Skip to main content

Localization of Orbitals and Electronic Properties in Nanodiamonds with Color Centers: Semiempirical Models

  • Conference paper
  • First Online:
Nanophysics, Nanomaterials, Interface Studies, and Applications (NANO 2016)

Part of the book series: Springer Proceedings in Physics ((SPPHY,volume 195))

Included in the following conference series:

Abstract

A minireview is presented concerning the old and new tools for interpretation of orbitals and excited states of nanodiamonds with defects. We describe the new orbital localization measures which help us to detect the most localized states within huge arrays of one-electron molecular orbitals in large-scale networks. Additionally, the specific localization measures are defined in the same manner as in our previous works dedicated to the analysis of many-electron states. These are the excitation indices and charge transfer numbers which provide a detailed visual analysis of the electronic excitations. In the present chapter, this machinery is successively applied to the lowest triplet-triplet transitions in nanodiamonds with nitrogen-vacancy color centers. We applied our methods to clusters of different sizes and found that almost limiting values of most electronic properties (e.g., transition energies) are achieved for the nanodiamonds with about 300 carbon atoms. Some specificities of the lowest transitions are considered as well. For instance, depending on the spin of the excited state of the system, dangling atoms at the vacancy vicinity exhibit either a ferromagnetic or an antiferromagnetic coupling type.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 309.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Holt KB (2007) Diamond at the nanoscale: applications of diamond nanoparticles from cellular biomarkers to quantum computing. Phil Trans R Soc A 365:2845

    Article  ADS  Google Scholar 

  2. Schrand AM, Cifta N, Hens SA, Shenderova OA (2009) Nanodiamond particles: properties and perspectives for bioapplications. Crit Rev Solid State Mater Sci 34:18; Shenderova OA, McGuire GE (2015) Science and engineering of nanodiamond particle surfaces for biological applications. Biointerphases 10:030802

    Google Scholar 

  3. Schirhagl R, Chang K, Loretz M, Degen CL (2014) Annu Rev Phys Chem 65:83

    Article  ADS  Google Scholar 

  4. Nebel C, Nesladek M (eds) (2008) Physics and applications of CVD diamond. Wiley-VCH, Weinheim

    Google Scholar 

  5. Mildren CRP, Rabeau JR (eds) (2013) Optical engineering of diamond. Wiley-VCH, Berlin

    Google Scholar 

  6. Childress L, Walsworth R, Lukin M (2014) Atom-like crystal defects: from quantum computers to biological sensors. Phys Today 67:38

    Article  Google Scholar 

  7. Prawer S, Aharonovich I (eds) (2014) Quantum information processing with Diamond. Elsevier LTD, Oxford

    Google Scholar 

  8. Wrachtrup J, Kilin SY, Nizovtsev AP (2001) Quantum computation using the 13C nuclear spins near the single NV defect center in diamond. Opt Spectrosc 91:429

    Article  ADS  Google Scholar 

  9. Awschalom DD, Epstein R, Hanson R (2007) The Diamond Age of Spintronics. Sci Am 297:84

    Article  Google Scholar 

  10. Jelezko F, Wrachtrup J (2006) Single defect centres in diamond: A review. Phys Stat Sol (A) 203:3207

    Article  ADS  Google Scholar 

  11. Doherty MW, Manson NB, Delaney P, Jelezko F, Wrachtrup J, Hollenberg CL (2013) The nitrogen-vacancy colour centre in diamond. Phys Reports 528:1

    Article  ADS  Google Scholar 

  12. Pushkarchuk VA, Kilin SY, Nizovtsev AP, Pushkarchuk AL, Borisenko VE, von Borczyskowski C, Filonov AB (2005) Ab initio modeling of the electronic and spin properties of the [NV]− centers in diamond nanocrystals. Opt Spectrosc 99:245

    Article  ADS  Google Scholar 

  13. Pushkarchuk VA, SYa K, Nizovtsev AP, Pushkarchuk AL, Filonov AB, Borisenko VE (2007) Modeling the atomic and electronic structure of diamond nanocrystals containing [NV]− centers by the density functional method. J Appl Spectrosc 74:95

