Intelligent Wear Identification Based on Sensory Inline Information for a Stamping Process

  • Johannes HohmannEmail author
  • Tillmann Schatz
  • Peter Groche
Conference paper
Part of the Lecture Notes in Mechanical Engineering book series (LNME)


In recent years, the use of integrated sensors in stamping tools has strongly increased. Due to this, the opportunity rises to expand monitoring systems from providing simple differentiations between sufficient and insufficient process conditions or the detection of tool failure towards a detailed process understanding based on characteristic parameters describing the current process condition. Therefore, it is necessary to correlate sensor signals with tool and process parameters. However, most of these correlations are not investigated for stamping processes. Due to this, an investigation of correlations is essential to increase the benefits of current process monitoring systems. The aim of this paper is to establish further gradations for the current process condition to increase process stability. Furthermore, process disturbances or tool failures can be detected and upcoming tool changes will be predictable. A first approach is to evaluate correlations between sensor information, like force measurements, and wear mechanisms. This paper presents an approach for the determination of characteristic wear parameters by using the information provided by integrated force sensors. Furthermore, the parameters are established and correlated with wear phenomena on the tool. For the correlation analysis of the measurement and the current state of wear, the active elements of the tool are removed and the surface is measured by a scanning electron microscope (SEM) and a confocal white light microscope to investigate the 3D-surface properties. The experimental investigations are executed with a single pilot shear cutting tool on a high speed stamping press.


Wear Wear parameter Inline measurement Stamping process 



The results presented in this paper are based on the joint research project “RobIN 4.0”. The authors are grateful for the support of the German Federal Ministry of Education and Research (BMBF) within the framework concept “Research for Tomorrow’s Production” (funding number 02PJ2700) and managed by the Project Management Agency Karlsruhe (PTKA).


  1. 1.
    Klocke F (2001) Prozessüberwachung, Editorial, wt Werkstattstechnik 91, Vol 5, 255–258Google Scholar
  2. 2.
    Bassiuny AM, Li X, Du R (2007) Fault diagnosis of stamping process based on empirical mode decomposition and learning vector quantization. J Machine Tools Manuf 47:2298–2306CrossRefGoogle Scholar
  3. 3.
    Zhang GC, Ge M, Tong H, Xu Y, Du R (2002) Bispectral analysis for on-line monitoring of stamping operation. Eng Appl Artif Intell 15:97–104CrossRefGoogle Scholar
  4. 4.
    Strache W (2000) Multisensorielle Überwachung des Stanzprozesses. Dissertation, Leibniz Universität HannoverGoogle Scholar
  5. 5.
    Farzin M, Javani HR, Mashayekhi M, Hambli R (2006) Analysis of blanking process using various damage criteria. J Mater Process Technol 177(1-3):287–290CrossRefGoogle Scholar
  6. 6.
    Groche P, Möller N, Hoffmann H, Suh J (2011) Influence of gliding speed and contact pressure on the wear of forming tools. Wear 271:2570–2578CrossRefGoogle Scholar
  7. 7.
    Falconnet E, Chambert J, Makich H, Monteil G (2015) Prediction of abrasive punch wear in copper alloy thin sheet blanking. Wear 338–339:144–154CrossRefGoogle Scholar
  8. 8.
    Seunghyeon C, Naksoo K (2016) Prediction of tool wear in the blanking process using updated geometry. Wear 352–353:160–170Google Scholar
  9. 9.
    Brecher C, Emonts M, Eckert M, Weinbach M (2014) Double sided irradiation for laser-assisted shearing of ultra high strength steels with process integrated hardening. Phys Procedia 56:1427–1435CrossRefGoogle Scholar
  10. 10.
    Ghiotti A, Bruschi S, Regazzo P (2014) Shear surface control in blanking by adaptronic systems. In: 11th international conference on technology of plasticity, Procedia Engineering, vol 81, pp 2512–2517Google Scholar
  11. 11.
    Tan Y, Hahn O, Du F (2005) Process monitoring method with window technique for clinch joining. ISIJ Int 45:723–729CrossRefGoogle Scholar
  12. 12.
    Khrebtov P (2011) Neuartiges Verfahren zur Online-Prozessüberwachung und —Fehlerklassifizierung beim Durchsetzfügeverbinden von Blechen. Dissertation, Technische Universität ClausthalGoogle Scholar
  13. 13.
    Roskam R (1999) In-Prozess-Überwachung von Pressen der Blechverarbeitung. Dissertation, Technische Universität HannoverGoogle Scholar
  14. 14.
    Lange K (1990) Umformtechnik, Handbuch für Industrie und Wissenschaft, Band 3: Blechbearbeitung. 2. Auflage, Springer, BerlinGoogle Scholar
  15. 15.
    Loibl D (2003) Standzeit und Teilequalität beim Lochen von Feinblechen mit keramischen Schneidstempeln, Dissertation, Technische Universität MünchenGoogle Scholar
  16. 16.
    Seidenberg H (1965) Presseneinwirkung auf Werkzeugverschleiß und Grathöhe beim Schneiden von Feinblech im geschlossenen Schnitt. Dissertation, Technische Universität HannoverGoogle Scholar
  17. 17.
    Fugger B (1984) Untersuchung der Verschleißvorgänge beim Scherschneiden von Feinblech. Dissertation, Universität HannoverGoogle Scholar
  18. 18.
    Borchert P (1976) Einflüsse der Werkzeuggeometrie und der Maschine beim Schneiden von kaltgewalztem Elektroblech. Dissertation, Technische Universität HannoverGoogle Scholar
  19. 19.
    Übelacker D, Hohmann J, Groche P (2014) Force requirements in shear cutting of metal-polymer-metal composites. J Adv Mater Res 1018:137–144CrossRefGoogle Scholar
  20. 20.
    Liutkus A (2015) Scale-space peak picking. research report inria nancy-grand, France. ( 300 spm, after 10,000 strokes

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Johannes Hohmann
    • 1
    Email author
  • Tillmann Schatz
    • 1
  • Peter Groche
    • 1
  1. 1.Institute for Production Engineering and Forming MachinesTechnische Universität DarmstadtDarmstadtGermany

Personalised recommendations