Study on the Machinability Characteristics of Inconel 718 Super Alloy During Micro-Milling

  • Branislav SredanovicEmail author
  • Globocki Lakic
  • Davorin Kramar
  • Janez Kopac
Conference paper
Part of the Lecture Notes in Mechanical Engineering book series (LNME)


The increase of demands for products miniaturization has led to a need to research and explore the possibilities of micro-machining of special alloys. This paper presents the experimental study on the micro-milling of Inconel 718 super alloy. It is austenitic nickel-chromium based material which is oxidation resistant. Inconel 718 super alloy is used in the aerospace, automotive and energetic device industry. It applies for extreme environments subjected to high pressure and high temperatures. In this study, mentioned super alloy is machined with long neck micro-end-mill with diameter 0.6 mm, which is intended for side and channel milling of high aspect ratio features. The effects of cutting parameters on output machinability parameters were monitored. During experimental research, there are made conclusions about surface roughness, build-up on edges, cutting forces and etc. For purposes of practical application, general indicative data, area of cutting parameter values, and guidelines for micro-machining of Inconel 718 are given.


Micro-milling Inconel 718 Super-alloy Analyzing 


  1. 1.
    Dornfeld D, Min S, Takeuchi Y (2006) Recent advanced in mechanical micromachining. Ann CIRP 55(2):745–768CrossRefGoogle Scholar
  2. 2.
    Camara MA, Rubio JCC, Abrao AM, Davim JP (2012) State of the art on micromilling of materials, a review. J Mater Sci Technol 28(8):673–685CrossRefGoogle Scholar
  3. 3.
    Bissacco G, Hansen HN, De Chiffre L (2006) Size effects on surface generation in micro milling of hardened tool steel. Ann CIRP 55(1):593–596CrossRefGoogle Scholar
  4. 4.
    Aramcharoen A, Mativenga PT (2009) Size effect and tool geometry in micromilling of tool steel. Precis Eng 33:402–407CrossRefGoogle Scholar
  5. 5.
    Dudzinski D, Devillez A, Moufki A, Larrouquere D, Zerrouki V, Vigneau J (2004) A review of developments towards dry and high speed machining of Inconel 718 alloy. Int J Mach Tool Manuf 44:439–456CrossRefGoogle Scholar
  6. 6.
    Ucun I, Aslantas K, Gockce B, Bedir F (2014) Effect of tool coating materials on surface roughness in micromachining of Inconel 718 super alloy. Proc Inst Mech Eng B-J Eng 288(12):1550–1562CrossRefGoogle Scholar
  7. 7.
    Ucun I, Aslantas K, Bedir F (2015) The performance Of DLC-coated and uncoated ultra-fine carbide tools in micromilling of Inconel 718. Precis Eng 41:135–144CrossRefGoogle Scholar
  8. 8.
    Ucun I, Aslantas K, Gockce B, Bedir F (2014) The effect of minimum quantity lubrication and cryogenic pre-cooling on cutting performance in the micro milling of Inconel 718. Proc Inst Mech Eng B-J Eng 229(12):2134–2143CrossRefGoogle Scholar
  9. 9.
    Pusavec F, Hamdi H, Kopac J, Jawahir IS (2011) Surface integrity in cryogenic machining of nickel based alloy-Inconel 718. J Mater Process Technol 211(4):773–783CrossRefGoogle Scholar
  10. 10.
    Wang ZY, Rajurkar KP, Fan J, Lei S, Shin YC, Petrescu G (2003) Hybrid machining of Inconel 718. Int J Mach Tool Manuf 43(13):1391–1396CrossRefGoogle Scholar
  11. 11.
    Rahim EA, Warap NM, Mohid Z, Ibrahim R, Rafai N (2015) Numerical analysis of laser preheating for laser assisted micro milling. Appl Mech Mater 773–774:332–336CrossRefGoogle Scholar
  12. 12.
    Kuram E, Ozcelik B (2017) Optimization of machining parameters during micro-milling of Ti6Al4V titanium alloy and Inconel 718 materials using Taguchi method. Proc Inst Mech Eng Part B: J Eng Manuf 231(2):228–242CrossRefGoogle Scholar
  13. 13.
    Lu X, Lu Y, Wang F, Zhao C (2016) Research on surface residual stress of micro-milling nickel-based superalloy Inconel 718. Int J Nanomanuf 12(1):82–92CrossRefGoogle Scholar
  14. 14.
    Lu X, Jia Z, Wang H, Si L, Wang X (2016) Surface roughness prediction model of micro-milling Inconel 718 with consideration of tool wear. Int J Nanomanuf 12(1):93–108CrossRefGoogle Scholar
  15. 15.
    Lu X, Jia Z, Wang X, Li G, Ren Z (2015) Three dimensional dynamic cutting forces prediction model during micro-milling nickel based super alloy. Int J Adv Manuf Technol 81:2067–2086CrossRefGoogle Scholar
  16. 16.
    Thepsonthi T, Ozel T (2013) Experimental and finite element simulation based investigations on micro-milling Ti-6Al-4V titanium alloy: effects of cBN coating on tool wear. J Mater Process Technol 213:532–542CrossRefGoogle Scholar
  17. 17.
    Jaffery SHI, Khan M, Ali L, Mativenga PT (2016) Statistical analysis of process parameters in micromachining of Ti-6Al-4V alloy. Proc Inst Mech Eng Part B: J Eng Manuf 230(6):1017–1034CrossRefGoogle Scholar
  18. 18.
    Biermann D, Kahleyss F, Krebs E, Upmeier T (2010) A study on micro-machining technology for the machining of NiTi: five-axis micro-milling and micro deep-hole drilling. J Mater Eng Perform 20(4–5):745–751Google Scholar
  19. 19.
    Vazquez E, Gomar J, Ciurana J, Rodríguez CA (2015) Analyzing effects of cooling and lubrication conditions in micromilling of Ti6Al4V. J Clean Prod 87:906–913CrossRefGoogle Scholar
  20. 20.
    Prakash JRS, Rahman M, Kumar AS, Lim SC (2001) Effect of minimal quantities of lubricant in micro-milling. 10th international conference on precision engineering (ICPE) Yokohama, Japan. pp 309–313Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Branislav Sredanovic
    • 1
    Email author
  • Globocki Lakic
    • 1
  • Davorin Kramar
    • 2
  • Janez Kopac
    • 2
  1. 1.Faculty of Mechanical EngineeringUniversity of Banja LukaBanja LukaBosnia and Herzegovina
  2. 2.Faculty of Mechanical EngineeringUniversity of LjubljanaLjubljanaSlovenia

Personalised recommendations