Skip to main content

On the Advanced Milling Technology of Thin-Walled Parts for Aerospace Industry

  • Conference paper
  • First Online:
Book cover Proceedings of 5th International Conference on Advanced Manufacturing Engineering and Technologies (NEWTECH 2017)

Abstract

This paper is focused on advanced analysis of a progressive milling technology of high strength alumina alloy 7475-T7351 that is used in modern aerospace industry today. The analyses comprises a study of the material, its mechanical properties, use of alternative monolithic-carbide tool designs, micro-geometries of the milling cutters, coatings and a study of cutting parameters on dynamics of cutting , its productivity, quality of the surfaces and other specific cutting phenomena. This work includes an experimental verification of the proposed technology using 5-axis CNC machining centre, evaluation of 2D/3D surface structures using optical high-resolution 3D surface device. Dynamometer Kistler 9575B/SW DynoWare were used for measuring of instantaneous force loading in long time series. The results are relevant for milling of thin-walled parts and the up and down milling strategies without any other surface treatment of the parts. Some fatigue studies are in progress.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Raymer D (2012) Aircraft design: a conceptual approach (Aiaa education series), 5th edn. American Institute of Aeronautics and Astronautics, Reston

    Google Scholar 

  2. Starke EA, Staley JT (1996) Application of modern aluminum alloys to aircraft. Prog Aerospace Sci 32(2–3): 131–172. ISSN 03760421

    Google Scholar 

  3. Shanmugam NE, Liew RJY, Thevendran AV (1998) Thin-walled structures: research and development. In: Second international conference on thin-walled structures. Elsevier, New York

    Google Scholar 

  4. Ratchev S, Liu S Becker AA (2005) Error compensation strategy in milling flexible thin-wall parts. J Mater Process Technol 162–163: 673–681. ISSN 09240136

    Google Scholar 

  5. Aijun T, Zhanqiang L (2008) Deformations of thin-walled plate due to static end milling force. J Mater Process Technol 206(1–3): 345–351. ISSN 09240136

    Google Scholar 

  6. Ratchev S, Liu S, Huang W, Becker AA (2004) Milling error prediction and compensation in machining of low-rigidity parts. Int J Mach Tools and Manuf 44(15): 1629–1641. ISSN 08906955

    Google Scholar 

  7. Shahzad M (2011) Majid. Influence de la rugosité et des traitements d’anodisation sur la tenue en fatigue des alliages d’aluminium aéronautiques 2214 et 7050. TOULOUSE, Thesis. L’UNIVERSITÉ DE TOULOUSE. Supervisor M. Farhad Rézaï-Aria

    Google Scholar 

  8. Alloy 7475 Plate and Sheet. Iowa: ALCOA. (vid. 2016-08-20). Available from: https://www.arconic.com/mill_products/catalog/pdf/alloy7475techplatesheet.pdf

  9. Alloy designations. Alumeco (online). Odense, 2016. (vid. 2017-02-09). Available from: http://www.alumeco.com/Knowledge-and-Technique/Aluminium-data/Temper-descriptions.aspx

  10. Al-Rubaie K, Barroso EKL, Godefroid LB (2006) Fatigue crack growth analysis of pre-strained 7475–T7351 aluminum alloy. Int J Fatigue. 28: 934–94

    Google Scholar 

  11. Static and dynamic fracture properties for aluminum 7475 T7351: Final report. University of Dayton. Research Institute. Ohio, 1975. (vid. 2017-02-09). Available from: http://www.dtic.mil/dtic/tr/fulltext/u2/a014353.pdf

  12. Forejt, M, Píška M (2006) Teorie obrábění, tváření a nástroje (Theory of metal cutting and forming). Brno. Akademické nakladatelství CERM s.r.o.