    Article  ADS  Google Scholar 

  14. Zyubin AS, Mebel AM, Hayash M (2009) Quantum chemical modeling of photoadsorption properties of the nitrogen‐vacancy point defect in diamond. J Comput Chem 30:119

    Article  Google Scholar 

  15. Gali A, Janzén E, Deák P, Kresse G, Kaxiras E (2009) Theory of Spin-Conserving Excitation of the N−V− Center in Diamond. Phys Rev Lett 103:186404

    Article  ADS  Google Scholar 

  16. Kratochvílová I, Kovalenko A, Taylor A, Fendrych F, Řezáčová V, Vlček J, Záliš S, Šebera J, Cígler P, Ledvina M, Nesládek M (2010) The fluorescence of variously terminated nanodiamond particles: Quantum chemical calculations. Phys Status Sol (A) 207:2045

    Article  ADS  Google Scholar 

  17. Delaney P, Greer JC, Larsson JA (2010) Spin-polarization mechanisms of the nitrogen-vacancy center in diamond. Nano Lett 10:610

    Article  ADS  Google Scholar 

  18. Ranjbar A, Babamoradi M, Saani MH, Vesaghi MA, Esfarjani K, Kawazoe Y (2011) Many-electron states of nitrogen-vacancy centers in diamond and spin density calculations. Phys Rev B 84:245315

    Article  Google Scholar 

  19. Nizovtsev AP, Kilin SYA, Pushkarchuk AL, Pushkarchuk VA, Jelezko F (2014) Theoretical study of hyperfine interactions and optically detected magnetic resonance spectra by simulation of the C291[NV]-H172 diamond cluster hosting nitrogen-vacancy center. New J Phys 16:083014

    Article  Google Scholar 

  20. Fuchs GD, Dobrovitski VV, Hanson R, Batra A, Weis CD, Schenkel T, Awschalom D (2008) Excited-State Spectroscopy Using Single Spin Manipulation in Diamond. Phys Rev Lett 101:117601

    Article  ADS  Google Scholar 

  21. Rogers LJ, Doherty MW, Barson MSJ, Onoda S, Ohshima T, Manson NB (2014) Singlet levels of the NV− centre in diamond. New J Phys 17:013048

    Article  Google Scholar 

  22. Neumann P, Kolesov R, JacquesV BJ, Tisler J, Batalov A, Rogers L, Manson NB, Balasubramanian G, Jelezko F, Wrachtrup J (2009) Excited-state spectroscopy of single NV defects in diamond using optically detected magnetic resonance. New J Phys 11:013017

    Article  Google Scholar 

  23. Luzanov AV, Sukhorukov AA, Umanski VE (1974) Application of transition density matrix for analysis of excited states. Theor Experim Chem 10:354

    Article  Google Scholar 

  24. Luzanov AV (1980) The Structure of the Electronic Excitation of Molecules in Quantum- chemical Models. Russ Chem Rev 49:1033

    Article  ADS  Google Scholar 

  25. Luzanov AV, Prezhdo OV (2005) Irreducible charge density matrices for analysis of many‐electron wave functions. Int J Quant Chem 102:582

    Article  ADS  Google Scholar 

  26. Luzanov AV, Zhikol OA (2010) Electron invariants and excited state structural analysis for electronic transitions within CIS, RPA, and TDDFT models. Int J Quant Chem 110:902

    ADS  Google Scholar 

  27. Luzanov AV, Zhikol OA (2012) In: Leszczynski J, Shukla MK (eds) Practical aspects of computational chemistry I: an overview of the last two decades and current trends. Springer, New York, p 415

    Google Scholar 

  28. Luzanov AV (2015) Simplified computations of spin excitations in high-spin carbon nanoclusters and related systems. Funct Mater 22:514

