Skip to main content

Properties of Cholesterol-Fullerene Binary Cluster: MD Simulations

  • Conference paper
  • First Online:
Nanophysics, Nanomaterials, Interface Studies, and Applications (NANO 2016)

Part of the book series: Springer Proceedings in Physics ((SPPHY,volume 195))

Included in the following conference series:

  • 1322 Accesses

Abstract

The role cholesterol plays in human body was intensively studied over the years and now is well known. Although the excess of cholesterol in blood vessels may prove unhealthy (atherosclerosis), it is needed in human body, for example, for proper functioning of phospholipid bilayer. In our previous studies, we widely investigated the properties of cholesterol in various systems, but our attention was focused on biological systems. The cholesterol may exhibit interesting properties in other, nonbiological systems.

In this work we investigate three cholesterol–fullerene binary clusters varying in the number of fullerenes (n = 3, 5, 7). Obtained results were compared with pure cholesterol cluster to estimate an impact of fullerenes on cholesterol system. We studied the system at four temperatures (T = 290, 300, 310, and 320 K). By analyzing the dynamical and structural observables (mean square displacement, diffusion coefficient, second rank order parameter, and Lindemann index), we discuss the behavior of cholesterol in such specific environment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 309.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Klafke JZ, Pereira RLD, Hirsch GE, Parisi MM, Porto FG, de Almeida AS, Rubin FH, Schmidt A, Beutler H, Nascimento S, Trevisan G, Brusco I, de Oliveira SM, Duarte MMMF, Duarte T, Viecili PRN (2016) Study of oxidative and inflammatory parameters in LDLr-KO mice treated with a hypercholesterolemic diet: comparison between the use of Campomanesia xanthocarpa and acetylsalicylic acid. Phytomedicine 23:1227–1234. doi:10.1016/j.phymed.2015.11.010

    Article  Google Scholar 

  2. Alberts B (2008) Molecular biology of the cell. Garland Science, New York [etc.]

    Google Scholar 

  3. Lusis AJ (2000) Atherosclerosis. Nature 407:233–241. doi:10.1038/35025203

    Article  Google Scholar 

  4. Kachel A, Gburski Z (1997) Chain formation in a model dipolar liquid: computer simulation study. J Phys Condens Matter 9:10095–10100. doi:10.1088/0953-8984/9/46/007

    Article  ADS  Google Scholar 

  5. Gburski Z (1985) Convergence of memory functions for the vibrational dephasing process in liquids. Chem Phys Lett 115:236–240. doi:10.1016/0009-2614(85)80687-4

    Article  ADS  Google Scholar 

  6. Stassen H, Gburski Z (1994) Instantaneous normal-mode analysis of binary-liquid Ar-Kr mixtures. Chem Phys Lett 217:325–332. doi:10.1016/0009-2614(93)E1390-3

    Article  ADS  Google Scholar 

  7. Komathi S, Muthuchamy N, Lee K-P, Gopalan A-I (2016) Fabrication of a novel dual mode cholesterol biosensor using titanium dioxide nanowire bridged 3D graphene nanostacks. Biosens Bioelectron 84:64–71. doi:10.1016/j.bios.2015.11.042

    Article  Google Scholar 

  8. Umar A, Ahmad R, Kumar R, Ibrahim AA, Baskoutas S (2016) Bi2O2CO3 nanoplates: fabrication and characterization of highly sensitive and selective cholesterol biosensor. J Alloys Compd 683:433–438. doi:10.1016/j.jallcom.2016.05.063

    Article  Google Scholar 

  9. Gburski Z, Gray CG, Sullivan DE (1984) Lineshape in collision-induced absorption. Mori theory. Chem Phys Lett 106:55–59. doi:10.1016/0009-2614(84)87010-4

    Article  ADS  Google Scholar 

  10. Gburski Z, Zerda T (1980) Vibrational dephasing and intermolecular interactions in liquids. Acta Phys Pol A 57:447–454

    Google Scholar 

  11. Ghanbari B, Gholamnezhad P (2016) Spectroscopic evidence on improvement in complex formation of O2N2 aza-crown macrocyclic ligands with Cu(II) acetate upon incorporation with [60]Fullerene. Spectrochim Acta A Mol Biomol Spectrosc 169:202–207. doi:10.1016/j.saa.2016.06.047

    Article  ADS  Google Scholar 

  12. Lundgren MP, Khan S, Baytak AK, Khan A (2016) Fullerene-Benzene purple and yellow clusters: theoretical and experimental studies. J Mol Struct 1123:75–79. doi:10.1016/j.molstruc.2016.06.007

