Skip to main content

Microwave-Assisted Hydrothermal Processing of Seaweed Biomass

  • Chapter
  • First Online:
Hydrothermal Processing in Biorefineries

Abstract

This chapter focuses on the effects of microwave on hydrothermal processing of algal biomass, especially fast-growing green seaweed biomass of Ulva. Microwave enhances the efficiency of hydrothermal treatment of biomass by directly affecting water molecule, catalysts, and biomass substrates. Firstly, the fundamentals of microwave-assisted biorefinery are illustrated. Then, the microwave effects for hydrothermal processing of biomass were summarized for the model sugar reaction and seaweed conversion. Dielectric properties of seaweed biomass relevant to microwave heating are also presented in the last section.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Allen JI, Smyth TJ, Siddorn JR, Holt M (2008) How well can we forecast high biomass algal bloom events in a eutrophic coastal sea? Harmful Algae 8:70–76

    Article  Google Scholar 

  • Allen E, Browne J, Hynes S, Murphy JD (2013) The potential of algae blooms to produce renewable gaseous fuel. Waste Manag 33:2425–2433

    Article  Google Scholar 

  • Ano T, Kishimoto F, Sasaki R, Tsubaki S, Maitani MM, Suzuaki E, Wada Y (2016) In situ temperature measurements of reaction spaces under microwave irradiation using photoluminescent probes. Phys Chem Chem Phys 18:13173–13179

    Article  Google Scholar 

  • Antti AL, Perré P (1999) A microwave applicator for on line wood drying: temperature and moisture distribution in wood. Wood Sci Technol 33:123–138

    Article  Google Scholar 

  • Artemov VG, Volkov AA (2014) Water and ice dielectric spectra scaling at 0°C. Ferroelectrics 466:158–165

    Article  Google Scholar 

  • Azuma J, Tanaka F, Koshijima T (1984a) Enhancement of enzymatic susceptibility of lignocellulosic wastes by microwave irradiation. J Ferment Technol 62:377–384

    Google Scholar 

  • Azuma J, Tanaka F, Koshijima T (1984b) Microwave irradiation of lignocellulosic materials I. Enzymatic susceptibility of microwave-irradiated woody plants. Mokuzai Gakkaishi 30:501–509

    Google Scholar 

  • Azuma J, Tsumiya T, Katata T (1994a) July 27, Jpn Patent JP 1858751

    Google Scholar 

  • Azuma J, Hosobuchi T, Katata T (1994b) December 7, Jpn Patent JP 1888744

    Google Scholar 

  • Azuma J, Hosobuchi T, Katata T (1994c) December 7, Jpn Patent JP 1888745

    Google Scholar 

  • Bendahou M, Muselli A, Grignon-Dubois M, Benyoucef M, Desjobert JM, Brnadini F, Costa J (2008) Antimicrobial activity and chemical composition of Origanum glandulosum Desf. essential oil and extract obtained by microwave extraction: comparison with hydrodistillation. Food Chem 106:132–139

    Article  Google Scholar 

  • Biller P, Ross AB (2012) Hydrothermal processing of algal biomass for the production of biofuels and chemicals. Biofuels 3:603–623

    Article  Google Scholar 

  • Budrin VL, Shuttleworth PS, Dodson JR, Hunt AJ, Langian B, Marriott R, Milkowski KJ, Wilson AJ, Breeden SW, Fan J, Sin E, Clark JH (2011) Use of green chemical technologies in an integrated biorefinery. Energy Envinron Sci 4:471–479

    Article  Google Scholar 

  • Chisti Y (2007) Biodiesel from microalgae. Biotechnol Adv 25:294–306

    Article  Google Scholar 

  • Coelho MS, Barbosa FG, de Souza MRAZ (2014) The scientometric research on macroalgal biomass as a source of biofuel feedstock. Algal Res 6:132–138

    Article  Google Scholar 

  • Coste O, Malta E, López JC, Fernández-Diaz C (2015) Production of sulfated oligosaccharides from the seaweed Ulva sp. using a new ulvan-degrading enzymatic bacterial crude extract. Algal Res 10:224–231