    Article  Google Scholar 

  29. Luzanov AV, Zhikol OA (2016) Excited state structural analysis (ESSA) for correlated states of spin-flip type: application to electronic excitations in nanodiamonds with defects. Funct Mater 23:63

    Article  Google Scholar 

  30. Luzanov AV, Zhikol OA, Omelchenko IV, Nizovtsev AP, SYA K, Puchkarchuk AL, Puchkarchuk VA (2016) A semiepiical description of functionalizednanodiamonds with NV color centers. Funct Mater 23:268

    Article  Google Scholar 

  31. Luzanov AV (2016) Modified participation ratio approach: application to edge-localized states in carbon nanoclusters. Funct Mater 23:599

    Article  Google Scholar 

  32. Montero LA, Alfonso L, Alvarez JR, Perez E (1990) From PPP‐MO theory to all‐valence electron calculations of ionic and excited states in organic molecules. Int J Quantum Chem 37:465

    Article  Google Scholar 

  33. Montero LA, Díaz LA, Castillo N (2002) UV–Vis spectrum of simple hydrocarbons in á zeolite cavity. A supramolecular charge transfer. Chem Phys Lett 364:176

    Google Scholar 

  34. Montero-Alejo AL, Fuentes ME, Menéndez-Proupin E, Orellana W, Bunge CF, Montero LA, García de la Vega JM (2010) Approximate quantum mechanical method for describing excitations and related properties of finite single-walled carbon nanotubes. Phys Rev B 81:235409

    Article  ADS  Google Scholar 

  35. Jacobsen H, Cavallo L (2011) In: Leszczynski J (ed) Handbook of computational chemistry. Springer, Berlin/Heidelberg, p 95

    Google Scholar 

  36. Wolfram Research Inc. (2005) Mathematica, Version 5.2, Champaign, IL

    Google Scholar 

  37. Luzanov AV (1987) Configuration interaction in a nonorthogonal determinant basis. Theor Experim Chem 22:489

    Google Scholar 

  38. Bell RJ, Dean P, Hibbins-Butler DC (1970) Localization of normal modes in vitreous silica, germania and beryllium fluoride. J Phys C 3:2111

    Article  ADS  Google Scholar 

  39. Luzanov AV, Umanski VE (1977) On the determination of the degree of collectivity of electronic excitations in molecules. Theor Experim Chem 13:162

    Article  Google Scholar 

  40. Murphy NC, Wortis R, Atkinson WA (2011) Generalized inverse participation ratio as a possible measure of localization for interacting systems. Phys Rev B 83:184206

    Article  ADS  Google Scholar 

  41. Luzanov AV (2016) In: Leszczynski J, Shukla MK (eds) Practical aspects of computational chemistry IV. Springer, New York, p 151

    Google Scholar 

  42. Martin RL (2003) Natural transition orbitals. J Chem Phys 118:4775

    Article  ADS  Google Scholar 

  43. Morokuma K, Iwata K (1972) Extended Hartree-Fock theory for excited states. Chem Phys Lett 16:192; Caldwell JW, Gordon MS (1976) Chem Phys Lett 43:493

    Google Scholar 

  44. Luzanov AV, Klimko GT, Vul'fov AL (1987) The multiconfiguration SCF method and large-scale configuration interaction in calculations for the A1 and B1 states of the water molecule. Theor Experim Chem 23:1

    Article  Google Scholar 

  45. Toyli DM, Christle DJ, Alkauskas A, Buckley BB, Van de Walle CG, Awschalom DD (2012) Measurement and Control of Single Nitrogen-Vacancy Center Spins above 600 K. Phys Rev X 2:031001

    Google Scholar 

  46. Kehayias P, Doherty MW, English D, Fischer R, Jarmola A, Jensen K, Leefer N, Hemmer P, Manson NB, Budker D (2013) Infrared absorption band and vibronic structure of the nitrogen-vacancy center in diamond. Phys Rev B 88:165202

