Skip to main content

Production and Emerging Applications of Bioactive Oligosaccharides from Biomass Hemicelluloses by Hydrothermal Processing

  • Chapter
  • First Online:

Abstract

Hemicelluloses are the second most abundant heterogeneous polysaccharides in nature. Among the several treatments that can be used for the solubilization of hemicelluloses to produce oligosaccharides from lignocellulosic biomass, the autohydrolysis reaction is the most widely used. Under suitable conditions, autohydrolysis enables high ligosaccharides yields, however this reaction is not selective and undesired compounds are also present in the reaction media. Because of this, the autohydrolysis media has to be subjected to further processing to improve the purity of oligosaccharide hydrolysate. The chemical and structural characterization of the solubilized products from hemicelluloses is an important aspect as it allows to know the application for which they are more suitable. Oligosaccharides from hemicelluloses can find applications in several fields such as biomedical, food, and biomaterials.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Abbreviations

ABE:

Acetone-butanol-ethanol

AEC:

Anion-exchange chromatography

ArOS:

Arabino-oligosaccharides

DAD:

Diode array detector

DP:

Degrees of polymerization

ER:

Eucalyptus residues

ESI-MS:

Electrospray ionisation mass spectrometry

GalOS:

Galacto-oligosaccharides

GFC:

Gel filtration chromatography

GlcOS:

Gluco-oligosaccharides

GPC:

Gel permeation chromatography

HMF:

Hydroxymethylfurfural

HPAEC:

High-performance anion-exchange chromatography

HPILC:

High-performance ionic liquid chromatography

HPLC:

High-performance liquid chromatography

HPSEC:

High-performance size exclusion chromatography

HSQC:

Heteronuclear single quantum correlation

kx:

First-order kinetic coefficients

LCM:

Lignocellulosic material

LSR:

Liquid-to-solid ratio

MALDI-TOF-MS:

Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry

MOS:

Manno-oligosaccharides

NMR:

Nuclear magnetic resonance

NREL:

American National Renewable Energy Laboratory

NVC:

Nonvolatile compounds

OP:

Olive tree pruning

RI:

Refractory index

SEC:

Size-exclusion chromatography

TPS:

3-(trimethylsilyl)-propanesulfonic acid sodium salt

WS:

Wheat straw

XnFAST:

Fast reacting xylan

XnSLOW:

Slow reacting xylan

XOS:

Xylooligosaccharides

XOSH:

High molecular weight xylooligomers

XOSL:

Low molecular weight xylooligomers

References

  • Aachary AA, Prapulla SG (2011) Xylooligosaccharides (XOS) as an emerging prebiotic: microbial synthesis, utilization, structural characterization, bioactive properties, and applications. Compr Rev Food Sci Food Saf 10:1–16

    Article  Google Scholar 

  • Al-Ghazzewi FH, Khanna S, Tester RF et al (2007) The potential use of hydrolysed konjac glucomannan as a prebiotic. J Sci Food Agric 87:1758–1766

    Article  Google Scholar 

  • Ando H, Ohba H, Sakaki T et al (2004) Hot-compressed-water decomposed products from bamboo manifest a selective cytotoxicity against acute lymphoblastic leukemia cells. Toxicol In Vitro 18:765–771

    Article  Google Scholar 

  • Ayoub A, Venditti RA, Pawlak JJ et al (2013) Novel hemicellulose-chitosan biosorbent for water desalination and heavy metal removal. ACS Sustain Chem Eng 1:1102–1109

    Article  Google Scholar 

  • Ballesteros I, Oliva JM, Negro MJ et al (2002) Enzymatic hydrolysis of steam exploded herbaceous agricultural waste (Brassica carinata) at different particle sizes. Process Biochem 38:187–192

    Article  Google Scholar 

  • Bergmeyer HU, Mollering H (1974) Acetate determination with preceding indicator reaction. In: Bergmeyer HU (ed) Methods of enzymatic analysis. Academic, New York

    Google Scholar 

  • Bobleter O, Niesner R, Röhr M (1976) The hydrothermal degradation of cellulosic matter to sugars and their fermentative conversion to protein. J Appl Polym Sci 20:2083–2093

    Article  Google Scholar 

  • Branco PC, Dionísio AM, Torrado I et al (2015) Autohydrolysis of Annona cherimola Mill. seeds: optimization, modeling and products characterization. Biochem Eng J 104:2–9

    Article  Google Scholar 

  • Buruiana CT, Vizireanua C, Garrote G et al (2014) Optimization of corn stover biorefinery for coproduction of oligomers and second generation bioethanol using non-isothermal autohydrolysis. Ind Crop Prod 54:32–39

    Article  Google Scholar 

  • Cano A, Palet C (2007) Xylooligosaccharide recovery from agricultural biomass waste treatment with enzymatic polymeric membranes and characterization of products with MALDI-TOF-MS. J Membr Sci 291:96–105

    Article  Google Scholar 

  • Cara C, Ruiz E, Carvalheiro F et al (2012) Production, purification and characterisation of oligosaccharides from olive tree pruning autohydrolysis. Ind Crop Prod 40:225–231

    Article  Google Scholar 

  • Carvalheiro F, Esteves MP, Parajó JC et al (2004) Production of oligosaccharides by autohydrolysis of brewery’s spent grain. Bioresour Technol 91:93–100

    Article  Google Scholar 

  • Carvalheiro F, Duarte LC, Gírio FM (2008) Hemicellulose biorefineries: a review on biomass pretreatments. J Sci Ind Res 67:849–864

    Google Scholar 

  • Carvalho AFA, Neto PDO, da Silva DF et al (2013) Xylo-oligosaccharides from lignocellulosic materials: chemical structure, health benefits and production by chemical and enzymatic hydrolysis. Food Res Int 51:75–85

    Article  Google Scholar 

  • Chen MH, Bowman MJ, Dien BS et al (2014) Autohydrolysis of Miscanthus x giganteus for the production of xylooligosaccharides (XOS): kinetics, characterization and recovery. Bioresour Technol 155:359–365

    Article  Google Scholar 

  • Chen MH, Rajan K, Carrier DJ et al (2015) Separation of xylose oligomers from autohydrolyzed Miscanthus x giganteus using centrifugal partition chromatography. Food Bioprod Process 95:125–132

    Article  Google Scholar 

  • Chen GG, Qi XM, Guan Y et al (2016) High strength hemicellulose-based nanocomposite film for food packaging applications. ACS Sustain Chem Eng 4:1985–1993

    Article  Google Scholar 

  • Comin LM, Temelli F, Saldaña MDA (2012a) Barley beta-glucan aerogels via supercritical CO2 drying. Food Res Int 48:442–448

    Article  Google Scholar 

  • Comin LM, Temelli F, Saldaña MDA (2012b) Barley ß-glucan aerogels as a carrier for flax oil via supercritical CO2. J Food Eng 111:625–631

    Article  Google Scholar 

  • Cuevas M, García JF, Hodaifa G et al (2015) Oligosaccharides and sugars production from olive stones by autohydrolysis and enzymatic hydrolysis. Ind Crop Prod 70:100–106

    Article  Google Scholar 

  • Czemark P, Ebrahimi M, Grau K et al (2004) Membrane-assisted enzymatic production of galactosyl-oligosaccharides from lactose in a continuous process. J Membr Sci 232:85–91

    Article  Google Scholar 

  • Dávila I, Gordobil O, Labidi J et al (2016) Assessment of suitability of vine shoots for hemicellulosic oligosaccharides production through aqueous processing. Bioresour Technol 211:636–644

    Article  Google Scholar 

  • Dax D, Chávez MS, Xua C et al (2014) Cationic hemicellulose-based hydrogels for arsenic and chromiumremoval from aqueous solutions. Carbohydr Polym 111:797–805

    Article  Google Scholar 

  • Demirbas A (2009) Biorefineries: current activities and future developments. Energ Convers Manag 50:2782–2801

    Article  Google Scholar 

  • Díaz MJ, Cara C, Ruiz E et al (2010) Hydrothermal pretreatment of rapeseed straw. Bioresour Technol 101:2428–2435

    Article  Google Scholar 

  • Drioli E (2004) Membrane reactors. Chem Eng Process 43:1101–1102

    Article  Google Scholar 

  • Egüés I, Sanchez C, Mondragon I et al (2012) Separation and purification of hemicellulose by ultrafiltration. Ind Eng Chem Res 51:523–530

    Article  Google Scholar 

  • Endo M, Kuroda Y (2000) Production method of xylose and xylooligosaccharides from natural compounds containing xylan by hot water pretreatment. Japan Patent 2,000,236,899, 2000

    Google Scholar 

  • Fengel D, Wegener G (1984) Wood: chemistry, ultrastructure, reactions. Walter de Gruyter and Co., Berlin

    Google Scholar 

  • Ferrari E, Ranucci E, Edlund U et al (2015) Design of renewable poly(amidoamine)/hemicellulose hydrogels for heavy metal adsorption. J Appl Polym Sci 132:41695–41708

    Google Scholar 

  • Garrote G, Parajo JC (2002) Non-isothermal autohydrolysis of eucalyptus wood. Wood Sci Technol 36:111–123

    Article  Google Scholar 

  • Garrote G, Domínguez H, Parajó JC (1999a) Hydrothermal processing of lignocellulosic materials. Holz Roh Werkst 57:191–202

    Article  Google Scholar 

  • Garrote G, Domínguez H, Parajó JC (1999b) Mild autohydrolysis: an environmentally friendly technology for xylooligosaccharide production from wood. J Chem Technol Biotechnol 74:1101–1109

    Article  Google Scholar 

  • Garrote G, Domínguez H, Parajó JC (2002) Autohydrolysis of corncob: study of non-isothermal operation for xylooligosaccharides production. J Food Eng 52:211–218

    Article  Google Scholar 

  • Garrote G, Falqué E, Domínguez H et al (2007) Autohydrolysis of agricultural residues: study of reaction byproducts. Bioresour Technol 98:1951–1957

    Article  Google Scholar 

  • Garrote G, Cruz JM, Domínguez H et al (2008) Non-isothermal autohydrolysis of barley husks: product distribution and antioxidant activity of ethyl acetate soluble fractions. J Food Eng 84:544–552

    Article  Google Scholar 

  • Gírio FM, Fonseca C, Carvalheiro F et al (2010) Hemicelluloses for fuel ethanol: a review. Bioresour Technol 101:4775–4800

    Article  Google Scholar 

  • Gómez B, Míguez B, Veiga A et al (2015) Production, purification and in vitro evaluation of the prebiotic potential of arabinoxylooligosaccharides from brewer’s spent grain. J Agric Food Chem 63:8429–8438

    Article  Google Scholar 

  • González-Muñoz MJ, Rivas S, Santos V et al (2013a) Aqueous processing of Pinus pinaster wood: kinetics of polysaccharide breakdown. Chem Eng J 231:380–387

    Article  Google Scholar 

  • González-Muñoz MJ, Rivas S, Santos V et al (2013b) Fractionation of extracted hemicellulosic saccharides from Pinus pinaster wood by multistep membrane processing. J Membr Sci 428:281–289

    Article  Google Scholar 

  • Guan Y, Zhang B, Bian J et al (2014) Nanoreinforced hemicellulose-based hydrogels prepared by freeze–thaw treatment. Cellulose 21:1709–1721

    Article  Google Scholar 

  • Guan Y, Chen J, Qi X et al (2015) Fabrication of biopolymer hydrogel containing Ag nanoparticles for antibacterial property. Ind Eng Chem Res 54:7393–7400

    Article  Google Scholar 

  • Gullón P, González-Muñoz MJ, Domínguez H et al (2008a) Membrane processing of liquors from Eucalyptus globulus autohydrolysis. J Food Eng 87:257–265

    Article  Google Scholar 

  • Gullón P, Moura P, Esteves MP et al (2008b) Assesment on the fermentability of xylooligosaccharides from rice husks by probiotic bacteria. J Agric Food Chem 56:7482–7487

    Article  Google Scholar 

  • Gullón P, Gullón B, Moure A et al (2009) Manufacture of prebiotics from biomass sources. In: Charalampopoulos D, Rastall RA (eds) Prebiotics and probiotics science and technology (Chapter 7), vol 2. Springer, New York, pp 535–589. ISBN 978-0-387-79057-2

    Google Scholar 

  • Gullón B, Yáñez R, Alonso JL et al (2010a) Production of oligosaccharides and sugars from rye straw: a kinetic approach. Bioresour Technol 101:6676–6684

    Article  Google Scholar 

  • Gullón P, González-Muñoz MJ, van Gool MP et al (2010b) Production, refining, structural characterization and fermentability of rice husk xylooligosaccharides. J Agric Food Chem 58:3632–3641

    Article  Google Scholar 

  • Gullón P, González-Muñoz MJ, Parajó JC (2011a) Manufacture and prebiotic potential of oligosaccharides derived from industrial solid wastes. Bioresour Technol 102:6112–6119

    Article  Google Scholar 

  • Gullón P, González MJ, Van Gool MP et al (2011b) Structural features and properties of soluble products derived from Eucalyptus globulus hemicelluloses. Food Chem 127:1798–1807

    Article  Google Scholar 

  • Gullón P, Gullón B, González-Muñoz MJ et al (2014a) Production and bioactivity of oligosaccharides from biomass hemicelluloses. In: Moreno FJ, Sanz ML (eds) Food oligosaccharides: production, analysis and bioactivity (Chapter 6), 1st edn. Wiley, Philadelphia, pp 88–106

    Google Scholar 

  • Gullón B, Gullón P, Tavaria F et al (2014b) Structural features and assessment of prebiotic activity of refined arabinoxylooligosaccharides from wheat bran. J Funct Foods 6:438–449

    Article  Google Scholar 

  • Hayashi N, Sakaki T, Doi K (2005) Water-soluble saccharides useful as health foods and their manufacture by hydrolysis of hemicellulose-containing plants with pressurized hot water. Japan Patent JP 2,005,023,041, 2005

    Google Scholar 

  • Ho AL, Carvalheiro F, Duarte LC et al (2014) Production and purification of xylooligosaccharides from oil palm empty fruit bunch fibre by a non-isothermal process. Bioresour Technol 152:526–529

    Article  Google Scholar 

  • Hu G, Yu W (2015) Effect of hemicellulose from rice bran on low fat meatballs chemical and functional properties. Food Chem 186:239–243

    Article  Google Scholar 

  • Ibn Yaich A, Edlund U, Albertsson AC (2012) Wood hydrolysate barriers: performance controlled via selective recovery. Biomacromolecules 13:466–473

    Article  Google Scholar 

  • Kabel MA, Carvalheiro F, Garrote G et al (2002a) Hydrothermally treated xylan rich by-products yield different classes of xylo-oligosaccharides. Carbohydr Polym 50:47–52

    Article  Google Scholar 

  • Kabel MA, Schols HA, Voragen AGJ (2002b) Complex xylooligosaccharides identified from hydrothermal treated Eucalyptus wood and brewery’s spelt grain. Carbohydr Polym 50:191–200

    Article  Google Scholar 

  • Kabel MA, Kortenoeven L, Schols HA (2002c) In vitro fermentability of differently substituted xylo-oligosaccharides. J Agric Food Chem 50:6205–6210

    Article  Google Scholar 

  • Kisonen V, Eklund P, Auer M et al (2012) Hydrophobication and characterisation of O-acetyl-galactoglucomannan for papermaking and barrier applications. Carbohydr Res 352:151–158

    Article  Google Scholar 

  • Kochumalayil JJ, Zhou Q, Kasai W et al (2013) Regioselective modification of a xyloglucan hemicellulose for high-performance biopolymer barrier films. Carbohydr Polym 93:466–472

    Article  Google Scholar 

  • Köhnke T, Lin A, Elder T et al (2012) Nanoreinforced xylan–cellulose composite foams by freeze-casting. Green Chem 14:1864–1869

    Article  Google Scholar 

  • Kubikova J, Zemann A, Krkoska P et al (1996) Hydrothermal pretreatment of wheat straw for the production of pulp and paper. TAPPI J 79:163–169

    Google Scholar 

  • Lehto J, Alén R (2012) Purification of hardwood-derived autohydrolysates. Bioresources 7:1813–1823

    Article  Google Scholar 

  • Li X, Shi X, Wang M et al (2011) Xylan chitosan conjugate—a potential food preservative. Food Chem 126:520–525

    Article  Google Scholar 

  • Li X, Shi X, Jin Y et al (2013) Controllable antioxidative xylan–chitosan Maillard reaction products used for lipid food storage. Carbohydr Polym 91:428–433

    Article  Google Scholar 

  • Liu C, Wyman CE (2004) Impact of fluid velocity on hot water only pretreatment of corn stover in a flow through reactor. Appl Biochem Biotechnol 113(116):977–987

    Article  Google Scholar 

  • Liu J, Willför S, Xu C (2015) A review of bioactive plant polysaccharides: biological activities, functionalization, and biomedical applications. Bioactive Carbohydr Diet Fibre 5:31–61

    Article  Google Scholar 

  • Maity SK (2015) Opportunities, recent trends and challenges of integrated biorefinery: PARTI. Renew Sust Energ Rev 43:1427–1445

    Article  Google Scholar 

  • Mäki-Arvela P, Salmi T, Holmbom B et al (2011) Synthesis of sugars by hydrolysis of hemicelluloses—a review. Chem Rev 111:5638–5666

    Article  Google Scholar 

  • Makishima S, Mizuno M, Sato N et al (2009) Development of continuous flow type hydrothermal reactor for hemicellulose fraction recovery from corncob. Bioresour Technol 100:2842–2848

    Article  Google Scholar 

  • Maloney MT, Chapman TW, Baker AJ (1986) An engineering analysis of the production of xylose by dilute acid hydrolysis of hardwood hemicellulose. Biotechnol Prog 2:192–202

    Article  Google Scholar 

  • Mittal A, Chatterjee SG, Scott GM et al (2009) Modeling xylan solubilization during autohydrolysis of sugar maple and aspen wood chips: reaction kinetics and mass transfer. Chem Eng Sci 64:3031–3041

    Article  Google Scholar 

  • Moniz P, Pereira H, Duarte LC et al (2014) Hydrothermalproduction and gel filtration purification of xylo-oligosaccharides from rice straw. Ind Crop Prod 62:460–465

    Article  Google Scholar 

  • Moniz P, Ho AL, Duarte LC et al (2016) Assessment of the bifidogenic effect of substitute dxylo-oligosaccharides obtained from corn straw. Carbohydr Polym 136:466–473

    Article  Google Scholar 

  • Moreira D, Gullón B, Gullón P et al (2016) Bioactive packaging using antioxidant extracts for the prevention of microbial food-spoilage. Food Funct 7:3273–3282

    Article  Google Scholar 

  • Mosier N, Wyman C, Dale B et al (2005a) Features of promising technologies for pretreatment of lignocellulosic biomass. Bioresour Technol 96:673–686

    Article  Google Scholar 

  • Mosier N, Hendrickson R, Ho N et al (2005b) Optimization of pH controlled liquid hot water pretreatment of corn stover. Bioresour Technol 96:1986–1993

    Article  Google Scholar 

  • Moura P, Cabanas S, Lourencço P et al (2008) In vitro fermentation of selected xylo-oligosaccharides by piglet intestinal microbiota. LWT-Food Sci Technol 41:952–1961

    Article  Google Scholar 

  • Moure A, Gullón P, Domínguez H et al (2006) Advances in the manufacture, purification and applications of xylo-oligosaccharides as food additives and nutraceuticals. Process Biochem 41:1913–1923

    Article  Google Scholar 

  • Mussatto SI, Mancilha IM (2007) Non-digestible oligosaccharides: a review. Carbohydr Polym 68:587–597

    Article  Google Scholar 

  • Nabarlatz D, Torras C, Garcia-Valls R et al (2007) Purification of xylooligosaccharides from almond shells by ultrafiltration. Sep Purif Technol 53:235–243

    Article  Google Scholar 

  • Oliveira EE, Silva AE, Júnior TN et al (2010) Xylan from corncobs, a promising polymer for drug delivery: production and characterization. Bioresour Technol 101:5402–5406

    Article  Google Scholar 

  • Overend RP, Chornet E (1987) Fractionation of lignocellulosics by steam-aqueous pretreatments. Philos Trans R Soc A 321:523–536

    Article  Google Scholar 

  • Overend RP, Chornet E (1990) Heavy-oil cracking—the case for nonhomogenous kinetics. Can J Phys 68:1105–1111

    Article  Google Scholar 

  • Parajó JC, Garrote G, Cruz JM, Dominguez H (2004) Production of xylooligosaccharides by autohydrolysis of lignocellulosic materials. Trends Food Sci Technol 15:115–120

    Article  Google Scholar 

  • Peng P, She D (2014) Isolation, structural characterization, and potential applications of hemicelluloses from bamboo: a review. Carbohydr Polym 112:701–720

    Article  Google Scholar 

  • Peng XW, Ren JL, Zhong LX et al (2011) Xylan-rich hemicelluloses-graft-acrylic acid ionic hydrogels with rapid responses to pH, salt, and organic solvents. J Agric Food Chem 59:8208–8215

    Article  Google Scholar 

  • Peng XW, Zhong LX, Ren JL et al (2012) Highly effective adsorption of heavy metal ions from aqueous solutions by macroporous xylan-rich hemicelluloses-based hydrogel. J Agric Food Chem 60:3909–3916

    Article  Google Scholar 

  • Pinelo M, Jonsson GE, Meyer AS (2009) Membrane technology for purification of enzymatically produced oligosaccharides: molecular and operational features affecting performance. Sep Purif Technol 70:1–11

    Article  Google Scholar 

  • Qi XM, Liu SY, Chu FB et al (2016) Preparation and characterization of blended films from quaternized hemicelluloses and carboxymethyl cellulose. Materials 9:1–12

    Article  Google Scholar 

  • Reis SF, Gullón B, Gullón P et al (2014) Evaluation of the prebiotic potential of arabinoxylans from brewer’s spent grain. Appl Microbiol Biotechnol 98:9365–9373

    Article  Google Scholar 

  • Rivas S, Gullón B, Gullón P et al (2012) Manufacture and properties of bifidogenic saccharides derived from wood mannan. J Agric Food Chem 60:4296–4305

    Article  Google Scholar 

  • Roos AA, Persson T, Krawczyk H et al (2009) Extraction of water-soluble hemicelluloses from barley husks. Bioresour Technol 100:763–769

    Article  Google Scholar 

  • Ruiz HA, Ruzene DS, Silva DP et al (2011) Evaluation of a hydrothermal process for pretreatment of wheat straw—effect of particle size and process conditions. J Chem Technol Biotechnol 86:88–94

    Article  Google Scholar 

  • Ruiz HA, Cerqueira MA, Silva HD (2013a) Biorefinery valorization of autohydrolysis wheat straw hemicellulose to be applied in a polymer-blend film. Carbohydr Polym 92:2154–2162

    Article  Google Scholar 

  • Ruiz HA, Rodriguez-Jasso RM, Fernandes BD et al (2013b) Hydrothermal processing, as an alternative for upgrading agriculture residues and marine biomass according to the biorefinery concept: a review. Renew Sust Energ Rev 21:35–51

    Article  Google Scholar 

  • Rutherford TJ, Homans SW (1995) Proton resonance assignments in oligosaccharides containing multiple monosaccharide residues of the same type. J Magn Reson 106:10–13

    Article  Google Scholar 

  • Salam A, Venditti RA, Pawlak JJ et al (2011) Crosslinked hemicellulose citrate–chitosan aerogel foams. Carbohydr Polym 84:1221–1229

    Article  Google Scholar 

  • Sárossy Z, Blomfeldt TO, Hedenqvist MS et al (2012) Composite films of arabinoxylan and fibrous sepiolite: morphological, mechanical, and barrier properties. ACS Appl Mater Interfaces 4:3378–3386

    Article  Google Scholar 

  • Šauperl O, Doliška A, Hadela A et al (2016) Functionalization of polyethyleneterephthalate fibers using galactoglucomannan from spruce wood. Text Res J 86:202–209

    Article  Google Scholar 

  • Schaffeld G (1994) Pretratamiento del material lignocelulósico. In: Etanol de lignocelulósicos. Tecnología; perspectivas. Ed. Servicio de Publicacións e Intercambio Científico da Universidade de Santiago de Compostela. Santiago de Compostela, pp 35–60

    Google Scholar 

  • Silva-Fernandes T, Chorão Duarte L, Carvalheiro F et al (2015) Biorefining strategy for maximal monosaccharides recovery from three different feedstocks: Eucalyptus residues, wheat straw and olive tree pruning. Bioresour Technol 183:203–212

    Article  Google Scholar 

  • Sukhbaatar B, Hassan El B, Kim M et al (2014) Optimization of hot-compressed water pretreatment of bagasse and characterization of extracted hemicelluloses. Carbohydr Polym 101:196–202

    Article  Google Scholar 

  • Sun XF, Wang H, Jing Z et al (2013) Hemicellulose-based pH-sensitive and biodegradable hydrogel for controlled drug delivery. Carbohydr Polym 92:1357–1366

    Article  Google Scholar 

  • Sun SL, Wen JL, Ma MG et al (2014) Integrated biorefinery based on hydrothermal and alkaline treatments: investigation of sorghum hemicelluloses. Carbohydr Polym 111:663–669

    Article  Google Scholar 

  • Sun XF, Gan Z, Jing Z et al (2015) Adsorption of methylene blue on hemicellulose-based stimuli-responsive porous hydrogel. J Appl Polym Sci 132:41606–41616

    Google Scholar 

  • Svärd A, Brannvall E, Edlund U (2015) Rapeseed straw as a renewable source of hemicelluloses: extraction, characterization and film formation. Carbohydr Polym 133:179–186

    Article  Google Scholar 

  • Vargas F, Domínguez E, Vila C et al (2015) Agricultural residue valorization using a hydrothermal process for second generation bioethanol and oligosaccharides production. Bioresour Technol 191:263–270

    Article  Google Scholar 

  • Vázquez MJ, Garrote G, Alonso JL et al (2005) Refining of autohydrolysis liquors for manufacturing xylooligosaccharides: evaluation of operational strategies. Bioresour Technol 96:889–896

    Article  Google Scholar 

  • Vegas R, Alonso JL, Domínguez H et al (2004) Processing of rice husk autohydrolysis liquors for obtaining food ingredients. J Agric Food Chem 52:7311–7317

    Article  Google Scholar 

  • Vegas R, Alonso JL, Domínguez H et al (2005) Manufacture and refining of oligosaccharides from industrial solid wastes. Ind Eng Chem Res 44:614–620

    Article  Google Scholar 

  • Vegas R, Luque S, Álvarez J et al (2006) Membrane-assisted processing of xylooligosaccharide containing liquors. J Agric Food Chem 54:5430–5436

    Article  Google Scholar 

  • Vegas R, Moure A, Domínguez H et al (2008) Evaluation of ultra- and nanofiltration for refining soluble products from rice husk xylan. Bioresour Technol 99:5341–5351

    Article  Google Scholar 

  • Voepel J, Sjöberg J, Reif M et al (2009) Drug diffusion in neutral and ionic hydrogels assembled from acetylated galactoglucomannan. J Appl Polym Sci 112:2401–2412

    Article  Google Scholar 

  • Wang Q, Jahan MS, Liu S et al (2014) Lignin removal enhancement from prehydrolysis liquor of kraft-based dissolving pulp production by laccase-induced polymerization. Bioresour Technol 164:380–385

    Article  Google Scholar 

  • Wang X, Zhuang J, Jiang J et al (2015a) Separation and purification of hemicellulose-derived saccharides from wood hydrolysate by combined process. Bioresour Technol 196:426–430