    Article  ADS  Google Scholar 

  13. Raczynski P, Dawid A, Gburski Z (2005) Depolarized light scattering in small fullerene clusters – computer simulation. J Mol Struct 744:525–528. doi:10.1016/j.molstruc.2004.12.064

    Article  ADS  Google Scholar 

  14. Allen MP, Tildesley DJ (1989) Computer simulation of liquids. Clarendon Press/Oxford University Press, Oxford/New York

    MATH  Google Scholar 

  15. Frenkel D, Smit B (2001) Understanding molecular simulation, second edition: from algorithms to applications, 2nd edn. Academic Press, San Francisco

    MATH  Google Scholar 

  16. Rapaport DC (2004) The art of molecular dynamics simulation. Cambridge University Press, New York

    Book  MATH  Google Scholar 

  17. Dawid A, Gburski Z (2003) Interaction-induced light scattering in a fullerene surrounded by an ultrathin argon “atmosphere”: molecular dynamics simulation. Phys Rev A 68:065202. doi:10.1103/PhysRevA.68.065202

    Article  ADS  Google Scholar 

  18. Kale L, Skeel R, Bhandarkar M, Brunner R, Gursoy A, Krawetz N, Phillips J, Shinozaki A, Varadarajan K, Schulten K (1999) NAMD2: greater scalability for parallel molecular dynamics. J Comput Phys 151:283–312. doi:10.1006/jcph.1999.6201

    Article  ADS  MATH  Google Scholar 

  19. Phillips JC, Braun R, Wang W, Gumbart J, Tajkhorshid E, Villa E, Chipot C, Skeel RD, Kalé L, Schulten K (2005) Scalable molecular dynamics with NAMD. J Comput Chem 26:1781–1802. doi:10.1002/jcc.20289

    Article  Google Scholar 

  20. Humphrey W, Dalke A, Schulten K (1996) VMD: visual molecular dynamics. J Mol Graph Model 14:33–38. doi:10.1016/0263-7855(96)00018-5

    Article  Google Scholar 

  21. Brunger A, Kuriyan J, Karplus M (1987) Crystallographic R-factor refinement by molecular-dynamics. Science 235:458–460. doi:10.1126/science.235.4787.458

    Article  ADS  Google Scholar 

  22. Henin J, Chipot C (2006) Hydrogen-bonding patterns of cholesterol in lipid membranes. Chem Phys Lett 425:329–335. doi:10.1016/j.cplett.2006.04.115

    Article  ADS  Google Scholar 

  23. Pasini P, Zannoni C (2013) Advances in the computer simulations of liquid crystals. Springer Science & Business Media

    Google Scholar 

  24. Jena P, Rao BK, Khanna SN (1987) Physics and chemistry of small clusters. Plenum Press, New York

    Book  Google Scholar 

  25. Gburski Z, Górny K, Raczyński P (2010) The impact of a carbon nanotube on the cholesterol domain localized on a protein surface. Solid State Commun 150:415–418. doi:10.1016/j.ssc.2009.12.005

    Article  ADS  Google Scholar 

  26. Skrzypek M, Gburski Z (2002) Fullerene cluster between graphite walls – computer simulation. Europhys Lett 59:305–310. doi:10.1209/epl/i2002-00242-8

    Article  ADS  Google Scholar 

  27. Piątek A, Dawid A, Gburski Z (2006) The existence of a plastic phase and a solid-liquid dynamical bistability region in small fullerene cluster (C-60)(7): molecular dynamics simulation. J Phys Cond Matter 18:8471–8480. doi:10.1088/0953-8984/18/37/006

    Article  ADS  Google Scholar 

  28. Dawid A, Gburski Z (1997) Dynamical properties of the argon-krypton clusters: molecular dynamics calculations. J Molec Struct 410:507–511. doi:10.1016/S0022-2860(96)09512-9

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Z. Gburski .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Gburski, Z., Raczyńska, V., Raczyński, P. (2017). Properties of Cholesterol-Fullerene Binary Cluster: MD Simulations. In: Fesenko, O., Yatsenko, L. (eds) Nanophysics, Nanomaterials, Interface Studies, and Applications . NANO 2016. Springer Proceedings in Physics, vol 195. Springer, Cham. https://doi.org/10.1007/978-3-319-56422-7_4

Download citation

Publish with us

Policies and ethics