Skip to main content

MFGs with a Common Noise: Strong and Weak Solutions

  • Chapter
  • First Online:
Probabilistic Theory of Mean Field Games with Applications II

Part of the book series: Probability Theory and Stochastic Modelling ((PTSM,volume 84))

  • 3495 Accesses

Abstract

The purpose of this chapter is to introduce the notion of mean field game with a common noise. This terminology refers to the fact that in the finitely many player games from which the mean field game is derived, the states of the individual players are subject to correlated noise terms. In a typical model, each individual player feels an idiosyncratic noise as well as random shocks common to all the players. At the level of the mathematical analysis, the common noise introduces a randomization of most of the quantities and equations. In equilibrium, the statistical distribution of the population is no longer deterministic. One of the main feature of the chapter is the introduction and the analysis of the concepts of weak and strong solutions, very much in the spirit of the classical theory of stochastic differential equations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Y. Achdou, F. Buera, J.M. Lasry, P.L. Lions, and B. Moll. Partial differential equation models in macroeconomics. Philosophical Transactions of the Royal Society, A, 372, Oct. 2014.

    Google Scholar 

  2. Y. Achdou, F. Camilli, and I. Capuzzo-Dolcetta. Mean field games: numerical methods for the planning problem. SIAM Journal on Control and Optimization, 50:77–109, 2010.

    Article  MathSciNet  MATH  Google Scholar 

  3. Y. Achdou, F. Camilli, and I. Capuzzo-Dolcetta. Mean field games: convergence of a finite difference method. SIAM Journal on Numerical Analysis, 51:2585–2612, 2013.

    Article  MathSciNet  MATH  Google Scholar 

  4. Y. Achdou and I. Capuzzo-Dolcetta. Mean field games: numerical methods. SIAM Journal on Numerical Analysis, 48:1136–1162, 2010.

    Article  MathSciNet  MATH  Google Scholar 

  5. Y. Achdou and M. Laurière. On the system of partial differential equations arising in mean field type control. Discrete and Continuous Dynamical Systems, A, 35:3879–3900, 2015.

    Article  MathSciNet  MATH  Google Scholar 

  6. Y. Achdou and V. Perez. Iterative strategies for solving linearized discrete mean field games systems. Networks and Heterogeneous Media, 7:197–217, 2012.

    Article  MathSciNet  MATH  Google Scholar 

  7. Y. Achdou and A. Porretta. Convergence of a finite difference scheme to weak solutions of the system of partial differential equations arising in mean field games. SIAM Journal on Numerical Analysis, 54:161–186.

    Google Scholar 

  8. S. Adlakha and R. Johari. Mean field equilibrium in dynamic games with strategic complementarities. Operations Research, 61:971–989, 2013.

    Article  MathSciNet  MATH  Google Scholar 

  9. N. Aghbal and R. Carmona. A solvable mean field game with interactions through the control. Technical report, Princeton University, 2014.

    Google Scholar 

  10. P. Aghion and P. Howitt. A model of growth through creative destruction. Econometrica, 60:323–352, 1992.

    Article  MATH  Google Scholar 

  11. S. Ahuja. Wellposedness of mean field games with common noise under a weak monotonicity condition. SIAM Journal on Control and Optimization, 54:30–48, 2016.

    Article  MathSciNet  MATH  Google Scholar 

  12. S.R. Aiyagari. Uninsured idiosyncratic risk and aggregate saving. The Quarterly Journal of Economics, 109:659–684, 1994.

    Article  Google Scholar 

  13. M. Aizenman and B. Simon. Brownian motion and Harnack inequality for Schrödinger operators. Communications in Pure and Applied Mathematics, 35:209–273, 1982.

    Article  MATH  Google Scholar 

  14. S. Alanko. Regression-based Monte Carlo methods for solving nonlinear PDEs. PhD thesis, New York University, 2015.

    Google Scholar 

  15. D. Aldous. Weak convergence and the general theory of processes. Unpublished notes. http://www.stat.berkeley.edu/{~}aldous/Papers/weak-gtp.pdf, 1983.

  16. D. Aldous. Exchangeability and related topics. In Ecole d’Eté de Probabilités de Saint Flour 1983. Volume 1117 of Lecture Notes in Mathematics, pages 1–198. Springer-Verlag Berlin Heidelberg, 1985.

    Google Scholar 

  17. C. D. Aliprantis and K. Border. Infinite Dimensional Analysis. Third Edition. Springer-Verlag Berlin Heidelberg, 2006.

    Google Scholar 

  18. R. Almgren and N. Chriss. Optimal execution of portfolio transactions. Journal of Risk, 3:5–39, 2001.

    Article  Google Scholar 

  19. N. Almulla, R. Ferreira, and D. Gomes. Two numerical approaches to stationary mean-field games. Dynamic Games and Applications, 7:657–682, 2016.

    Article  MathSciNet  MATH  Google Scholar 

  20. L. Ambrosio and J. Feng. On a class of first order Hamilton-Jacobi equations in metric spaces. Journal of Differential Equations, 256:2194–2245, 2014.

    Article  MathSciNet  MATH  Google Scholar 

  21. L. Ambrosio, N. Gigli, and G. Savaré. Gradient flows in metric spaces and in the Wasserstein space of probability measures. Birkhäuser Basel, 2004.

    MATH  Google Scholar 

  22. T.T.K. An and B. Oksendal. Maximum principle for stochastic differential games with partial information. Journal of Optimization Theory and Applications, 139:463–483, 2008.

    Article  MathSciNet  MATH  Google Scholar 

  23. T.T.K. An and B. Oksendal. A maximum principle for stochastic differential games with g-expectations and partial information. Stochastics, 84:137–155, 2012.

    Article  MathSciNet  MATH  Google Scholar 

  24. D. Andersson and B. Djehiche. A maximum principle for SDEs of mean-field type. Applied Mathematics & Optimization, 63:341–356, 2010.

    Article  MathSciNet  MATH  Google Scholar 

  25. F. Antonelli. Backward-forward stochastic differential equations. Annals of Applied Probability, 3:777–793, 1993.

    Article  MathSciNet  MATH  Google Scholar 

  26. F. Antonelli and J. Ma. Weak solutions of forward-backward SDE’s. Stochastic Analysis and Applications, 21(3):493–514, 2003.

    Article  MathSciNet  MATH  Google Scholar 

  27. R. Aumann. Markets with a continuum of traders. Econometrica, 32:39–50, 1964.

    Article  MathSciNet  MATH  Google Scholar 

  28. R. J. Aumann. Existence of competitive equilibrium in markets with continuum of traders. Econometrica, 34:1–17, 1966.

    Article  MathSciNet  MATH  Google Scholar 

  29. X. Tan C. Zhou B. Bouchard, D. Possamaï. A unified approach to a priori estimates for supersolutions of BSDEs in general filtrations. Annales de l’institut Henri Poincaré, Probabilités et Statistiques, to appear.

    Google Scholar 

  30. R. Bafico and P. Baldi. Small random perturbations of Peano phenomena. Stochastics, 6:279–292, 1982.

    Article  MathSciNet  MATH  Google Scholar 

  31. F. Baghery and B. Oksendal. A maximum principle for stochastic control with partial information. Stochastic Analysis and Applications, 25:705–717, 2007.

    Article  MathSciNet  MATH  Google Scholar 

  32. K. Bahlali, B. Mezerdi, M. N’zi, and Y. Ouknine. Weak solutions and a Yamada-Watanabe theorem for FBSDEs. Random Operators and Stochastic Equations, 15:271–285, 2007.

    Article  MathSciNet  MATH  Google Scholar 

  33. M. Bardi. Explicit solutions of some linear quadratic mean field games. Networks and Heterogeneous Media, 7:243–261, 2012.

    Article  MathSciNet  MATH  Google Scholar 

  34. M. Bardi and E. Feleqi. Nonlinear elliptic systems and mean field games. Nonlinear Differential Equations and Applications NoDEA, 23:44, 2016.

    Article  MathSciNet  MATH  Google Scholar 

  35. M. Bardi and F. Priuli. Linear-quadratic N-person and mean-field games with ergodic cost. SIAM Journal on Control and Optimization, 52:3022–3052, 2014.

    Article  MathSciNet  MATH  Google Scholar 

  36. F. Barthe and C. Bordenave. Combinatorial optimization over two random point sets. In C. Donati-Martin et al., editors, Séminaire de Probabilités XLV. Volume 2046 of Lecture Notes in Mathematics, pages 483–536. Springer International Publilshing, 2013.

    Google Scholar 

  37. R. Basna, A. Hilbert, and V.N. Kolokolstov. An approximate Nash equilibrium for pure jump Markov games of mean-field-type on continuous state space. Stochastics, 89:967–993, 2017.

    Article  MathSciNet  MATH  Google Scholar 

  38. R.F. Bass. Diffusions and Elliptic Operators. Springer-Verlag New York, 1998.

    MATH  Google Scholar 

  39. R.F. Bass and P. Hsu. Some potential theory for reflecting Brownian motion in Hölder and Lipschitz domains. Annals of Probability, 19:486–508, 1991.

    Article  MathSciNet  MATH  Google Scholar 

  40. J.R. Baxter and R.V. Chacon. Compactness of stopping times. Zeitschrift für Wahrscheinlichkeitstheorie und verwandte Gebiete, 40:169–181, 1977.

    Article  MathSciNet  MATH  Google Scholar 

  41. J.-D. Benamou and Y. Brenier. A computational fluid mechanics solution to the Monge-Kantorovich mass transfer problem. Numerische Mathematik, 84:375–393, 2000.

    Article  MathSciNet  MATH  Google Scholar 

  42. J.D. Benamou and G. Carlier. Augmented Lagrangian methods for transport optimization, mean field games and degenerate elliptic equations. Journal of Optimization Theory and Applications, 167:1–26, 2015.

    Article  MathSciNet  MATH  Google Scholar 

  43. J.D. Benamou, G. Carlier, and N. Bonne. An augmented Lagrangian numerical approach to solving mean field games. Technical report, INRIA, 2013. https://hal.inria.fr/hal-00922349/

    Google Scholar 

  44. A. Bensoussan, M.H.M. Chau, and S.C.P. Yam. Mean field games with a dominating player. Applied Mathematics & Optimization, 74:91–128, 2016.

    Article  MathSciNet  MATH  Google Scholar 

  45. A. Bensoussan and J. Frehse. Nonlinear elliptic systems in stochastic game theory. Journal für die reine und angewandte Mathematik, 350:23–67, 1984.

    MathSciNet  MATH  Google Scholar 

  46. A. Bensoussan and J. Frehse. On Bellman equations of ergodic control in R n. Journal für die reine und angewandte Mathematik, 492:125–160, 1992.

    MathSciNet  MATH  Google Scholar 

  47. A. Bensoussan and J. Frehse. Ergodic Bellman systems for stochastic games in arbitrary dimension. Proceedings of the Royal Society of Edinburgh, A, 449:65–77, 1995.

    Article  MathSciNet  MATH  Google Scholar 

  48. A. Bensoussan and J. Frehse. Stochastic games for N players. Journal of Optimization Theory and Applications, 105:543–565, 2000.

    Article  MathSciNet  MATH  Google Scholar 

  49. A. Bensoussan and J. Frehse. Smooth solutions of systems of quasilinear parabolic equations. ESAIM: Control, Optimisation and Calculus of Variations, 8:169–193, 2010.

    Article  MathSciNet  MATH  Google Scholar 

  50. A. Bensoussan, J. Frehse, and P. Yam. Mean Field Games and Mean Field Type Control Theory. SpringerBriefs in Mathematics. Springer-Verlag New York, 2013.

    Book  MATH  Google Scholar 

  51. A. Bensoussan, J. Frehse, and S. C. P. Yam. The master equation in mean field theory. Journal de Mathématiques Pures et Appliquées, 2014.

    Google Scholar 

  52. A. Bensoussan, J. Frehse, and S. C. P. Yam. On the interpretation of the master equation. Stochastic Processes and their Applications, 127:2093–2137, 2016.

    Article  MathSciNet  MATH  Google Scholar 

  53. A. Bensoussan, K.C.J. Sung, S.C.P. Yam, and S.P. Yung. Linear quadratic mean field games. Journal of Optimization Theory and Applications, 169:469–529, 2016.

    Article  MathSciNet  MATH  Google Scholar 

  54. A. Bensoussan and S. C. P. Yam. Control problem on space of random variables and master equation. Technical report, http://arxiv.org/abs/1508.00713, 2015.

  55. D.P. Bertsekas. Nonlinear Programming. Athena Scientific, 1995.

    MATH  Google Scholar 

  56. D.P. Bertsekas and S.E. Shreve. Stochastic Optimal Control: The Discrete Time Case. Academic Press, 1978.

    Google Scholar 

  57. P. Billingsley. Convergence of Probability Measures. Third edition. John Wiley & Sons, Inc., 1995.

    Google Scholar 

  58. P. Billingsley. Probability and Measure. Second edition. John Wiley & Sons, Inc., 1999.

    Google Scholar 

  59. A. Bisin, U. Horst, and O. Özgür. Rational expectations equilibria of economies with local interactions. Journal of Economic Theory, 127:74–116, 2006.

    Article  MathSciNet  MATH  Google Scholar 

  60. J.-M. Bismut. Théorie probabiliste du contrôle des diffusions, Memoirs of the American Mathematical Society, 167(4), 1976.

    Google Scholar 

  61. J.-M. Bismut. Conjugate convex functions in optimal stochastic control. Journal of Mathematical Analysis and Applications, 44:384–404, 1973.

    Article  MathSciNet  MATH  Google Scholar 

  62. J.M. Bismut. An introductory approach to duality in optimal stochastic control. SIAM Review, 20:62–78, 1978.

    Article  MathSciNet  MATH  Google Scholar 

  63. D. Blackwell and L.E. Dubins. An extension of Skorohod’s almost sure convergence theorem. Proceedings of the American Mathematical Society, 89:691–692, 1983.

    MathSciNet  MATH  Google Scholar 

  64. V.I. Bogachev. Measure Theory, Volume 2. Springer-Verlag Berlin Heidelberg, 2007.

    Book  Google Scholar 

  65. V.S. Borkar. Controlled diffusion processes. Probability Surveys, 2:213–244, 2005.

    Article  MathSciNet  MATH  Google Scholar 

  66. V.S. Borkar. Ergodic control of diffusion processes. In Marta Sanz-Solé et al., editors, Proceedings of the International Congress of Mathematics, Madrid, Spain, pages 1299–1309. European Mathematical Society, 2006.

    Google Scholar 

  67. P. Brémaud. Point Processes and Queues: Martingale Dynamics. Springer Series in Statistics. Springer-Verlag New York, 1981.

    Book  MATH  Google Scholar 

  68. P. Brémaud and M. Yor. Changes of filtrations and of probability measures. Zeitschrift für Wahrscheinlichkeitstheorie und verwandte Gebiete, 45:269–295, 1978.

    Article  MathSciNet  MATH  Google Scholar 

  69. Y. Brenier. Polar factorization and monotone rearrangement of vector-valued functions. Communications on Pure and Applied Mathematics, 44:375–417, 1991.

    Article  MathSciNet  MATH  Google Scholar 

  70. P. Briand and Y. Hu. Stability of BSDEs with random terminal time and homogenization of semilinear elliptic PDEs. Journal of Functional Analysis, 155:455–494, 1998.

    Article  MathSciNet  MATH  Google Scholar 

  71. P. Briand and Y. Hu. BSDE with quadratic growth and unbounded terminal value. Probability Theory and Related Fields, 136:604–618, 2006.

    Article  MathSciNet  MATH  Google Scholar 

  72. G. Brunick and S. Shreve. Mimicking an Itô process by a solution of a stochastic differential equation. Annals of Applied Probability, 23:1584–1628, 2013.

    Article  MathSciNet  MATH  Google Scholar 

  73. J. Bryant. A model of reserves, bank runs and deposit insurance. Journal of Banking and Finance, 4:335–344, 1980.

    Article  Google Scholar 

  74. R. Buckdahn, B. Djehiche, and J. Li. Mean field backward stochastic differential equations and related partial differential equations. Stochastic Processes and their Applications, 119:3133–3154, 2007.

    Article  MathSciNet  MATH  Google Scholar 

  75. R. Buckdahn, B. Djehiche, J. Li, and S. Peng. Mean field backward stochastic differential equations: A limit approach. Annals of Probability, 37:1524–1565, 2009.

    Article  MathSciNet  MATH  Google Scholar 

  76. R. Buckdahn and H.-J. Engelbert. A backward stochastic differential equation without strong solution. Theory of Probability and its Applications, 50:284–289, 2006.

    Article  MathSciNet  MATH  Google Scholar 

  77. R. Buckdahn and H.-J. Engelbert. On the continuity of weak solutions of backward stochastic differential equations. Theory of Probability and its Applications, 52:152–160, 2008.

    Article  MathSciNet  MATH  Google Scholar 

  78. R. Buckdahn, H. J. Engelbert, and A. Rǎşcanu. On weak solutions of backward stochastic differential equations. Theory of Probability and its Applications, 49:16–50, 2005.

    Article  MathSciNet  MATH  Google Scholar 

  79. R. Buckdahn, J. Li, S. Peng, and C. Rainer. Mean-field stochastic differential equations and associated PDEs. Annals of Probability, 45:824–878, 2017.

    Article  MathSciNet  MATH  Google Scholar 

  80. R. Buckdahn and S. Peng. Stationary backward stochastic differential equations and associated partial differential equations. Probability Theory and Related Fields, 115:383–399, 1999.

    Article  MathSciNet  MATH  Google Scholar 

  81. K. Burdzy, W. Kang, and K. Ramanan. The Skorokhod problem in a time-dependent interval. Stochastic Processes and their Applications, 119:428–452, 2009.

    Article  MathSciNet  MATH  Google Scholar 

  82. F. Camilli and C. Marchi. Stationary mean field games systems defined on networks. SIAM Journal on Control and Optimization, 54:1085–1103, 2016.

    Article  MathSciNet  MATH  Google Scholar 

  83. P. Cardaliaguet. Notes from P.L. Lions’ lectures at the Collège de France. Technical report, https://www.ceremade.dauphine.fr/$\sim$cardalia/MFG100629.pdf, 2012.

  84. P. Cardaliaguet. Long time average of first order mean field games and weak KAM theory. Dynamic Games and Applications, 3:473–488, 2013.

    Article  MathSciNet  MATH  Google Scholar 

  85. P. Cardaliaguet. Weak solutions for first order mean field games with local coupling. In P. Bettiol et al., editors, Analysis and Geometry in Control Theory and its Applications. Springer INdAM Series, pages 111–158. Springer International Publishing, 2015.

    Google Scholar 

  86. P. Cardaliaguet, F. Delarue, J.-M. Lasry, and P.-L. Lions. The master equation and the convergence problem in mean field games. Technical report, http://arxiv.org/abs/1509.02505, 2015.

  87. P. Cardaliaguet and J. Graber. Mean field games systems of first order. ESAIM: Control, Optimisation and Calculus of Variations, 21:690–722, 2015.

    Article  MathSciNet  MATH  Google Scholar 

  88. P. Cardaliaguet, J. Graber, A. Porretta, and D. Tonon. Second order mean field games with degenerate diffusion and local coupling. Nonlinear Differential Equations and Applications NoDEA, 22:1287–1317, 2015.

    Article  MathSciNet  MATH  Google Scholar 

  89. P. Cardaliaguet and S. Hadikhanloo. Learning in mean field games: the fictitious play. ESAIM: Control, Optimisation and Calculus of Variations, 23:569–591, 2017.

    Article  MathSciNet  MATH  Google Scholar 

  90. P. Cardaliaguet, J.M. Lasry, P.L. Lions, and A. Porretta. Long time average of mean field games. Networks and Heterogeneous Media, 7:279–301, 2012.

    Article  MathSciNet  MATH  Google Scholar 

  91. P. Cardaliaguet, J.M. Lasry, P.L. Lions, and A. Porretta. Long time average of mean field games with a nonlocal coupling. SIAM Journal on Control and Optimization, 51:3558–3591, 2013.

    Article  MathSciNet  MATH  Google Scholar 

  92. P. Cardaliaguet, A. R. Mészáros, and F. Santambrogio. First order mean field games with density constraints: Pressure equals price. SIAM Journal on Control and Optimization, 54:2672–2709, 2016.

    Article  MathSciNet  MATH  Google Scholar 

  93. E. A. Carlen. Conservative diffusions. Communication in Mathematical Physics, 94:293–315, 1984.

    Article  MathSciNet  MATH  Google Scholar 

  94. R. Carmona. Lectures on BSDEs, Stochastic Control and Stochastic Differential Games. SIAM, 2015.

    Google Scholar 

  95. R. Carmona and F. Delarue. Mean field forward-backward stochastic differential equations. Electronic Communications in Probability, 2013.

    Google Scholar 

  96. R. Carmona and F. Delarue. Probabilistic analysis of mean field games. SIAM Journal on Control and Optimization, 51:2705–2734, 2013.

    Article  MathSciNet  MATH  Google Scholar 

  97. R. Carmona and F. Delarue. The master equation for large population equilibriums. In D. Crisan, B. Hambly, T. Zariphopoulou, editors, Stochastic Analysis and Applications 2014: In Honour of Terry Lyons, pages 77–128. Springer Cham, 2014.

    Google Scholar 

  98. R. Carmona and F. Delarue. Forward-backward stochastic differential equations and controlled Mckean Vlasov dynamics. Annals of Probability, 43:2647–2700, 2015.

    Article  MathSciNet  MATH  Google Scholar 

  99. R. Carmona, F. Delarue, and A. Lachapelle. Control of McKean-Vlasov versus mean field games. Mathematics and Financial Economics, 7:131–166, 2013.

    Article  MathSciNet  MATH  Google Scholar 

  100. R. Carmona, F. Delarue, and D. Lacker. Mean field games with common noise. Annals of Probability, 44:3740–3803, 2016.

    Article  MathSciNet  MATH  Google Scholar 

  101. R. Carmona, J.P. Fouque, M. Moussavi, and L.H. Sun. Systemic risk and stochastic games with delay. Technical report, 2016. https://arxiv.org/abs/1607.06373

    Google Scholar 

  102. R. Carmona, J.P. Fouque, and L.H. Sun. Mean field games and systemic risk: a toy model. Communications in Mathematical Sciences, 13:911–933, 2015.

    Article  MathSciNet  MATH  Google Scholar 

  103. R. Carmona and D. Lacker. A probabilistic weak formulation of mean field games and applications. Annals of Applied Probability, 25:1189–1231, 2015.

    Article  MathSciNet  MATH  Google Scholar 

  104. R. Carmona, F. Delarue, and D. Lacker. Mean field games of timing and models for bank runs. Applied Mathematics & Optimization, 76:217–260, 2017.

    Article  MathSciNet  MATH  Google Scholar 

  105. R. Carmona and D. Nualart. Nonlinear Stochastic Integrators, Equations and Flows. Gordon & Breach, 1990.

    Google Scholar 

  106. R. Carmona and P. Wang. An alternative approach to mean field game with major and minor players, and applications to herders impacts. Applied Mathematics & Optimization, 76:5–27, 2017.

    Article  MathSciNet  MATH  Google Scholar 

  107. R. Carmona and K. Webster. The self financing condition in high frequency markets. Finance Stochastics, to appear.

    Google Scholar 

  108. R. Carmona and K. Webster. A Stackelberg equilibrium for the Limit Order Book. Mathematical Finance, to appear.

    Google Scholar 

  109. R. Carmona and W.I. Zheng. Reflecting Brownian motions and comparison theorems for Neumann heat kernels. Journal of Functional Analysis, 123:109–128, 1994.

    Article  MathSciNet  MATH  Google Scholar 

  110. R. Carmona and G. Zhu. A probabilistic approach to mean field games with major and minor players. Annals of Applied Probability, 26:1535–1580, 2016.

    Article  MathSciNet  MATH  Google Scholar 

  111. C. Ceci, A. Cretarola, and F. Russo. BSDEs under partial information and financial applications. Stochastic Processes and their Applications, 124:2628–2653, 2014.

    Article  MathSciNet  MATH  Google Scholar 

  112. U. Cetin, H.M. Soner, and N. Touzi. Options hedging under liquidity costs. Finance Stochastics, 14:317–341, 2010.

    Article  MathSciNet  MATH  Google Scholar 

  113. P. Chan and R. Sircar. Bertrand and Cournot mean field games. Applied Mathematics & Optimization, 71:533–569, 2015.

    Article  MathSciNet  MATH  Google Scholar 

  114. J.F. Chassagneux, D. Crisan, and F. Delarue. McKean-vlasov FBSDEs and related master equation. Technical report, http://arxiv.org/abs/1411.3009, 2015.

  115. P. G. Ciarlet. Introduction to Numerical Linear Algebra and Optimisation. Cambridge Texts in Applied Mathematics. Cambridge University Press, 1989.

    Google Scholar 

  116. E. Çinlar. Probability and Stochastics. Graduate Texts in Mathematics. Springer-Verlag New York, 2011.

    Book  MATH  Google Scholar 

  117. M. Cirant. Multi-population mean field games systems with Neumann boundary conditions. Journal de Mathématiques Pures et Appliquées, 103:1294–1315, 2015.

    Article  MathSciNet  MATH  Google Scholar 

  118. M. Cirant. Stationary focusing mean-field games. Communications in Partial Differential Equations, 41:1324–1346, 2016.

    Article  MathSciNet  MATH  Google Scholar 

  119. M. Cirant and G. Verzini. Bifurcation and segregation in quadratic two-populations mean field games systems. ESAIM: Control, Optimisation and Calculus of Variations, 23:1145–1177, 2017.

    Article  MathSciNet  MATH  Google Scholar 

  120. M. Coghi and F. Flandoli. Propagation of chaos for interacting particles subject to environmental noise. Annals of Applied Probability, 26:1407–1442, 2016.

    Article  MathSciNet  MATH  Google Scholar 

  121. M.G Crandall and P.L. Lions. Viscosity solutions of Hamilton-Jacobi equations in infinite dimensions. i. Uniqueness of viscosity solutions. Journal of Functional Analysis, 62:379–396, 1985.

    Google Scholar 

  122. M.G Crandall and P.L. Lions. Viscosity solutions of Hamilton-Jacobi equations in infinite dimensions. ii. Existence of viscosity solutions. Journal of Functional Analysis, 65:368–405, 1986.

    Google Scholar 

  123. M.G Crandall and P.L. Lions. Viscosity solutions of Hamilton-Jacobi equations in infinite dimensions. iii. Journal of Functional Analysis, 68:214–247, 1986.

    Google Scholar 

  124. M.G Crandall and P.L. Lions. Viscosity solutions of Hamilton-Jacobi equations in infinite dimensions. iv. Hamiltonians with unbounded linear terms. Journal of Functional Analysis, 90:3237–283, 1990.

    Google Scholar 

  125. F. Cucker and E. Mordecki. Flocking in noisy environments. Journal de Mathématiques Pures et Appliquées, 89:278–296, 2008.

    Article  MathSciNet  MATH  Google Scholar 

  126. F. Cucker and S. Smale. Emergent behavior in flocks. IEEE Transactions on Automatic Control, 52:852–862, 2007.

    Article  MathSciNet  MATH  Google Scholar 

  127. V. Voskanyana D.A. Gomes, S. Patrizi. On the existence of classical solutions for stationary extended mean field games. Nonlinear Analysis: Theory, Methods & Applications, 99:49–79, 2014.

    Article  MathSciNet  MATH  Google Scholar 

  128. G. Da Prato and J. Zabczyk. Ergodicity for Infinite Dimensional Systems. Cambridge University Press, 1996.

    Google Scholar 

  129. E.B. Davies. Spectral properties of compact manifolds and changes of metric. American Journal of Mathematics, 112:15–39, 1990.

    Article  MathSciNet  MATH  Google Scholar 

  130. D. Dawson and J. Vaillancourt. Stochastic McKean-Vlasov equations. NoDEA. Nonlinear Differential Equations and Applications, 2(2):199–229, 1995.

    Article  MathSciNet  MATH  Google Scholar 

  131. A. Debussche, Y. Hu, and G. Tessitore. Ergodic BSDEs under weak dissipative assumptions. Stochastic Processes and their Applications, 121:407–426, 2011.

    Article  MathSciNet  MATH  Google Scholar 

  132. F. Delarue. On the existence and uniqueness of solutions to FBSDEs in a non-degenerate case. Stochastic Processes and their Applications, 99:209–286, 2002.

    Article  MathSciNet  MATH  Google Scholar 

  133. F. Delarue. Estimates of the solutions of a system of quasi-linear PDEs. a probabilistic scheme. In J. Azéma et al., editors, Séminaire de Probabilités XXXVII, pages 290–332. Springer-Verlag Berlin Heidelberg, 2003.

    Google Scholar 

  134. F. Delarue and G. Guatteri. Weak existence and uniqueness for FBSDEs. Stochastic Processes and their Applications, 116:1712–1742, 2006.

    Article  MathSciNet  MATH  Google Scholar 

  135. S. Dereich, M. Scheutzow, and R. Schottstedt. Constructive quantization: approximation by empirical measures. Annales Institut Henri Poincaré, Probabilités Statistiques, 49:1183–1203, 2013.

    Article  MathSciNet  MATH  Google Scholar 

  136. D.W. Diamond and P.H. Dybvig. Bank runs, deposit insurance, and liquidity. The Journal of Political Economy, (91):401–419, 1983.

    Article  MATH  Google Scholar 

  137. B. Djehiche, A. Tcheukam Siwe, and H. Tembine. Mean field-type games in engineering. Technical report, https://arxiv.org/abs/1605.03281, 2016.

  138. B. Djehiche, H. Tembine, and R. Tempone. A stochastic maximum principle for risk-sensitive mean-field type control. IEEE Transactions on Automatic Control, 60:2640–2649, 2015.

    Article  MathSciNet  MATH  Google Scholar 

  139. J. Doncel, N. Gast, and B. Gaujal. Are mean-field games the limits of finite stochastic games? SIGMETRICS Performance Evaluation Review, 44:18–20, 2016.

    Article  Google Scholar 

  140. J. Doncel, N. Gast, and B. Gaujal. Mean-field games with explicit interactions. Technical report, https://hal.inria.fr/hal-01277098/file/main.pdf, 2016.

  141. G. Dos Reis. Some advances on quadratic BSDE: Theory - Numerics - Applications. LAP LAMBERT Academic Publishing, 2011.

    Google Scholar 

  142. R. Duboscq and A. Réveillac. Stochastic regularization effects of semi-martingales on random functions. Journal de Mathématiques Pures et Appliquées, 106:1141–1173, 2016.

    Article  MathSciNet  MATH  Google Scholar 

  143. R.M. Dudley. Real Analysis and Probability. Wadsworth & Brooks/Cole, 1989.

    MATH  Google Scholar 

  144. D. Duffie, G. Giroux, and G. Manso. Information percolation. American Economics Journal: Microeconomic Theory, 2:1, 2010.

    MATH  Google Scholar 

  145. D. Duffie, S. Malamud, and G. Manso. Information percolation with equilibrium search dynamics. Econometrica, 77:1513–1574, 2009.

    Article  MathSciNet  MATH  Google Scholar 

  146. D. Duffie, S. Malamud, and G. Manso. Information percolation in segmented markets. Journal of Economic Theory, 153:1–32, 2014.

    Article  MathSciNet  MATH  Google Scholar 

  147. D. Duffie and G. Manso. Information percolation in large markets. American Economic Review, Papers and Proceedings, 97:203–209, 2007.

    Article  Google Scholar 

  148. D. Duffie and Y. Sun. Existence of independent random matching. Annals of Applied Probability, 17:385–419, 2007.

    Article  MathSciNet  MATH  Google Scholar 

  149. S. Ethier and T. Kurtz. Markov Processes: Characterization and Convergence. John Wiley & Sons, Inc., 2005.

    MATH  Google Scholar 

  150. G. Fabbri, F. Gozzi, and A. Swiech. Stochastic Optimal Control in Infinite Dimensions: Dynamic Programming and HJB Equations. Probability Theory and Stochastic Modelling. Springer International Publishing, 2017.

    Book  Google Scholar 

  151. E. Feleqi. The derivation of ergodic mean field game equations for several population of players. Dynamic Games and Applications, 3:523–536, 2013.

    Article  MathSciNet  MATH  Google Scholar 

  152. J. Feng and M. Katsoulakis. A comparison principle for Hamilton-Jacobi equations related to controlled gradient flows in infinite dimensions. Archive for Rational Mechanics and Analysis, 192:275–310, 2009.

    Article  MathSciNet  MATH  Google Scholar 

  153. R. Ferreira and D. Gomes. Existence of weak solutions to stationary mean field games through variational inequalities. Technical report, http://arxiv.org/abs/1512.05828, 2015.

  154. M. Fischer. On the connection between symmetric N-player games and mean field games. Annals of Applied Probability, 27:757–810, 2017.

    Article  MathSciNet  MATH  Google Scholar 

  155. M. Fischer and G. Livieri. Continuous time mean-variance portfolio optimization through the mean field approach. ESAIM: Probability and Statistics, 20:30–44, 2016.

    Article  MathSciNet  MATH  Google Scholar 

  156. F. Flandoli. Random Perturbation of PDEs and Fluid Dynamics: Ecole d’été de probabilités de Saint-Flour XL. Volume 2015 of Lecture Notes in Mathematics. Springer-Verlag Berlin Heidelberg, 2011.

    Google Scholar 

  157. W.H. Fleming and M. Soner. Controlled Markov Processes and Viscosity Solutions. Stochastic Modelling and Applied Probability. Springer-Verlag, New York, 2010.

    MATH  Google Scholar 

  158. W.H. Fleming. Generalized solutions in optimal stochastic control. In Proceedings of the Second Kingston Conference on Differential Games, pages 147–165. Marcel Dekker, 1977.

    Google Scholar 

  159. R. Foguen Tchuendom. Restoration of uniqueness of Nash equilibria for a class of linear-quadratic mean field games with common noise. Dynamic Games and Applications, to appear.

    Google Scholar 

  160. M. Fornasier and F. Solombrino. Mean-field optimal control. ESAIM: Control, Optimisation and Calculus of Variations, 20:1123–1152, 2014.

    Article  MathSciNet  MATH  Google Scholar 

  161. N. Fournier and A. Guillin. On the rate of convergence in the Wasserstein distance of the empirical measure. Probability Theory and Related Fields, 162:707–738, 2015.

    Article  MathSciNet  MATH  Google Scholar 

  162. A. Friedman. Partial differential equations of parabolic type. Prentice-Hall, Englewood Cliffs, N.J., first edition, 1964.

    MATH  Google Scholar 

  163. A. Friedman. Stochastic differential games. Journal of Differential Equations, 11:79–108, 1972.

    Article  MathSciNet  MATH  Google Scholar 

  164. D. Fudenberg and D. Levine. Open-loop and closed-loop equilibria in dynamic games with many players. Journal of Economic Theory, 44:1–18, 1988.

    Article  MathSciNet  MATH  Google Scholar 

  165. D. Fudenberg and J. Tirole. Game Theory. MIT Press, 1991.

    Google Scholar 

  166. M. Fuhrman and G. Tessitore. Infinite horizon backward stochastic differential equations and elliptic equations in Hilbert spaces. Annals of Probability, 30:607–660, 2004.

    MathSciNet  MATH  Google Scholar 

  167. W. Gangbo, T. Nguyen, and A. Tudorascu. Hamilton-Jacobi equations in the Wasserstein space. Methods and Applications of Analysis, 15:155–184, 2008.

    Article  MathSciNet  MATH  Google Scholar 

  168. W. Gangbo and A. Swiech. Existence of a solution to an equation arising from the theory of mean field games. Journal of Differential Equations, 259:6573–6643, 2015.

    Article  MathSciNet  MATH  Google Scholar 

  169. N. Gast and B. Gaujal. A mean field approach for optimization in discrete time. Journal of Discrete Event Dynamic Systems, 21:63–101, 2011.

    Article  MathSciNet  MATH  Google Scholar 

  170. N. Gast, B. Gaujal, and J.-Y. Le Boudec. Mean field for Markov decision processes: from discrete to continuous optimization. IEEE Transactions on Automatic Control, 57:2266–2280, 2012.

    Article  MathSciNet  MATH  Google Scholar 

  171. J. Gatheral, A. Schied, and A. Slynko. Transient linear price impact and Fredholm integral equations. Mathematical Finance, 22:445–474, 2012.

    Article  MathSciNet  MATH  Google Scholar 

  172. R. Gayduk and S. Nadtochiy. Liquidity effects of trading frequency. Mathematical Finance, to appear.

    Google Scholar 

  173. I.I. Gihman and A.V. Skorohod. Controlled Stochastic Processes. Springer-Verlag Berlin Heidelberg New York, 1979.

    Book  MATH  Google Scholar 

  174. D.A. Gomes, J. Mohr, and R.R. Souza. Discrete time, finite state space mean field games. Journal de Mathématiques Pures et Appliquées, 93:308–328, 2010.

    Article  MathSciNet  MATH  Google Scholar 

  175. D.A. Gomes, J. Mohr, and R.R. Souza. Continuous time finite state mean field games. Applied Mathematics & Optimization, 68:99–143, 2013.

    Article  MathSciNet  MATH  Google Scholar 

  176. D.A. Gomes, L. Nurbekyan, and E. Pimentel. Economic Models and Mean-field Games Theory. Publicaões Matemáticas, IMPA, Rio, Brazil, 2015.

    MATH  Google Scholar 

  177. D.A. Gomes and E. Pimentel. Time-dependent mean-field games with logarithmic nonlinearities. SIAM Journal of Mathematical Analysis, 47:3798–3812, 2015.

    Article  MathSciNet  MATH  Google Scholar 

  178. D.A. Gomes and E. Pimentel. Local regularity for mean-field games in the whole space. Minimax Theory and its Applications, 1:65–82, 2016.

    MathSciNet  MATH  Google Scholar 

  179. D.A. Gomes, E. Pimentel, and H. Sánchez-Morgado. Time-dependent mean-field games in the sub- quadratic case. Communications in Partial Differential Equations, 40:40–76, 2015.

    Article  MathSciNet  MATH  Google Scholar 

  180. D.A. Gomes, E. Pimentel, and H. Sánchez-Morgado. Time-dependent mean-field games in the superquadratic case. ESAIM: Control, Optimisation and Calculus of Variations, 22:562–580, 2016.

    Article  MathSciNet  MATH  Google Scholar 

  181. D.A. Gomes, E. Pimentel, and V. Voskanyan. Regularity Theory for Mean-Field Game Systems. SpringerBriefs in Mathematics Springer International Publishing, 2016.

    Google Scholar 

  182. D.A. Gomes and J. Saude. Mean field games models - a brief survey. Dynamic Games and Applications, 4:110–154, 2014.

    Article  MathSciNet  MATH  Google Scholar 

  183. D.A. Gomes and V. Voskanyan. Extended mean field games. SIAM Journal on Control and Optimization, 54:1030–1055, 2016.

    Article  MathSciNet  MATH  Google Scholar 

  184. A. Granas and J. Dugundji. Fixed point theory. Springer Monographs in Mathematics. Springer-Verlag New York, 2003.

    Book  MATH  Google Scholar 

  185. O. Guéant. From infinity to one: The reduction of some mean field games to a global control problem. Cahier de la Chaire Finance et Développement Durable, 42, 2011.

    Google Scholar 

  186. O. Guéant. Mean field games equations with quadratic Hamiltonian: A specific approach. Mathematical Models and Methods in Applied Sciences, 22:291–303, 2012.

    Article  MathSciNet  MATH  Google Scholar 

  187. O. Guéant. New numerical methods for mean field games with quadratic costs. Networks and Heterogeneous Media, 2:315–336, 2012.

    Article  MathSciNet  MATH  Google Scholar 

  188. O. Guéant. Existence and uniqueness result for mean field games with congestion effect on graphs. Applied Mathematics & Optimization, 72:291–303, 2015.

    Article  MathSciNet  MATH  Google Scholar 

  189. O. Guéant, J.M. Lasry, and P.L. Lions. Mean field games and applications. In R. Carmona et al., editors, Paris Princeton Lectures on Mathematical Finance 2010. Volume 2003 of Lecture Notes in Mathematics. Springer-Verlag Berlin Heidelberg, 2010.

    Google Scholar 

  190. X. Guo and O. Hernández-Lerma. Continuous-Time Markov Decision Processes. Stochastic Modelling and Applied Probability. Springer-Verlag Berlin Heidelberg, 2009.

    Book  MATH  Google Scholar 

  191. I. Gyöngy. Mimicking the one-dimensional marginal distributions of processes having an Itô differential. Probability Theory and Related Fields, 71:501–516, 1986.

    Article  MathSciNet  MATH  Google Scholar 

  192. S. Haadem, B. Øksendal, and F. Proske. Maximum principles for jump diffusion processes with infinite horizon. Automatica, 49:2267–2275, 2013.

    Article  MathSciNet  MATH  Google Scholar 

  193. S. Hamadène. Backward-forward SDE’s and stochastic differential games. Stochastic Processes and their Applications, 77:1–15, 1998.

    Article  MathSciNet  MATH  Google Scholar 

  194. S. Hamadène. Nonzero-sum linear quadratic stochastic differential games and backward forward equations. Stochastic Analysis and Applications, 17:117–130, 1999.

    Article  MathSciNet  MATH  Google Scholar 

  195. S. Hamadène and J.P. Lepeltier. Backward equations, stochastic control and zero-sum stochastic differential games. Stochastics and Stochastic Reports, 54:221–231, 1995.

    Article  MathSciNet  MATH  Google Scholar 

  196. E. Häusler and H. Luschgy. Stable Convergence and Stable Limit Theorems. Probability Theory and Stochastic Modelling. Springer International Publishing, 1995.

    MATH  Google Scholar 

  197. Z. He and W. Xiong. Dynamic debt runs. Review of Financial Studies, 25:1799–1843, 2012.

    Article  Google Scholar 

  198. J. Horowitz and R.L. Karandikar. Mean rates of convergence of empirical measures in the Wasserstein metric. Journal of Computational and Applied Mathematics, 55:261–273, 1994.

    Article  MathSciNet  MATH  Google Scholar 

  199. U. Horst. Ergodic fluctuations in a stock market model with interacting agents: the mean field case. Discussion paper No. 106, Sonderforschungbereich 373, Humboldt Universität, Berlin, 1999.

    Google Scholar 

  200. U. Horst. Stationary equilibria in discounted stochastic games with weakly interacting players. Games and Economic Behavior, 51:83–108, 2005.

    Article  MathSciNet  MATH  Google Scholar 

  201. J.A. Hosking. A stochastic maximum principle for a stochastic differential game of a mean-field type. Applied Mathematics & Optimization, 66:415–454, 2012.

    Article  MathSciNet  MATH  Google Scholar 

  202. Y. Hu. Stochastic maximum principle. In John Baillieul, Tariq Samad, editors, Encyclopedia of Systems and Control, pages 1347–1350. Springer-Verlag London, 2015.

    Google Scholar 

  203. Y. Hu and S. Peng. Maximum principle for semilinear stochastic evolution control systems. Stochastics and Stochastic Reports, 33:159–180, 1990.

    Article  MathSciNet  MATH  Google Scholar 

  204. Y. Hu and S. Tang. Multi-dimensional backward stochastic differential equations of diagonally quadratic generators. Stochastic Processes and their Applications, 126:1066–1086, 2016.

    Article  MathSciNet  MATH  Google Scholar 

  205. Y. Hu and G. Tessitore. BSDE on an infinite horizon and elliptic PDEs in infinite dimension. Nonlinear Differential Equations and Applications NoDEA, 14:825–846, 2007.

    Article  MathSciNet  MATH  Google Scholar 

  206. C-F. Huang and L. Li. Continuous time stopping games with monotone reward structures. Mathematics of Operations Research, 15:496–507.

    Google Scholar 

  207. M. Huang. Large-population LQG games involving a major player: the Nash equivalence principle. SIAM Journal on Control and Optimization, 48:3318–3353, 2010.

    Article  MathSciNet  MATH  Google Scholar 

  208. M. Huang. A mean field accumulation game with HARA utility. Dynamics Games and Applications, 3:446–472, 2013.

    Article  MathSciNet  MATH  Google Scholar 

  209. M. Huang. Mean field capital accumulation games: the long time behavior. In Proceedings of the 52nd IEEE Conference on Decision and Control, pages 2499–2504. 2013.

    Google Scholar 

  210. M. Huang, P.E. Caines, and R.P. Malhamé. Individual and mass behavior in large population stochastic wireless power control problems: centralized and Nash equilibrium solutions. In Proceedings of the 42nd IEEE International Conference on Decision and Control, pages 98–103. 2003.

    Google Scholar 

  211. M. Huang, P.E. Caines, and R.P. Malhamé. Large population stochastic dynamic games: closed-loop McKean-Vlasov systems and the Nash certainty equivalence principle. Communications in Information and Systems, 6:221–252, 2006.

    Article  MathSciNet  MATH  Google Scholar 

  212. M. Huang, P.E. Caines, and R.P. Malhamé. Large population cost coupled LQG problems with nonuniform agents: individual mass behavior and decentralized ε-Nash equilibria. IEEE Transactions on Automatic Control, 52:1560–1571, 2007.

    Article  MathSciNet  MATH  Google Scholar 

  213. M. Huang, R.P. Malhamé, and P.E. Caines. Nash equilibria for large population linear stochastic systems with weakly coupled agents. In R.P. Malhamé, E.K. Boukas, editors, Analysis, Control and Optimization of Complex Dynamic Systems, pages 215–252. Springer-US, 2005.

    Google Scholar 

  214. J. Jacod. Multivariate point processes: predictable projections, Radon-Nykodym derivatives, representation of martingales. Zeitschrift für Wahrscheinlichkeitstheorie und verwandte. Gebiete, 31:235–253, 1975.

    Article  MATH  Google Scholar 

  215. J. Jacod. Weak and strong solutions of stochastic differential equations. Stochastics, 3:171–191, 1980.

    Article  MathSciNet  MATH  Google Scholar 

  216. J. Jacod and J. Mémin. Weak and strong solutions of stochastic differential equations: Existence and stability. In D. Williams, editor, Stochastic Integrals. Volume 851 of Lecture Notes in Mathematics, pages 169–212. Springer-Verlag Berlin Heidelberg, 1981.

    Google Scholar 

  217. M. Huang, P.E. Caines, and R.P. Malhamé. Social optima in mean field LQG control: centralized and decentralized strategies. IEEE Transactions on Automatic Control, 57(7):1736–1751, 2012.

    Article  MathSciNet  MATH  Google Scholar 

  218. X. Huang, S. Jaimungal and M. Nourian. Mean-field game strategies for optimal execution. Technical report, University of Toronto, https://papers.ssrn.com/sol3/papers.cfm?abstract_id=2578733, 2017.

  219. M. Jeanblanc and Y. Le Cam. Immersion property and credit risk modelling. In F. Delbaen, M. Rásonyi, C. Stricker, editors, Optimality and Risk-Modern Trends in Mathematical Finance, pages 99–132. Springer-Verlag Berlin Heidelberg, 2010.

    Google Scholar 

  220. R. Jordan, D. Kinderlehrer, and F. Otto. The variational formulation of the Fokker-Planck equation. SIAM Journal on Mathematical Analysis, 29:1–17, 1998.

    Article  MathSciNet  MATH  Google Scholar 

  221. B. Jourdain, S. Meleard, and W. Woyczynski. Nonlinear SDEs driven by Lévy processes and related PDEs. ALEA, Latin American Journal of Probability, 4:1–29, 2008.

    MathSciNet  MATH  Google Scholar 

  222. J. Kallsen and C. Kühn. Pricing derivatives of american and game type in incomplete markets. Finance and Stochastics, 8:261–284, 2004.

    Article  MathSciNet  MATH  Google Scholar 

  223. J. Kallsen and C. Kühn. Convertible bonds: Financial derivatives of game type. In A. Kyprianou, W. Schoutens, P. Wilmott, editors, Exotic Option Pricing and Advanced Lévy Models, pages 277–288. John Wiley & Sons, Inc., 2005.

    Google Scholar 

  224. N. El Karoui and S.J. Huang. A general result of existence and uniqueness of backward stochastic differential equations. In N. El Karoui, L. Mazliak, editors, Backward stochastic differential equations, Research Notes in Mathematics, pages 27–36. Pitman, Longman, Harlow, 1997.

    MATH  Google Scholar 

  225. N. El Karoui, D.H. Nguyen, and M. Jeanblanc-Picqué. Compactification methods in the control of degenerate diffusions: existence of an optimal control. Stochastics, 20:169–219, 1987.

    Article  MathSciNet  MATH  Google Scholar 

  226. N. El Karoui, S. Peng, and M.C. Quenez. Backward stochastic differential equations in finance. Mathematical Finance, 7:1–71, 1997.

    Article  MathSciNet  MATH  Google Scholar 

  227. N. Kazamaki. Continuous Exponential Martingales and BMO. Volume 1579 of Lecture Notes in Mathematics. Springer-Verlag Berlin Heidelberg, 1994.

    Google Scholar 

  228. R.Z. Khasminskii. Stochastic Stability of Differential Equations. Sijthoff & Noordhoff, 1980.

    Google Scholar 

  229. Y. Kifer. Game options. Finance and Stochastics, 4:443–463, 2000.

    Article  MathSciNet  MATH  Google Scholar 

  230. J.F.C. Kingman. Uses of exchangeability. Annals of Probability, 6:183–197, 1978.

    Article  MathSciNet  MATH  Google Scholar 

  231. M.Y. Kitaev and V. Rykov. Controlled Queuing Systems. CRC Press, 1995.

    Google Scholar 

  232. M. Kobylanski. Backward stochastic differential equations and partial differential equations with quadratic growth. Annals of Probability, 28:558–602, 2000.

    Article  MathSciNet  MATH  Google Scholar 

  233. V.N. Kolokolstov. Nonlinear Markov semigroups and interacting Lévy processes. Journal of Statistical Physics, 126:585–642, 2007.

    Article  MathSciNet  Google Scholar 

  234. V.N. Kolokolstov. Nonlinear Markov processes and kinetic equations. Cambridge University Press, Cambridge, 2010.

    Google Scholar 

  235. V.N. Kolokolstov and A. Bensoussan. Mean-field-game model for botnet defense in cyber-security. Applied Mathematics & Optimization, 74:669–692, 2016.

    Article  MathSciNet  MATH  Google Scholar 

  236. V.N. Kolokolstov, J. Li, and W. Yang. Mean field games and nonlinear Markov processes. Technical report, http://arxiv.org/abs/1112.3744, 2011.

  237. V.N. Kolokolstov and M. Troeva. On the mean field games with common noise and the McKean-Vlasov SPDEs. Technical report, http://arxiv.org/abs/1506.04594, 2015.

  238. V.N. Kolokolstov, M. Troeva, and W. Yang. On the rate of convergence for the mean field approximation of controlled diffusions with large number of players. Dynamic Games and Applications, 4:208–230, 2013.

    MathSciNet  Google Scholar 

  239. V.N. Kolokoltsov. Nonlinear Markov games on a finite state space (mean-field and binary interactions). International Journal of Statistics and Probability, 1:77–91, 2012.

    Article  Google Scholar 

  240. T. Kruse and A. Popier. BSDEs with monotone generator driven by Brownian and Poisson noises in a general filtration. Stochastics, 88:491–539, 2016.

    Article  MathSciNet  MATH  Google Scholar 

  241. P. Krusell and Jr. A. Smith. Income and wealth heterogeneity in the macroeconomy. Journal of Political Economy, 106:867–896, 1998.

    Google Scholar 

  242. N. Krylov. Controlled Diffusion Processes. Stochastic Modelling and Applied Probability. Springer-Verlag Berlin Heidelberg, 1980.

    Book  MATH  Google Scholar 

  243. H. Kunita. Stochastic Flows and Stochastic Differential Equations. Cambridge Studies in Advanced Mathematics. Cambridge University Press, 1990.

    MATH  Google Scholar 

  244. H. Kunita and S. Watanabe. On square integrable martingales. Nagoya Mathematical Journal, 30:209–245, 1967.

    Article  MathSciNet  MATH  Google Scholar 

  245. T.G. Kurtz. Random time changes and convergence in distribution under the Meyer-Zheng conditions. Annals of Applied Probability, 19:1010–1034, 1991.

    Article  MathSciNet  MATH  Google Scholar 

  246. T.G. Kurtz. The Yamada-Watanabe-Engelbert theorem for general stochastic equations and inequalities. Electronic Journal of Probability, 12:951–965, 2007.

    Article  MathSciNet  MATH  Google Scholar 

  247. T.G. Kurtz. Weak and strong solutions of general stochastic models. Electronic Journal of Probability, 19:1–16, 2014.

    MathSciNet  Google Scholar 

  248. T.G. Kurtz and P. Protter. Weak limit theorems for stochastic integrals and stochastic differential equations. Annals of Probability, 19:1035–1070, 1991.

    Article  MathSciNet  MATH  Google Scholar 

  249. T.G. Kurtz and J. Xiong. Particle representations for a class of nonlinear SPDEs. Stochastic Processes and their Applications, 83(1):103–126, 1999.

    Article  MathSciNet  MATH  Google Scholar 

  250. T.G. Kurtz and J. Xiong. A stochastic evolution equation arising from the fluctuations of a class of interacting particle systems. Communications in Mathematical Sciences, 2(3):325–358, 2004.

    Article  MathSciNet  MATH  Google Scholar 

  251. A. Lachapelle, J.M. Lasry, C.A. Lehalle, and P.L. Lions. Efficiency of the price formation process in the presence of high frequency participants: a mean field games analysis. Mathematics and Financial Economics, 10:223–262, 2016.

    Article  MathSciNet  MATH  Google Scholar 

  252. A. Lachapelle, J. Salomon, and G. Turinici. Computation of mean field equilibria in economics. Mathematical Models and Methods in Applied Sciences, 20:567–588, 2010.

    Article  MathSciNet  MATH  Google Scholar 

  253. A. Lachapelle and M.T. Wolfram. On a mean field game approach modeling congestion and aversion in pedestrian crowds. Transportation Research Part B: Methodological, 45:1572–1589, 2011.

    Article  Google Scholar 

  254. D. Lacker. Mean field games via controlled martingale problems: Existence of markovian equilibria. Stochastic Processes and their Applications, 125:2856–2894, 2015.

    Article  MathSciNet  MATH  Google Scholar 

  255. D. Lacker. A general characterization of the mean field limit for stochastic differential games. Probability Theory and Related Fields, 165:581–648, 2016.

    Article  MathSciNet  MATH  Google Scholar 

  256. D. Lacker. Limit theory for controlled McKean-Vlasov dynamics. http://arxiv.org/1609.08064, 2016.

  257. D. Lacker and K. Webster. Translation invariant mean field games with common noise. Electronic Communications in Probability, 20, 2015.

    Google Scholar 

  258. O.A. Ladyzenskaja, V.A. Solonnikov, and N. N. Ural’ceva. Linear and Quasi-linear Equations of Parabolic Type. Translations of Mathematical Monographs. American Mathematical Society, 1968.

    Book  Google Scholar 

  259. J.M. Lasry and P.L. Lions. A remark on regularization in Hilbert spaces. Israël Journal of Mathematics, 55, 1986.

    Google Scholar 

  260. J.M. Lasry and P.L. Lions. Jeux à champ moyen I. Le cas stationnaire. Comptes Rendus de l’Académie des Sciences de Paris, ser. I, 343:619–625, 2006.

    Google Scholar 

  261. J.M. Lasry and P.L. Lions. Jeux à champ moyen II. Horizon fini et contrôle optimal. Comptes Rendus de l’Académie des Sciences de Paris, ser. I, 343:679–684, 2006.

    Google Scholar 

  262. J.M. Lasry and P.L. Lions. Mean field games. Japanese Journal of Mathematics, 2:229–260, 2007.

    Article  MathSciNet  MATH  Google Scholar 

  263. M. Laurière and O. Pironneau. Dynamic programming for mean field type control. Comptes Rendus Mathematique, ser. I, 352:707–713, 2014.

    Article  MathSciNet  MATH  Google Scholar 

  264. G M Lieberman. Second Order Parabolic Differential Equations. World Scientific, 1996.

    Google Scholar 

  265. P.L. Lions. Théorie des jeux à champs moyen et applications. Lectures at the Collège de France. http://www.college-de-france.fr/default/EN/all/equ_der/cours_et_seminaires.htm, 2007–2008.

  266. P.L. Lions. Estimées nouvelles pour les équations quasilinéaires. Seminar in Applied Mathematics at the Collège de France. http://www.college-de-france.fr/site/pierre-louis-lions/seminar-2014-11-14-11h15.htm, 2014.

  267. P.L. Lions and A.S. Sznitman. Stochastic differential equations with reflecting boundary conditions. Communications on Pure and Applied Mathematics, 37:511–537, 1984.

    Article  MathSciNet  MATH  Google Scholar 

  268. K. Lye and J. Wing. Game strategies in network security. International Journal on Information Security, 4:71–86, 2005.

    Article  Google Scholar 

  269. J. Komlós M. Ajtai and G. Tusnàdy. On optimal matchings. Combinatorica, 4:259–264, 1983.

    MathSciNet  MATH  Google Scholar 

  270. Y. Hu M. Fuhrman and G. Tessitore. Ergodic BSDEs and optimal ergodic control in Banach spaces. SIAM Journal on Control and Optimization, 48:1542–1566, 2009.

    Article  MathSciNet  MATH  Google Scholar 

  271. J. Ma, P. Protter, and J. Yong. Solving forward-backward stochastic differential equations explicitly – a four step scheme. Probability Theory and Related Fields, 98:339–359, 1994.

    Article  MathSciNet  MATH  Google Scholar 

  272. J. Ma, Z. Wu, D. Zhang, and J. Zhang. On well-posedness of forward-backward SDEs - a unified approach. Annals of Applied Probability, 25:2168–2214, 2015.

    Article  MathSciNet  MATH  Google Scholar 

  273. J. Ma, H. Yin, and J. Zhang. On non-Markovian forward backward SDEs and backward stochastic PDEs. Stochastic Processes and their Applications, 122:3980–4004, 2012.

    Article  MathSciNet  MATH  Google Scholar 

  274. J. Ma and J. Yong. Forward-Backward Stochastic Differential Equations and their Applications. Volume 1702 of Lecture Notes in Mathematics. Springer-Verlag Berlin Heidelberg, 2007.

    Google Scholar 

  275. J. Ma and J. Zhang. Path regularity for solutions of backward stochastic differential equations. Probability Theory and Related Fields, 122:163–190, 2002.

    Article  MathSciNet  MATH  Google Scholar 

  276. B. Maslowski and P. Veverka. Sufficient stochastic maximum principle for discounted control problem. Applied Mathematics & Optimization, 70:225–252, 2014.

    Article  MathSciNet  MATH  Google Scholar 

  277. H.P. McKean. A class of Markov processes associated with nonlinear parabolic equations. Proceedings of the National Academy of Science, 56:1907–1911, 1966.

    Article  MathSciNet  MATH  Google Scholar 

  278. H.P. McKean. Propagation of chaos for a class of nonlinear parabolic equations. Lecture Series in Differential Equations, 7:41–57, 1967.

    Google Scholar 

  279. S. Méléard. Asymptotic behaviour of some interacting particle systems; McKean-Vlasov and Boltzmann models. In D. Talay, L. Denis, L. Tubaro, editors, Probabilistic Models for Nonlinear Partial Differential Equations. Volume 1627 of Lecture Notes in Mathematics, pages 42–95. Springer-Verlag Berlin Heidelberg, 1996.

    Google Scholar 

  280. P.-A. Meyer and Zheng. Tightness criteria for laws of semimartingales. Annales de l’Institut Henri Poincaré, Probabilités et Statistiques, 20:353–372, 1984.

    Google Scholar 

  281. T. Meyer-Brandis, B. Oksendal, and X.Y. Zhou. A mean field stochastic maximum principle via Malliavin calculus. Stochastics, 84:643–666, 2012.

    Article  MathSciNet  MATH  Google Scholar 

  282. T. Mikami. Markov marginal problems and their applications to Markov optimal control. In W.M. McEneaney, G.G. Yin, Q., Zhang, editors, Stochastic Analysis, Control, Optimization and Applications, A Volume in Honor of W.H. Fleming, pages 457–476. Boston, Birkhäuser, 1999.

    Google Scholar 

  283. T. Mikami. Monge’s problem with a quadratic cost by the zero-noise limit of h-path processes. Probability Theory and Related Fields, 29:245–260, 2004.

    Article  MathSciNet  MATH  Google Scholar 

  284. P. Milgrom and J. Roberts. Rationalizability, learning, and equilibrium in games with strategic complementarities. Econometrica, 58:1255–1277, 1990.

    Article  MathSciNet  MATH  Google Scholar 

  285. M. Nourian, P.E. Caines, and R.P. Malhamé. Mean field analysis of controlled Cucker-Smale type flocking: Linear analysis and perturbation equations. In S. Bittanti, editor, Proceedings of the 18th IFAC World Congress, Milan, August 2011, pages 4471–4476. Curran Associates, Inc., 2011.

    Google Scholar 

  286. S. Morris and H.S. Shin. Unique equilibrium in a model of self-fulfilling currency attacks. American Economic Review, 88:587–597, 1998.

    Google Scholar 

  287. M. Safonov N. Krylov. An estimate for the probability of a diffusion process hitting a set of positive measure. Doklady Akademii nauk SSSR, 245:18–20, 1979.

    MathSciNet  MATH  Google Scholar 

  288. J. Nash. Equilibrium points in n-person games. Proceedings of the National Academy of Sciences of the USA, 36:48–49, 1950.

    Article  MathSciNet  MATH  Google Scholar 

  289. J. Nash. Non-cooperative games. Annals of Mathematics, 54:286–295, 1951.

    Article  MathSciNet  MATH  Google Scholar 

  290. K. Nguyen, T. Alpcan, and T. Basar. Stochastic games for security in networks with interdependent nodes. In Proceedings of the 2009 International Conference on Game Theory for Networks, 13–15 May, 2009, Istanbul pages 697–703, 2009.

    Google Scholar 

  291. S. Nguyen and M. Huang. Linear-quadratic-Gaussian mixed games with continuum-parametrized minor players. SIAM Journal on Control and Optimization, 50:2907–2937, 2012.

    Article  MathSciNet  MATH  Google Scholar 

  292. S. Nguyen and M. Huang. Mean field LQG games with mass behavior responsive to a major player. In Proceedings of the 51st IEEE Conference on Decision and Control, pages 5792–5797, 2012.

    Google Scholar 

  293. M. Nourian and P. Caines. ε-Nash mean field game theory for nonlinear stochastic dynamical systems with major and minor agents. SIAM Journal on Control and Optimization, 51:3302–3331, 2013.

    Google Scholar 

  294. M. Nutz. A mean field game of optimal stopping. Technical report, Columbia University, https://arxiv.org/abs/1605.09112, 2016.

  295. F. Otto. The geometry of dissipative evolution equations: the porous medium equation. Communications in Partial Differential Equations, 26:101–174, 2001.

    Article  MathSciNet  MATH  Google Scholar 

  296. E. Pardoux. Homogenization of linear and semilinear second order parabolic PDEs with periodic coefficients: A probabilistic approach. Journal of Functional Analysis, 167:469–520, 1999.

    Article  MathSciNet  MATH  Google Scholar 

  297. E. Pardoux and S. Peng. Adapted solution of a backward stochastic differential equation. Systems & Control Letters, 14:55–61, 1990.

    Article  MathSciNet  MATH  Google Scholar 

  298. E. Pardoux and S. Peng. Backward SDEs and quasilinear PDEs. In B. L. Rozovskii and R. B. Sowers, editors, Stochastic Partial Differential Equations and Their Applications. Volume 176 of Lecture Notes in Control and Information Sciences. Springer-Verlag Berlin Heidelberg, 1992.

    Google Scholar 

  299. E. Pardoux and A. Rǎşcanu. Stochastic Differential Equations, Backward SDEs, Partial Differential Equations. Stochastic Modelling and Applied Probability. Springer International Publishing, 2014.

    Book  MATH  Google Scholar 

  300. E. Pardoux and S. Tang. Forward-backward stochastic differential equations and quasilinear parabolic PDEs. Probability Theory and Related Fields, 114:123–150, 1999.

    Article  MathSciNet  MATH  Google Scholar 

  301. K.R. Parthasarathy. Probability on Metric Spaces. Chelsea AMS Publishing, 1967.

    Google Scholar 

  302. S. Peng. A general stochastic maximum principle for optimal control problems. SIAM Journal on Control and Optimization, 2:966–979, 1990.

    Article  MathSciNet  MATH  Google Scholar 

  303. S. Peng. Probabilistic interpretation for systems of quasilinear parabolic partial differential equations. Stochastics and Stochastics Reports, 37:61–74, 1991.

    Article  MathSciNet  MATH  Google Scholar 

  304. S. Peng. A generalized dynamic programming principle and Hamilton-Jacobi-Bellman equation. Stochastics and Stochastics Reports, 38:119–134, 1992.

    Article  MathSciNet  MATH  Google Scholar 

  305. S. Peng. Stochastic Hamilton Jacobi Bellman equations. SIAM Journal on Control and Optimization, 30:284–304, 1992.

    Article  MathSciNet  MATH  Google Scholar 

  306. S. Peng and Y. Shi. Infinite horizon forward-backward stochastic differential equations. Stochastic Processes and their Applications, 85:75–92, 2000.

    Article  MathSciNet  MATH  Google Scholar 

  307. S. Peng and Z. Wu. Fully coupled forward-backward stochastic differential equations and applications to optimal control. SIAM Journal on Control and Optimization, 37:825–843, 1999.

    Article  MathSciNet  MATH  Google Scholar 

  308. J.P. Penot. Calculus Without Derivatives. Graduate Texts in Mathematics. Springer-Verlag New York, 2012.

    MATH  Google Scholar 

  309. H. Pham. On some recent aspects of stochastic control and their applications. Probability Surveys, 2:506–549, 2005.

    Article  MathSciNet  MATH  Google Scholar 

  310. H. Pham. Continuous-time Stochastic Control and Optimization with Financial Applications. Stochastic Modelling and Applied Probability. Springer-Verlag Berlin Heidelberg, 2009.

    Book  MATH  Google Scholar 

  311. H. Pham and X. Wei. Bellman equation and viscosity solutions for mean field stochastic control problem. ESAIM: Control, Optimisation and Calculus of Variations, to appear.

    Google Scholar 

  312. H. Pham and X. Wei. Dynamic programming for optimal control of stochastic McKean-Vlasov dynamics. SIAM Journal on Control and Optimization, 55:1069–1101, 2017.

    Article  MathSciNet  MATH  Google Scholar 

  313. E. Pimentel and V. Voskanyan. Regularity theory for second order stationary mean-field games. Indiana University Mathematics Journal, 66:1–22, 2017.

    Article  MathSciNet  MATH  Google Scholar 

  314. F. Priuli. Linear-quadratic N-person and mean-field games: Infinite horizon games with discounted cost and singular limits. Dynamic Games and Applications, 5:397–419, 2015.

    Article  MathSciNet  MATH  Google Scholar 

  315. P. Protter. Stochastic Integration and Differential Equations. A New Approach. Stochastic Modelling and Applied Probability. Springer-Verlag Berlin Heidelberg, 1990.

    Google Scholar 

  316. J. Quastel and S.R.S. Varadhan. Diffusion semigroups and diffusion processes corresponding to degenerate divergence form operators. Communications on Pure and Applied Mathematics, 50:667–706, 1997.

    Article  MathSciNet  MATH  Google Scholar 

  317. S.T. Rachev and L. Ruschendorf. Mass Transportation Problems I: Theory. Probability and Its Applications. Springer-Verlag New York, 1998.

    MATH  Google Scholar 

  318. M. Reed and B. Simon. Methods of Modern Mathematical Physics. I. Functional analysis. Academic Press, Inc. San Diego, 1980.

    Google Scholar 

  319. J.C. Rochet and X. Vives. Coordination failures and the lender of last resort. Journal of the European Economic Associateion, 2:1116–1148, 2004.

    Article  Google Scholar 

  320. R. T. Rockafellar. Convex Analysis. Princeton University Press, 1970.

    Google Scholar 

  321. M. Royer. BSDEs with a random terminal time driven by a monotone generator and their links with PDEs. Stochastics and Stochastic Reports, 76:281–307, 2004.

    Article  MathSciNet  MATH  Google Scholar 

  322. W. Rudin. Real and Complex Analysis. McGraw-Hill, New York, 1966.

    MATH  Google Scholar 

  323. J. Schauder. Der fixpunktsatz in funktionalräumen. Studia Mathematica, 2:171–180, 1930.

    Article  MATH  Google Scholar 

  324. Y. Sun. The exact law of large numbers via Fubini extension and characterization of insurable risks. Journal of Economic Theory, 126:31–69, 2006.

    Article  MathSciNet  MATH  Google Scholar 

  325. A.S. Sznitman. Topics in propagation of chaos. In P-L Hennequin, editor, Ecole de Probabilités de Saint Flour, XIX-1989. Volume 1464 of Lecture Notes in Mathematics, pages 165–251. Springer-Verlag Berlin Heidelberg, 1989.

    Chapter  Google Scholar 

  326. M. Jeanblanc T. Bielecki and M. Rutkowski. Hedging of defaultable claims. In R. Carmona et al., editors, Paris Princeton Lectures on Mathematical Finance2003. Volume 1847 of Lecture Notes in Mathematics, pages 1–132. Springer-Verlag Berlin Heidelberg, 2004.

    Chapter  Google Scholar 

  327. M. Jeanblanc T. Bielecki, S. Crepey and M. Rutkowski. Arbitrage pricing of defaultable game options with applications to convertible bonds. Quantitative Finance, 8:795–810, 2008.

    Article  MathSciNet  MATH  Google Scholar 

  328. X. Tan and N. Touzi. Optimal transportation under controlled stochastic dynamics. Annals of Probability, 41:3201–3240, 2013.

    Article  MathSciNet  MATH  Google Scholar 

  329. H. Tanaka. Stochastic differential equations with reflecting boundary condition in convex regions. Hiroshima Mathematical Journal, 9:163–177, 1979.

    MathSciNet  MATH  Google Scholar 

  330. A. Tarski. A lattice theoretic fixed point theorem. Pacific Journal of Mathematics, 5:285–309, 1955.

    Article  MathSciNet  MATH  Google Scholar 

  331. R. Temam. Navier-Stokes Equations. AMS Chelsea, 1984.

    MATH  Google Scholar 

  332. H. Tembine, Q. Zhu, and T. Basar. Risk-sensitive mean-field stochastic differential games. IEEE Transactions on Automatic Control, 59:835–850, 2014.

    Article  MathSciNet  MATH  Google Scholar 

  333. R. Tevzadze. Solvability of backward stochastic differential equations with quadratic growth. Stochastic Processes and their Applications, 118:503–515, 2008.

    Article  MathSciNet  MATH  Google Scholar 

  334. N. Touzi. Optimal Stochastic Control, Stochastic Target Problems, and Backward SDE. Fields Institute Monographs. Springer-Verlag New York, 2012.

    MATH  Google Scholar 

  335. J. Vaillancourt. On the existence of random McKean-Vlasov limits for triangular arrays of exchangeable diffusions. Stochastic Analysis and Applications, 6(4):431–446, 1988.

    Article  MathSciNet  MATH  Google Scholar 

  336. A. Y. Veretennikov. Strong solutions and explicit formulas for solutions of stochastic integral equations. Matematicheskii Sbornik, 111:434–452, 1980.

    MathSciNet  MATH  Google Scholar 

  337. C. Villani. Topics in Optimal Transportation. Graduate Studies in Mathematics. American Mathematical Society, 2003.

    Book  MATH  Google Scholar 

  338. C. Villani. Optimal Transport, Old and New. Grundlehren der mathematischen Wissenschaften. Springer-Verlag Berlin Heidelberg, 2009.

    Book  MATH  Google Scholar 

  339. X. Vives. Nash equilibrium with strategic complementarities. Journal of Mathematical Economics, 19:305–321, 1990.

    Article  MathSciNet  MATH  Google Scholar 

  340. H. Xing and G. Žitković. A class of globally solvable Markovian quadratic BSDE systems and applications. The Annals of Probability, to appear.

    Google Scholar 

  341. J. Yong. Linear forward backward stochastic differential equations. Applied Mathematics & Optimization, 39:93–119, 1999.

    Article  MathSciNet  MATH  Google Scholar 

  342. J. Yong. Linear forward backward stochastic differential equations with random coefficients. Probability Theory and Related Fields, 135:53–83, 2006.

    Article  MathSciNet  MATH  Google Scholar 

  343. J. Yong and X. Zhou. Stochastic Controls: Hamiltonian Systems and HJB Equations. Stochastic Modelling and Applied Probability. Springer-Verlag New York, 1999.

    Book  MATH  Google Scholar 

  344. L.C. Young. Calculus of variations and control theory. W.B. Saunders, Philadelphia, 1969.

    MATH  Google Scholar 

  345. E. Zeidler. Nonlinear Functional Analysis and its Applications I: Fixed-Point Theorems. Springer-Verlag New York, 1986.

    Book  MATH  Google Scholar 

  346. A. K. Zvonkin. A transformation of the phase space of a diffusion process that will remove the drift. Matematicheskii Sbornik, 93:129–149, 1974.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Carmona, R., Delarue, F. (2018). MFGs with a Common Noise: Strong and Weak Solutions. In: Probabilistic Theory of Mean Field Games with Applications II. Probability Theory and Stochastic Modelling, vol 84. Springer, Cham. https://doi.org/10.1007/978-3-319-56436-4_2

Download citation

Publish with us

Policies and ethics