

  • Kundu S, Saha A, Sharma D, Pant C (2013) Remote sensing and GIS based landslide susceptibility assessment using binary logistic regression model: a case study in the Ganeshganga Watershed, Himalayas. J Indian Soc Remote Sens 41(3):697–709. doi:10.1007/s12524-012-0255-y

    Article  Google Scholar 

  • Lee S, Ryu JH, Won JS, Park HJ (2004) Determination and application of the weights for landslide susceptibility mapping using an artificial neural network. Eng Geol 71(3–4):289–302. doi:10.1016/S0013-7952(03)00142-X

    Article  Google Scholar 

  • Lewis RJ (2000) An introduction to classification and regression tree (CART) analysis. In: Annual meeting of the society for academic emergency medicine in San Francisco, California, pp 1–14

    Google Scholar 

  • Loh WY (2008) Classification and regression tree methods. In: Encyclopedia of statistics in quality and reliability, pp 1–8, doi:10.1002/9780470061572.eqr492

  • Manel S, Williams HC, Ormerod SJ (2001) Evaluating presence–absence models in ecology: the need to account for prevalence. J Appl Ecol 38(5):921–931. doi:10.1046/j.1365-2664.2001.00647.x

    Article  Google Scholar 

  • Marjanović M, Kovačević M, Bajat B, Voženílek V (2011) Landslide susceptibility assessment using SVM machine learning algorithm. Eng Geol 123(3):225–234. doi:10.1016/j.enggeo.2011.09.006

    Article  Google Scholar 

  • Mathew J, Jha V, Rawat G (2009) Landslide susceptibility zonation mapping and its validation in part of Garhwal Lesser Himalaya, India, using binary logistic regression analysis and receiver operating characteristic curve method. Landslides 6(1):17–26. doi:10.1007/s10346-008-0138-z

    Article  Google Scholar 

  • NCEP (2014) Global weather data for SWAT. http://globalweather.tamu.edu/home

  • Nefeslioglu H, Sezer E, Gokceoglu C, Bozkir A, Duman T (2010) Assessment of landslide susceptibility by decision trees in the metropolitan area of Istanbul, Turkey. In: Mathematical Problems in Engineering 2010, doi:10.1155/2010/901095

  • Ozdemir A (2011) GIS-based groundwater spring potential mapping in the Sultan Mountains (Konya, Turkey) using frequency ratio, weights of evidence and logistic regression methods and their comparison. J Hydrol 411(3–4):290–308. doi:10.1016/j.jhydrol.2011.10.010

    Article  Google Scholar 

  • Pandey A, Dabral P, Chowdary V, Yadav N (2008) Landslide hazard zonation using remote sensing and GIS: a case study of Dikrong river basin, Arunachal Pradesh, India. Environ Geol 54(7):1517–1529. doi:10.1007/s00254-007-0933-1

    Article  Google Scholar 

  • Pham BT, Tien Bui D, Indra P, Dholakia MB (2015a) Landslide susceptibility assessment at a part of Uttarakhand Himalaya, India using GIS—based statistical approach of frequency ratio method. Int J Eng Res Technol 4(11):338–344

    Google Scholar 

  • Pham BT, Tien Bui D, Pourghasemi HR, Indra P, Dholakia MB (2015b) Landslide susceptibility assesssment in the Uttarakhand area (India) using GIS: a comparison study of prediction capability of naïve bayes, multilayer perceptron neural networks, and functional trees methods. Theor Appl Climatol 122(3–4):1–19. doi:10.1007/s00704-015-1702-9

    Google Scholar 

  • Pham BT, Tien Bui D, Dholakia MB, Prakash I, Pham HV (2016a) A comparative study of least square support vector machines and multiclass alternating decision trees for spatial prediction of rainfall-induced landslides in a tropical cyclones area. Geotech Geol Eng 34(1); 1-18, doi:10.1007/s10706-016-9990-0

  • Pham BT, Pradhan B, Tien Bui D, Prakash I, Dholakia MB (2016b) A comparative study of different machine learning methods for landslide susceptibility assessment: a case study of Uttarakhand area (India). Environ Model Softw 84:240–250, doi:10.1016/j.envsoft.2016.07.005

  • Pham BT, Tien Bui D, Pham HV, Le HQ, Prakash I, Dholakia MB (2016c) Landslide hazard assessment using random subspace fuzzy rules based classifier ensemble and probability analysis of rainfall data: a case study at Mu Cang Chai district, Yen Bai province (Viet Nam). J Indian Soc Remote Sens, pp 1–11, doi:10.1007/s12524-016-0620-3

  • Pham BT, Tien Bui D, Prakash I, Dholakia MB (2016d) Rotation forest fuzzy rule-based classifier ensemble for spatial prediction of landslides using GIS. Nat Hazards 83(1):1–31, doi:10.1007/s11069-016-2304-2

  • Pham BT, Tien Bui D, Prakash I, Dholakia MB (2016e) Hybrid integration of multilayer perceptron neural networks and machine learning ensembles for landslide susceptibility assessment at Himalayan area (India) using GIS. CATENA 149(1):52–63, doi:10.1016/j.catena.2016.09.007

  • Pham BT, Bui DT, Dholakia MB, Prakash I, Pham HV, Mehmood K, Le HQ (2016f) A novel ensemble classifier of rotation forest and Naïve Bayer for landslide susceptibility assessment at the Luc Yen district, Yen Bai province (Viet Nam) using GIS. Geomatics Nat Hazards Risk, pp 1–23, doi:10.1080/19475705.2016.1255667

  • Pham BT, Bui DT, Prakash I, Dholakia M (2016g) Evaluation of predictive ability of support vector machines and naive Bayes trees methods for spatial prediction of landslides in Uttarakhand state (India) using GIS. J Geomatics 10:71–79

    Google Scholar 

  • Poudyal CP, Chang C, Oh HJ, Lee S (2010) Landslide susceptibility maps comparing frequency ratio and artificial neural networks: a case study from the Nepal Himalaya. Environ Earth Sci 61(5):1049–1064. doi:10.1007/s12665-009-0426-5

    Article  Google Scholar 

  • Pradhan B (2010) Landslide susceptibility mapping of a catchment area using frequency ratio, fuzzy logic and multivariate logistic regression approaches. J Indian Soc Remote Sens 38(2):301–320. doi:10.1007/s12524-010-0020-z

    Article  Google Scholar 

  • Royston P, Altman DG (2005) Risk stratification for in-hospital mortality in acutely decompensated heart failure. JAMA 293(20):2467–2468. doi:10.1001/jama.293.20.2467-c

    CAS  Google Scholar 

  • Saha A, Gupta R, Arora M (2002) GIS-based landslide hazard zonation in the Bhagirathi (Ganga) Valley Himalayas. Int J Remote Sens 23(2):357–369. doi:10.1080/01431160010014260

    Article  Google Scholar 

  • Shirzadi A, Bui DT, Pham BT, Solaimani K, Chapi K, Kavian A, Shahabi H, Revhaug I (2017) Shallow landslide susceptibility assessment using a novel hybrid intelligence approach. Environ Earth Sci 76(2):60. doi:10.1007/s12665-016-6374-y

    Article  Google Scholar 

  • Tien Bui D, Tuan TA, Klempe H, Pradhan B, Revhaug I (2015) Spatial prediction models for shallow landslide hazards: a comparative assessment of the efficacy of support vector machines, artificial neural networks, kernel logistic regression, and logistic model tree. Landslides, pp 1–18, doi:10.1007/s10346-015-0557-6

  • Tien Bui D, Ho TC, Pradhan B, Pham BT, Nhu VH, Revhaug I (2016a) GIS-based modeling of rainfall-induced landslides using data mining-based functional trees classifier with AdaBoost, Bagging, and MultiBoost ensemble frameworks. Environ Earth Sci 75(14):1–22. doi:10.1007/s12665-016-5919-4

    Article  Google Scholar 

  • Tien Bui D, Pham BT, Nguyen QP, Hoang ND (2016b) Spatial prediction of rainfall-induced shallow landslides using hybrid integration approach of least-squares support vector machines and differential evolution optimization: a case study in Central Vietnam. Int J Digital Earth 9(11):1–21. doi:10.1080/17538947.2016.1169561

    Article  Google Scholar 

  • Tittonell P, Shepherd KD, Vanlauwe B, Giller KE (2008) Unravelling the effects of soil and crop management on maize productivity in smallholder agricultural systems of Western Kenya—an application of classification and regression tree analysis. Agr Ecosyst Environ 123(1):137–150. doi:10.1016/j.agee.2007.05.005

    Article  Google Scholar 

  • Van Den Eeckhaut M, Vanwalleghem T, Poesen J, Govers G, Verstraeten G, Vandekerckhove L (2006) Prediction of landslide susceptibility using rare events logistic regression: a case-study in the Flemish Ardennes (Belgium). Geomorphology 76(3–4):392–410. doi:10.1016/j.geomorph.2005.12.003

    Article  Google Scholar 

  • Yeon YK, Han JG, Ryu KH (2010) Landslide susceptibility mapping in Injae, Korea, using a decision tree. Eng Geol 116(3–4):274–283. doi:10.1016/j.enggeo.2010.09.009

    Article  Google Scholar 

Download references

Acknowledgements

Authors would like to sincerely thank Director, Bhaskaracharya Institute for Space Applications and Geo-Informatics (BISAG), Department of Science and Technology, Government of Gujarat, Gandhinagar, Gujarat, India, for providing facilities to carry out this research work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Binh Thai Pham .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Pham, B.T., Tien Bui, D., Prakash, I. (2018). Application of Classification and Regression Trees for Spatial Prediction of Rainfall-Induced Shallow Landslides in the Uttarakhand Area (India) Using GIS. In: Mal, S., Singh, R., Huggel, C. (eds) Climate Change, Extreme Events and Disaster Risk Reduction. Sustainable Development Goals Series. Springer, Cham. https://doi.org/10.1007/978-3-319-56469-2_11

Download citation

Publish with us

Policies and ethics