    Article  ADS  Google Scholar 

  47. Goldman ML, Doherty MW, Sipahigil A, Yao NV, Bennett SD, Manson NV, Kubanek A, Lukin MD (2015) State-selective intersystem crossing in nitrogen-vacancy centers. Phys Rev B 91:165201

    Article  ADS  Google Scholar 

  48. Bethe HZ (1931) Zur Theorie der Metalle. Physik 71:205; Mattis DC (1965) The theory of magnetism. Harper and Row, New York

    Google Scholar 

  49. Luzanov AV (1981) One-particle approximation in valence-scheme superposition. Theor Experim Chem 17:228; Luzanov AV (1991) Operator methods in full configuration interaction theory for molecular systems. Theor Experim Chem 27:413

    Google Scholar 

  50. Krylov AI (2001) Size-consistent wave functions for bond-breaking: the quation-of-motion spin-flip model. Chem Phys Lett 338:375

    Article  ADS  Google Scholar 

  51. Luzanov AV (2004) Spin Flip Models in the Spin Coupling Method of Many-Particle Amplitudes. J Struct Chem 45:729

    Article  Google Scholar 

  52. Takatsuka K, Fueno T, Yamaguchi K (1978) Distribution of odd electrons in ground-state molecules. Theor Chim Acta 48:175

    Article  Google Scholar 

  53. Head-Gordon M (2003) Characterizing unpaired electrons from the one-particle density matrix. Chem Phys Lett 372:508

    Article  ADS  Google Scholar 

  54. Morton JJL, Elzerman J (2014) Quantum computing: Three of diamonds. Nat Nanotechnol 9:167

    Article  ADS  Google Scholar 

  55. Loubser JHN, van Wyk JA (1978) Electron spin resonance in the study of diamond. Rep Prog Phys 41:1201; He F, Manson NB, Fisk PTH (1993) Paramagnetic resonance of photoexcited N-V defects in diamond. Phys Rev B 47:8816

    Google Scholar 

  56. Gali A, Fyta M, Kaxiras E (2008) Ab initio supercell calculations on nitrogen-vacancy center in diamond: Electronic structure and hyperfine tensor. Phys Rev B 77:155206

    Article  ADS  Google Scholar 

  57. Goss JP, Jones R, Breuer SJ, Briddon PR, Öberg S (1996) The twelve-line 1.682 eV luminescence center in diamond and the vacancy-silicon complex. Phys Rev Lett 77:3041

    Article  ADS  Google Scholar 

  58. Penney WG (1937) The electronic structure of some polyenes and aromatic molecules. III. Bonds of fractional order by the pair method. Proc Roy Soc A 158:306

    Article  ADS  Google Scholar 

  59. Clark AE, Davidson ER (2001) Local spin. J Chem Phys 115:7382; Clark AE, Davidson ER (2002) Local spin II. Mol Phys 100:373

    Google Scholar 

  60. Luzanov AV, Prezhdo OV (2007) High-order entropy measures and spin-free quantum entanglement for molecular problems. Mol Phys 105:2879; Luzanov AV (2012) Some spin and spin-free aspects of coulomb correlation in molecules. Int J Quant Chem 112:2915

    Google Scholar 

  61. Morello A (2015) Quantum spintronics: Single spins in silicon carbide. Nat Mater 14:135

    Article  ADS  Google Scholar 

Download references

Acknowledgments

This work is supported in part through the joint grant from the National Academy of Sciences of Ukraine and the National Academy of Sciences of Belarus (Grant No. 09-06-15). The author much benefited from useful discussions with A. P. Nizovtsev.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anatoliy V. Luzanov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Luzanov, A.V. (2017). Localization of Orbitals and Electronic Properties in Nanodiamonds with Color Centers: Semiempirical Models. In: Fesenko, O., Yatsenko, L. (eds) Nanophysics, Nanomaterials, Interface Studies, and Applications . NANO 2016. Springer Proceedings in Physics, vol 195. Springer, Cham. https://doi.org/10.1007/978-3-319-56422-7_9

Download citation

Publish with us

Policies and ethics