    Article  Google Scholar 

  • Fernandez Y, Arenilas A, Menedez JA (2011) Microwave heating applied to pyrolysis. In: Grundas S (ed) Advances in induction and microwave heating. I-Tech Education and Publishing, Vienna, pp 723–752

    Google Scholar 

  • Gabriel C, Gabriel S, Grant EH, Halstead BSJ, Mingos DMP (1998) Dielectric parameters relevant to microwave dielectric heating. Chem Soc Rev 27:213–223

    Article  Google Scholar 

  • Hermiati E, Azuma J, Tsubaki S, Djumali M, Candra ST, Ono S, Bambang P (2012) Improvement of microwave-assisted hydrolysis of cassava pulp and tapioca flour by addition of activated carbon. Carbohydr Polym 87:939–942

    Article  Google Scholar 

  • Herrmann C, FitzGerald J, O’Shea R, Xia A, O’Kiely P, Murphy JD (2015) Ensiling of seaweed for a seaweed biofuel industry. Bioresour Technol 196:301–313

    Article  Google Scholar 

  • Hiraoka M (2012) Intensive biomass production by green seaweed Ulva. J Jpn Inst Energy 91:1154–1160

    Google Scholar 

  • Hiraoka M, Oka N (2006) Mariculture of seaweeds based on the new “germling cluster method” and utilizing deep seawater in Japan. In: Siew-Moi P, Critchley AT, Ang PO Jr (eds) Advances in seaweed cultivation and utilization in Asia. University of Malaya Maritime Research Centre, Kuala Lumpur, pp 53–59

    Google Scholar 

  • Hiraoka M, Oka N (2008) Tank cultivation of Ulva prolifera in deep seawater using a new “germling cluster” method. J Appl Phycol 20:97–102

    Article  Google Scholar 

  • Hiraoka M, Shimada S, Uesono M, Msuda M (2004a) A new green-tide-forming alga, Ulva ohnoi Hiraoka et Shimada sp. nov. (Ulvales, Ulvophyceae) from Japan. Phycol Res 52:17–29

    Article  Google Scholar 

  • Hiraoka M, Ohno M, Dan A, Oka N (2004b) Utilization of deep seawater for the mariculture of seaweeds in Japan. Jpn J Phycol 52(Suppl):215–219

    Google Scholar 

  • Holdt SL, Kraan S (2011) Bioactive compounds in seaweed; functional food applications and legislation. J Appl Phycol 23:543–597

    Article  Google Scholar 

  • Horikoshi S, Serpne N (2014) Role of microwave in heterogeneous catalytic systems. Cat Sci Technol 4:1197–1210

    Article  Google Scholar 

  • Horimoto R, Masakiyo Y, Ichihara K, Shimada (2011) Enteromorpha-like Ulva (Ulvophyceae, Chlorophyta) growing in the Todoroki River, Ishigaki Island, Japan, with special reference to Ulva meridionalis Horimoto et Shimada, sp. nov. Bull Natl Sci Mus 37:155–167

    Google Scholar 

  • Isa A, Mishima Y, Takimura O, Minowa T (2009) Preliminary study on ethanol production by using macro green algae. J Jpn Inst Energy 88:912–917

    Article  Google Scholar 

  • Jiao G, Yu G, Zhang J, Ewart HS (2011) Chemical structure and bioactivities of sulfated polysaccharides from marine algae. Mar Drugs 9:196–223

    Article  Google Scholar 

  • Kerton FM, Liu Y, Omari KW, Hawboldt K (2013) Green chemistry and ocean-based biorefinery. Green Chem 15:860–871

    Article  Google Scholar 

  • Kozhevnikov IV (1998) Catalysis by heteropoly acids and multicomponent polyoxometalates in liquid-phase reactions. Chem Rev 98:171–198

    Article  Google Scholar 

  • Lahaye M, Robic A (2007) Structure and functional properties of ulvan, a polysaccharide from green seaweeds. Biomacromolecules 8:1765–1774

    Article  Google Scholar 

  • Liu D, Kessing K, Xnig Q, Shi P (2009) World’s largest macroalgal bloom caused by expansion of seaweed aquaculture in China. Mar Pollut Bull 58:888–895

    Article  Google Scholar 

  • Loupy A (2006) Microwaves in organic synthesis. Wiley-VCH Verlag GmbH & Co., KGaA, Weinheim

    Book  Google Scholar 

  • Lucchesi ME, Chemat F, Smadja J (2004) Solvent-free microwave extraction of essential oil from aromatic herbs: comparison with conventional hydro-distillation. J Chromatogr A 1043:323–327

    Article  Google Scholar 

  • Mata TM, Martins AA, Caetano NS (2010) Microalgae for biodiesel production and other applications: a review. Renew Sust Energy Rev 14:217–232

    Article  Google Scholar 

  • Matsui T, Koike Y (2010) Methane fermentation of a mixture of seaweed and milk at a pilot-scale plant. J Biosci Bioeng 110:558–563

    Article  Google Scholar 

  • Matsumoto A, Tsubaki S, Sakamoto M, Azuma J (2011) A novel saccharification method of starch using microwave irradiation with addition of activated carbon. Bioresour Technol 102:3985–3988

    Article  Google Scholar 

  • Mochizuki D, Sasaki R, Maitani MM, Okamoto M, Suzuki E, Wada Y (2015) Catalytic reaction enhanced under microwave-induced local thermal non-equilibrium in a core-shell, carbon-filled zeolite@zeolite. J Catal 323:1–9

    Article  Google Scholar 

  • Okada K, Yao M, Hiejima Y, Kohno H, Kajihara Y (1999) Dielectric relaxation of water and heavy water in the whole fluid phase. J Chem Phys 110:3026–3036

    Article  Google Scholar 

  • Oloyede A, Groombridge P (2000) The influence of microwave heating on the mechanical properties of wood. J Mater Process Technol 100:67–73

    Article  Google Scholar 

  • Overend RP, Chornet E (1987) Fractionation of lignocellulosics by steam-aqueous pretreatment. Philos Trans R Soc Lond A Math Phys Eng Sci 321:523–536

    Article  Google Scholar 

  • Peterson AA, Vogel F, Lachance RP, Fröling M, Antal MJ Jr, Tester JW (2008) Thermochemical biofuel production in hydrothermal media: a review of sub- and supercritical water technologies. Energy Environ Sci 1:32–65

    Article  Google Scholar 

  • Pezoa-Conte R, Leyton A, Anugwom I, von Schoultz S, Paranko J, Mäki-Arvela P, Willför S, Muszyński M, Nowicki J, Lienqueo ME, Mikkola JP (2015) Decomposition of the green alga Ulva rigida in ionic liquids: closing the mass balance. Algal Res 12:262–273

    Article  Google Scholar 

  • Savage PE (2012) Algae under pressure and in hot water. Science 338:1039–1040

    Article  Google Scholar 

  • Sharma RK, Dutta S, Sharma S, Zboril R, Varma RS, Gawande MB (2016) Fe3O4 (iron oxide)-supported nanocatalysts: synthesis, characterization and applications in coupling reactions. Green Chem 18:3184–3209

    Article  Google Scholar 

  • Singh R, Balagurumurthy B, Bhaskar T (2015) Hydrothermal liquefaction of macro algae: effect of feedstock composition. Fuel 146:69–74

    Article  Google Scholar 

  • Tanaka M, Sato M (2007) Microwave heating of water, ice, and saline solution: molecular dynamics study. J Chem Phys 126:034509

    Article  Google Scholar 

  • Tsubaki S, Azuma J (2011) Application of microwave technology for utilization of recalcitrant biomass. In: Grundas S (ed) Advances in induction and microwave heating of mineral and organic materials. I-Tech Education and Publishing, Vienna, pp 697–722

    Google Scholar 

  • Tsubaki S, Iida H, Sakamoto M, Azuma J (2008) Microwave heating of tea residue yields polysaccharides, polyphenols, and plant biopolyester. J Agric Food Chem 56:11293–11299

    Article  Google Scholar 

  • Tsubaki S, Onda A, Yanagisawa K, Azuma J (2012a) Microwave-assisted hydrothermal hydrolysis of maltose with addition of microwave absorbing agents. Proc Chem 4:288–293

    Article  Google Scholar 

  • Tsubaki S, Oono K, Onda A, Yanagisawa K, Azuma J (2012b) Microwave-assisted hydrothermal hydrolysis of cellobiose and effects of additions of halide salts. Bioresour Technol 123:703–706

    Article  Google Scholar 

  • Tsubaki S, Oono K, Onda A, Yanagisawa K, Azuma J (2013a) Comparative decomposition kinetics of neutral monosaccharides by microwave and induction heating treatments. Carbohydr Res 375:1–4

    Article  Google Scholar 

  • Tsubaki S, Oono K, Ueda T, Onda A, Yanagisawa K, Mitani T, Azuma J (2013b) Microwave-assisted hydrolysis of polysaccharides over polyoxometalate clusters. Bioresour Technol 144:67–73

    Article  Google Scholar 

  • Tsubaki S, Oono K, Hiraoka M, Ueda T, Onda A, Yanagisawa K, Azuma J (2014a) Hydrolysis of green-tide forming Ulva spp. by microwave irradiation with polyoxometalate cluster. Green Chem 16:2227–2233

    Article  Google Scholar 

  • Tsubaki S, Hiraoka M, Hadano S, Nishimura H, Kashimura K, Mitani T (2014b) Functional group dependent dielectric properties of sulfated hydrocolloids extracted from green macroalgal biomass. Carbohydr Polym 107:192–197

    Article  Google Scholar 

  • Tsubaki S, Onda A, Ueda T (2015a) Algal biomass conversion under microwave irradiation. In: Horikoshi S, Serpone N (eds) Microwaves in catalysis methodology and applications. Wiley-VCH Verlag GmbH & Co., KGaA, Weinheim, pp 303–321

    Google Scholar 

  • Tsubaki S, Hiraoka M, Hadano S, Okamura K, Ueda T, Nishimura H, Kashimura K, Mitani T (2015b) Effects of acidic functional groups on dielectric properties of sodium alginates and carrageenans in water. Carbohydr Polym 115:78–87

    Article  Google Scholar 

  • Tsubaki S, Zhu W, Hiraoka M (2016a) Production and conversion of green macroalgae (Ulva spp.) In: Kerton FM, Yan N (eds) Fuels, chemicals and materials from oceans and aquatic sources. Weinheim, Wiley-VCH Verlag GmbH & Co, KGaA. in press

    Google Scholar 

  • Tsubaki S, Oono K, Onda A, Yanagisawa K, Mitani T, Azuma J (2016b) Effects of ionic conduction on hydrothermal hydrolysis of corn starch and crystalline cellulose induced by microwave irradiation. Carbohydr Polym 137:594–599

    Article  Google Scholar 

  • Tsubaki S, Oono K, Hiraoka M, Onda A, Mitani T (2016c) Microwave-assisted hydrothermal extraction of sulfated polysaccharides from Ulva spp. and Monostroma lattisimum. Food Chem 210:311–316

    Article  Google Scholar 

  • Tsukahara Y, Higashi A, Yamauchi T, Nakamura T, Yasuda M, Baba A, Wada Y (2010) In situ observation of nonequilibrium local heating as an origin of special effect of microwave on chemistry. J Phys Chem C 114:8965–8970

    Article  Google Scholar 

  • Wei N, Quaterman J, Jin Y-S (2012) Marine macroalgae: an untapped resource for producing fuels and chemicals. Trends Biotechnol 31:70–77

    Article  Google Scholar 

  • Yoshida T, Tsubaki S, Teramoto Y, Azuma J (2010) Optimization of microwave-assisted extraction of carbohydrates from industrial waste of corn starch production using response surface methodology. Bioresour Technol 101:7820–7826

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shuntaro Tsubaki .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Tsubaki, S., Onda, A., Ueda, T., Hiraoka, M., Fujii, S., Wada, Y. (2017). Microwave-Assisted Hydrothermal Processing of Seaweed Biomass. In: Ruiz, H., Hedegaard Thomsen, M., Trajano, H. (eds) Hydrothermal Processing in Biorefineries. Springer, Cham. https://doi.org/10.1007/978-3-319-56457-9_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-56457-9_19

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-56456-2

  • Online ISBN: 978-3-319-56457-9

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics