Skip to main content

A Periodic Reaction–Diffusion SIS Model

  • Chapter
  • First Online:
Dynamical Systems in Population Biology

Part of the book series: CMS Books in Mathematics ((CMSBM))

  • 2379 Accesses

Abstract

It has been commonly accepted that spatial diffusion and environmental heterogeneity are important factors that should be considered in the spread of infectious diseases. In order to understand the impact of spatial heterogeneity of the environment and movement of individuals on the persistence and extinction of a disease, Allen et al. [9] proposed a frequency-dependent SIS (susceptible-infected-susceptible) reaction–diffusion model for a population in a continuous spatial habitat. They assumed that both rates of the transmission and recovery of the disease depend on spatial variables. Another feature of this SIS model is that the total population number is constant. The habitat is characterized as low-risk (or high-risk) if the spatial average of the transmission rate of the disease is less than (or greater than) the spatial average of its recovery rate. The individual site is also characterized as low-risk (or high-risk) if the local transmission rate of the disease is less than (or greater than) its local recovery rate, which corresponds to the case where the local reproduction number is less than (or greater than) one.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. N.D. Alikakos, An application of the invariance principle to reaction–diffusion equations. J. Differ. Equ. 33, 201–225 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  2. L.J.S. Allen, B.M. Bolker, Y. Lou, A.L. Nevai, Asymptotic profiles of the steady states for an SIS epidemic reaction-diffusion model. Discrete Cont. Dyn. Syst. 21, 1–20 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  3. K.J. Brown, P.C. Dunne, R.A. Gardner, A semilinear parabolic system arising in the theory of superconductivity. J. Differ. Equ. 40, 232–252 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  4. R. Cui, Y. Lou, A spatial SIS model in advective heterogeneous environments. J. Differ. Equ. 261, 3305–3343 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  5. L.C. Evans, Partial Differential Equations. Graduate Studies in Mathematics, vol. 19 (American Mathematical Society, Providence, RI, 1998)

    Google Scholar 

  6. A. Friedman, Partial Differential Equations of Parabolic Type (Printice-Hall, Englewood Cliffs, N.J., 1964)

    MATH  Google Scholar 

  7. D. Henry, Geometric Theory of Semilinear Parabolic Equations. Lecture Notes in Mathematics, vol. 840 (Springer, Berlin, 1981)

    Google Scholar 

  8. P. Hess, Periodic-Parabolic Boundary Value Problems and Positivity. Pitman Research Notes in Mathematics Series, vol. 247 (Longman Scientific and Technical, Harlow, 1991)

    Google Scholar 

  9. W. Huang, M. Han, K. Liu, Dynamics of an SIS reaction-diffusion epidemic model for disease transmission. Math. Biosci. Eng. 7, 51–66 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  10. V. Hutson, K. Mischaikow, P. Polác̆ik, The evolution of dispersal rates in a heterogeneous time-periodic environment. J. Math. Biol. 43, 501–533 (2001)

    Google Scholar 

  11. T. Kato, Perturbation Theory for Linear Operators (Springer, Berlin/Heidelberg, 1976)

    Book  MATH  Google Scholar 

  12. O.A. Ladyzenskaya, V.A. Solonnikov, N.N. Ural’ceva, Linear and Quasilinear Equations of Parabolic Type (American Mathematical Society, Providence, RI, 1967)

    Google Scholar 

  13. D. Le, Dissipativity and global attractors for a class of quasilinear parabolic systems. Commun. Partial Differ. Equ. 22, 413–433 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  14. H. Li, R. Peng, F.-B. Wang, Varying total population enhances disease persistence: qualitative analysis on a diffusive SIS epidemic model. J. Differ. Equ. 262, 885–913 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  15. G.M. Lieberman, Second Order Parabolic Differential Equations (World Scientific Publishing Co., Inc., River Edge, NJ, 1996)

    Book  MATH  Google Scholar 

  16. G. Nadin, The principal eigenvalue of a space-time periodic parabolic operator. Ann. Mat. Pura Appl. 188, 269–295 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  17. W.-M. Ni, The Mathematics of Diffusion (Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 2011)

    Google Scholar 

  18. P.Y.H. Pang, M. Wang, Strategy and stationary pattern in a three-species predator-prey model. J. Differ. Equ. 200, 245–273 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  19. R. Peng, Asymptotic profiles of the positive steady state for an SIS epidemic reaction-diffusion model. Part I. J. Differ. Equ. 247, 1096–1119 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  20. R. Peng, S. Liu, Global stability of the steady states of an SIS epidemic reaction-diffusion model. Nonlinear Anal. TMA 71, 239–247 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  21. R. Peng, F. Yi, Asymptotic profile of the positive steady state for an SIS epidemic reaction-diffusion model: effects of epidemic risk and population movement. Phys. D 259, 8–25 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  22. R. Peng, X.-Q. Zhao, A reaction-diffusion SIS epidemic model in a time-periodic environment. Nonlinearity 25, 1451–1471 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  23. M.H. Protter, H.F. Weinberger, Maximum Principles in Differential Equations (Springer, New York, 1984)

    Book  MATH  Google Scholar 

  24. H.R. Thieme, Spectral bound and reproduction number for infinite-dimensional population structure and time heterogeneity. SIAM J. Appl. Math. 70, 188–211 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  25. W. Wang, X.-Q. Zhao, Threshold dynamics for compartmental epidemic models in periodic environments. J. Dyn. Differ. Equ. 20, 699–717 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  26. W. Wang, X.-Q. Zhao, A nonlocal and time-delayed reaction-diffusion model of Dengue transmission. SIAM J. Appl. Math. 71, 147–168 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  27. Z.-C. Wang, L. Zhang, X.-Q. Zhao, Time periodic traveling waves for a periodic and diffusive SIR epidemic model. J. Dyn. Differ. Equ. (2016). doi:10.1007/s10884-016-9546-2

    Google Scholar 

  28. Y. Wu, X. Zou, Asymptotic profiles of steady states for a diffusive SIS epidemic model with mass action infection mechanism. J. Differ. Equ. 261, 4424–4447 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  29. X.-Q. Zhao, Uniform persistence and periodic coexistence states in infinite-dimensional periodic semiflows with applications. Can. Appl. Math. Q. 3, 473–495 (1995)

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Zhao, XQ. (2017). A Periodic Reaction–Diffusion SIS Model. In: Dynamical Systems in Population Biology. CMS Books in Mathematics. Springer, Cham. https://doi.org/10.1007/978-3-319-56433-3_13

Download citation

Publish with us

Policies and ethics