    Google Scholar 

  13. Tlusty J (1999) Manufacturing Process and Equipment. 1st ed. Prentice Hall, p 928. ISBN 10-0201498650

    Google Scholar 

  14. Grzesik W (2011) Wit. Podstawy skrawania materiałów konstrukcyjnych. Wydawnictwa Naukowo Techniczne. Opole

    Google Scholar 

  15. Davim JP (2010) Surface integrity in machining. Springer, London

    Google Scholar 

  16. Degarmo, PE, Black JT, Kohser RA 2003 Materials and processes in manufacturing. 9th edn. update ed. Wiley. Hoboken. (vid. 2017-02-09). Available from: http://dcetind.weebly.com/uploads/9/1/6/3/9163431/solutions_manual_-_materials___processing_in_manufacturing__demargo_.pdf

  17. Jiang XJ, Whitehouse DJ (2012) Technological shifts in surface metrology. CIRP Annals—Manuf Technol 61(2): 815-836. ISSN 00078506

    Google Scholar 

  18. EN ISO 4287 (1997) Surface texture: profile method—terms, definitions and surface texture parameters

    Google Scholar 

  19. Ojolo SJ (2014) Machining variables influence on the fatigue life of end-milled aluminium alloy. Int J Mater Sci Appl 3(6): 391–398. ISSN 2327-2635

    Google Scholar 

  20. Novovic D, Dewes RC, Aspinwall DK, Voice W, Bowen AP (2004) The effect of machined topography and integrity on fatigue life. Int J Mach Tools Manuf 44(2–3): 125–134. ISSN 08906955

    Google Scholar 

  21. Siebel E, Gaier AM (1957) Influence of surface roughness on the fatigue strength of steels and non-ferrous alloys. Metal Fatigue: Eff Small Defects Nonmetallic Inclusions Eng Digest 18(3): 109–112

    Google Scholar 

  22. Gómez A, Sanz A, Marcos M (2012) An analysis of the influence of cutting parameters on the turning process on the fatigue life of aluminum alloy UNS A92024-T351. Adv Mater Res 498:19–24

    Article  Google Scholar 

  23. EN ISO 4287 (1997) Surface texture: profile method—terms, definitions and surface texture parameters

    Google Scholar 

  24. Abbott EJ, Firestone FA (1933) Specifying surface quality. Mech Eng 55:569–572

    Google Scholar 

  25. Rîpă M, Tomescu L, Hapenciuc M (2003) Tribological characterisation of surface topography using Abbott-Firestone curve. University “Dunărea de Jos” of Galati, România. ISSN ISSN 1221-4590

    Google Scholar 

  26. Taylor H (2002) Form Talysurf Intra: operator’s handbook

    Google Scholar 

  27. Zhang T, Bartolo MP, Vasco J, Silva B, Galo C (2006) Laser micromachining for mould manufacturing: I the Influence of operating parameters. Assembly Auto 26(3): 227–234. ISSN 0144-5154

    Google Scholar 

  28. Sasahara H (2005) The effect on fatigue life of residual stress and surface hardness resulting from different cutting conditions of 0.45% C steel. Int J Mach Tools Manuf 45(2): 131–136. ISSN 08906955

    Google Scholar 

  29. Souto-Lebel A, Guillemot N, Lartigue C, Billardon AR (2011) Characterization and influence of defect size distribution induced by ball-end finishing milling on fatigue life. Procedia Eng 19: 343–348. ISSN 18777058

    Google Scholar 

Download references

Acknowledgements

This research work was supported by the Brno University of Technology, Faculty of Mechanical Engineering, Specific research 2016, with the grant “Research of modern production technologies for specific applications”, FSI-S-16-3717.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Miroslav Piska .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Piska, M., Ohnistova, P. (2017). On the Advanced Milling Technology of Thin-Walled Parts for Aerospace Industry. In: Majstorovic, V., Jakovljevic, Z. (eds) Proceedings of 5th International Conference on Advanced Manufacturing Engineering and Technologies. NEWTECH 2017. Lecture Notes in Mechanical Engineering. Springer, Cham. https://doi.org/10.1007/978-3-319-56430-2_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-56430-2_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-56429-6

  • Online ISBN: 978-3-319-56430-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics