Skip to main content

A Nonlocal and Delayed Predator–Prey Model

  • Chapter
  • First Online:
Dynamical Systems in Population Biology

Part of the book series: CMS Books in Mathematics ((CMSBM))

  • 2402 Accesses

Abstract

The celebrated Lotka–Volterra model proposed by Lotka [230] in the context of chemical reactions and by Volterra [377] for prey–predator dynamics has been generalized in several directions: to include many species with complicated interactions, to include spatial effects in either a discrete way or a continuous way, and to include delays or internal population structure. Sometimes these generalizations combine diffusion and delays (see, e.g., [408]). While most of the delayed diffusion equations in the literature are local, nonlocal effects very naturally appear in diffusive prey–predator models with delays if one carefully models the delay as condensation of the underlying retarding process and takes into account that individuals move during this process (see [136]). In the predator equation, the delay is often caused by the conversion of consumed prey biomass into predator biomass, whether in the form of body size growth or of reproduction.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. H. Amann, Fixed point equations and nonlinear eigenvalue problems in ordered Banach spaces. SIAM Rev. 18, 620–709 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  2. J. Fang, X.-Q. Zhao, Existence and uniqueness of traveling waves for non-monotone integral equations with applications. J. Differ. Equ. 248, 2199–2226 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  3. H.I. Freedman, X.-Q. Zhao, Global asymptotics in some quasimonotone reaction–diffusion systems with delay. J. Differ. Equ. 137, 340–362 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  4. H.I. Freedman, X.-Q. Zhao, Global attractivity in a nonlocal reaction–diffusion model, in Differential Equations with Applications to Biology. Fields Institute Communications, vol. 21 (American Mathematical Society, Providence, RI, 1999), pp. 175–186

    Google Scholar 

  5. M.G. Garroni, J.L. Menaldi, Green’s Functions for Second Order Parabolic Integro-differential Problems (Longman Scientific and Technical, Harlow, 1992)

    MATH  Google Scholar 

  6. S.A. Gourley, N.F. Britton, A predator–prey reaction–diffusion system with nonlocal effects. J. Math. Biol. 34, 297–333 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  7. S.A. Gourley, Y. Kuang, Wavefronts and global stability in a time-delayed population model with stage structure. R. Soc. Lond. Proc. Ser. A Math. Phys. Eng. Sci. 459, 1563–1579 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  8. W. Gurney, S. Blythe, R. Nisbet, Nicholson’s blowflies revisited. Nature 287, 17–21 (1980)

    Article  Google Scholar 

  9. J.K. Hale, Asymptotic Behavior of Dissipative Systems. Mathematical Surveys and Monographs, vol. 25 (American Mathematical Society, Providence, RI, 1988)

    Google Scholar 

  10. D. Henry, Geometric Theory of Semilinear Parabolic Equations. Lecture Notes in Mathematics, vol. 840 (Springer, Berlin, 1981)

    Google Scholar 

  11. Y. Jin, X.-Q. Zhao, Spatial dynamics of a nonlocal periodic reaction–diffusion model with stage structure. SIAM J. Math. Anal. 40, 2496–2516 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  12. W. Kerscher, R. Nagel, Asymptotic behavior of one-parameter semigroups of positive operators. Acta Appl. Math. 2, 297–309 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  13. A.J. Lotka, Undamped oscillations derived from the law of mass action. J. Am. Chem. Soc. 42, 1595–1598 (1920)

    Article  Google Scholar 

  14. Y. Lou, X.-Q. Zhao, A reaction-diffusion malaria model with incubation period in the vector population. J. Math. Biol. 62, 543–568 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  15. R.H. Martin, H.L. Smith, Abstract functional differential equations and reaction-diffusion systems. Trans. Am. Math. Soc. 321, 1–44 (1990)

    MathSciNet  MATH  Google Scholar 

  16. R.H. Martin, H.L. Smith, Reaction–diffusion systems with time delays: monotonicity, invariance, comparison and convergence. J. Reine Angew. Math. 413, 1–35 (1991)

    MathSciNet  MATH  Google Scholar 

  17. A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations (Springer, New York, 1983)

    Book  MATH  Google Scholar 

  18. S. Ruan, X.-Q. Zhao, Persistence and extinction in two species reaction–diffusion systems with delays. J. Differ. Equ. 156, 71–92 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  19. H.L. Smith, Monotone Dynamical Systems, An Introduction to the Theory of Competitive and Cooperative Systems. Mathematical Surveys and Monographs, vol. 41 (American Mathematical Society, Providence, RI, 1995)

    Google Scholar 

  20. H.L. Smith, H.R. Thieme, Strongly order preserving semiflows generated by functional differential equations. J. Differ. Equ. 93, 332–363 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  21. J. So, J. Wu, X. Zou, A reaction diffusion model for a single species with age structure, I. Travelling wave fronts on unbounded domains. Proc. R. Soc. Lond. Ser. A 457, 1841–1853 (2001)

    Article  MATH  Google Scholar 

  22. H.R. Thieme, Convergence results and Poincaré–Bendixson trichotomy for asymptotically autonomous differential equations. J. Math. Biol. 30, 755–763 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  23. H.R. Thieme, Persistence under relaxed point-dissipativity (with application to an epidemic model). SIAM J. Math. Anal. 24, 407–435 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  24. H.R. Thieme, X.-Q. Zhao, A non-local delayed and diffusive predator–prey model. Nonlinear Anal. RWA 2, 145–160 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  25. H.R. Thieme, X.-Q. Zhao, Asymptotic speeds of spread and traveling waves for integral equations and delayed reaction–diffusion models. J. Differ. Equ. 195, 430–470 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  26. V. Volterra, Lecons sur la théorie mathématique de la lutte pour la vie (Gauthiers-Villars, Paris, 1931)

    MATH  Google Scholar 

  27. W. Wang, X.-Q. Zhao, Spatial invasion threshold of Lyme disease. SIAM J. Appl. Math. 75, 1142–1170 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  28. J. Wu, Theory and Applications of Partial Functional Differential Equations. Applied Mathematical Sciences, vol. 119 (Springer, New York, 1996)

    Google Scholar 

  29. J. Wu, X.-Q. Zhao, Diffusive monotonicity and threshold dynamics of delayed reaction diffusion equations. J. Differ. Equ. 186, 470–484 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  30. Z. Xu, X.-Q. Zhao, A vector-bias malaria model with incubation period and diffusion. Discrete Contin. Dyn. Syst. Ser. B 17, 2615–2634 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  31. X.-Q. Zhao, Global attractivity and stability in some monotone discrete dynamical systems. Bull. Aust. Math. Soc. 53, 305–324 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  32. X.-Q. Zhao, Global attractivity in a class of nonmonotone reaction-diffusion equations with time delay. Can. Appl. Math. Q. 17, 271–281 (2009)

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Zhao, XQ. (2017). A Nonlocal and Delayed Predator–Prey Model. In: Dynamical Systems in Population Biology. CMS Books in Mathematics. Springer, Cham. https://doi.org/10.1007/978-3-319-56433-3_9

Download citation

Publish with us

Policies and ethics