    Article  Google Scholar 

  • Wang Y, Yang R, Li M et al (2015b) Hydrothermal preparation of highly porous carbon spheres from hemp (Cannabis sativa L.) stem hemicellulose for use in energy-related applications. Ind Crop Prod 65:216–226

    Article  Google Scholar 

  • Wang X, Zhuang J, Fu Y et al (2016a) Separation of hemicellulose-derived saccharides from wood hydrolysate by lime and ion exchange resin. Bioresour Technol 206:225–230

    Article  Google Scholar 

  • Wang Y, Feng Q, Wei N et al (2016b) Simple method for the production of hydrogels based on hemicellulose in aqueous solution. Polym Sci Ser B 11:1–10

    Google Scholar 

  • Weil S, Brewer M, Hendrickson R et al (1998) Continuous pH monitoring during pretreatment of yellow poplar wood sawdust by pressure cooking in water. Appl Biochem Biotechnol 70:99–111

    Article  Google Scholar 

  • Xiao X, Bian J, Peng XP et al (2013) Autohydrolysis of bamboo (Dendrocalamus giganteus Munro) culm for the production of xylo-oligosaccharides. Bioresour Technol 138:63–70

    Article  Google Scholar 

  • Xiao X, Wang CZ, Bian J et al (2015) Optimization of bamboo autohydrolysis for the production of xylo-oligosaccharides using response surface methodology. RSC Adv 5:106219–106226

    Article  Google Scholar 

  • Yañez R, Garrote G, Díaz MJ (2009) Valorisation of a leguminous specie, Sesbania grandiflora, by means of hydrothermal fractionation. Bioresour Technol 100:6514–6523

    Article  Google Scholar 

  • Yang JY, Zhou XS, Fang J (2011) Synthesis and characterization of temperature sensitive hemicellulose-based hydrogels. Carbohydr Polym 86:1113–1117

    Article  Google Scholar 

  • Yang J, Maldonado Gómez MX, Hutkins RW et al (2014) Production and in vitro fermentation of soluble, non-digestible, feruloylated oligo- and polysaccharides from maize and wheat brans. J Agric Food Chem 62:159–166

    Article  Google Scholar 

  • Yu Y, Wu H (2010) Understanding the primary liquid products of cellulose hydrolysis in hot-compressed water at various reaction temperatures. Energy Fuel 24:1963–1971

    Article  Google Scholar 

  • Yuan QP, Zhang H, Qian ZM et al (2004) Pilot–plant production of xylo-oligosaccharides from corncob by steaming, enzymatic hydrolysis and nanofiltration. J Chem Technol Biotechnol 79:1073–1079

    Article  Google Scholar 

  • Zhang J, Xiao H, Li N et al (2015) Synthesis and characterization of super-absorbent hydrogels based on hemicellulose. J Appl Polym Sci 132:42441–42446

    Google Scholar 

  • Zhao W, Glavas L, Odelius K et al (2014) A robust pathway to electrically conductive hemicellulose hydrogels with high and controllable swelling behavior. Polymer 55:2967–2976

    Article  Google Scholar 

  • Zhuang X, Yuan Z, Ma L et al (2009) Kinetic study of hydrolysis of xylan and agricultural wastes with hot liquid water. Biotechnol Adv 27:578–582

    Article  Google Scholar 

Download references

Acknowledgments

Izaskun Dávila would like to thank the Department of Agriculture, Fishing and Food of the Basque Government (scholarship of young researchers training). Beatriz Gullón and Patricia Gullón thank the Spanish Ministry of Economy and Competitiveness (Reference FPDI-2013-17341, FPDI-2013-18748).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Beatriz Gullón or Patricia Gullón .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Gullón, B., Dávila, I., García-Torreiro, M., Yáñez, R., Labidi, J., Gullón, P. (2017). Production and Emerging Applications of Bioactive Oligosaccharides from Biomass Hemicelluloses by Hydrothermal Processing. In: Ruiz, H., Hedegaard Thomsen, M., Trajano, H. (eds) Hydrothermal Processing in Biorefineries. Springer, Cham. https://doi.org/10.1007/978-3-319-56457-9_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-56457-9_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-56456-2

  • Online ISBN: 978-3-319-56457-9

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics