Skip to main content

Effects of Ultrasonic Synthesis Variable on Basic Properties of CoFe2O4 Nanoparticles

  • Conference paper
  • First Online:
Nanophysics, Nanomaterials, Interface Studies, and Applications (NANO 2016)

Part of the book series: Springer Proceedings in Physics ((SPPHY,volume 195))

Included in the following conference series:

  • 1318 Accesses

Abstract

Fine cobalt ferrite particles were obtained with the help of an ultrasonic treatment. The effects of the pH synthesis on the structural and magnetic properties of the compound were investigated. Polycrystalline particles with an average crystallite size of 70–75 nm and a particle size of 1–20 mcm were defined by X-ray diffraction and electron scanning microscopy. We also studied magnetic properties obtained under different conditions provided to cobalt ferrite.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 309.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Zhou JP, He H, Shi Z, Nan CW (2006) Magnetoelectric CoFe2O4∕ Pb (Zr0.52 Ti 0. 48) O3 double-layer thin film prepared by pulsed-laser deposition. Appl Phys Lett 88(1):013111

    Article  ADS  Google Scholar 

  2. Wang Y, Su D, Ung A, Ahn JH, Wang G (2012) Hollow CoFe2O4 nanospheres as a high capacity anode material for lithium ion batteries. Nanotechnology 23(5):055402

    Article  ADS  Google Scholar 

  3. George M, Nair SS, Malini KA, Joy PA, Anantharaman MR (2007) Finite size effects on the electrical properties of sol–gel synthesized CoFe2O4 powders: deviation from Maxwell–Wagner theory and evidence of surface polarization effects. J Phys D Appl Phys 40(6):1593

    Article  ADS  Google Scholar 

  4. Limaye MV, Singh SB, Date SK, Kothari D, Reddy VR, Gupta A et al (2009) High coercivity of oleic acid capped CoFe2O4 nanoparticles at room temperature. J Phys Chem B 113(27):9070–9076

    Article  Google Scholar 

  5. Sangmanee M, Maensiri S (2009) Nanostructures and magnetic properties of cobalt ferrite (CoFe2O4) fabricated by electrospinning. Appl Phys A 97(1):167–177

    Article  ADS  Google Scholar 

  6. Torres TE, Roca AG, Morales MP, Ibarra A, Marquina C, Ibarra MR, Goya GF (2010) Magnetic properties and energy absorption of CoFe2O4 nanoparticles for magnetic hyperthermia. J Phys Conf Ser 200(7):072101

    Article  Google Scholar 

  7. Liu B, Li Q, Zhang B, Cui Y, Chen H, Chen G, Tang D (2011) Synthesis of patterned nanogold and mesoporous CoFe2O4 nanoparticle assemblies and their application in clinical immunoassays. Nanoscale 3(5):2220–2226

    Article  ADS  Google Scholar 

  8. Rajendran M, Pullar RC, Bhattacharya AK, Das D (2001) Chintalapudi S.N. And Majumdar C. K., Magnetic properties of nanocrystalline CoFe2O4 powders prepared at room temperature: variation with crystallite size. J Magn Magn Mater 232:71–83

    Article  ADS  Google Scholar 

  9. Frolova L, Derimova A, Khlopytskyi A, Galivets Y, Savchenko M (2016) Investigation of phase formation in the system Fe2+/Co2+/O2/H2O. East Eur J Enterp Technol 6(83):55–59

    Google Scholar 

  10. Hamad MA (2013) Calculations on nanocrystalline CoFe2O4 prepared by polymeric precursor method. J Supercond Nov Magn 26(3):669–673

    Article  Google Scholar 

  11. Adschiri T, Kanazawa K, Arai K (1992) Rapid and continuous hydrothermal crystallization of metal oxides particles in supercritical water. J Am Ceram Soc 75(4):1019–1022

    Article  Google Scholar 

  12. Millot N, Xin B, Pighini C, Aymes D (2005) Hydrothermal synthesis of nanostructured inorganic powders by a continuous process under supercritical conditions. J Eur Ceram Soc 25:2013–2016

    Article  Google Scholar 

  13. Pillai V, Shah DO (1996) Synthesis of high coercivity cobalt ferrite particles using water in oil microemulsions. J Magn Magn Mater 163:243–248

    Article  ADS  Google Scholar 

  14. Lee JG, Lee HM, Kim CS, Oh YJ (1998) Magnetic properties of CoFe2O4 powders and thin films grown by a sol–gel method. J Magn Magn Mater 177:900–902

    Article  ADS  Google Scholar 

  15. Guigue-Millot N, Begin-Colin S, Champion Y, Hytch MJ, Le Caer G, Perriat P (2003) Control of grain size and morphologies of nanograined ferrites by adaptation of the synthesis route: mechanosynthesis and soft chemistry. J. Solid State Chem 170:30–38

    Article  ADS  Google Scholar 

  16. Frolova LA, Shapa NN (2011) Technology of extraction manganese compounds from the discharge water of metallurgical enterprises with the use of ultrasound. Metall Min Ind 3(6):65–69

    Google Scholar 

  17. Frolova L, Pivovarov A, Tsepich E (2016) Ultrasound ferritization in Fe2+-Ni2+-SO42−-OH system. J Chem Technol Metall 51(2):163–167

    Google Scholar 

  18. Obara G, Yamamoto H, Tani M, Tokita M (2002) Magnetic properties of spark plasma sintering magnets using fine powders prepared by mechanical compounding method. J Magn Magn Mater 239:464–467

    Article  ADS  Google Scholar 

  19. Tokita M (1999) Development of large size ceramic/metal bulk FGM fabricated by SPS. Mater Sci Forum 308:83–88

    Article  Google Scholar 

  20. Baranchikov A, Ivanov V, Tretyakov Y (2007) Kinetics and mechanism of nickel ferrite formation under high temperature ultrasonic treatment. Ultrason Sonochem 14:131–134

    Article  Google Scholar 

  21. Vicentea de J, Bossisb G, Lacisc S, Guyotd M (2002) Permeability measurements in cobalt ferrite and carbonyl iron powders and suspensions. J Magn Magn Mater 251:100–108

    Article  ADS  Google Scholar 

  22. Rashin M, Nabeel HJ (2014) Magnetic and ultrasonic studies on stable cobalt ferrite magnetic nanofluid. Ultrasonics 54:834–840

    Article  Google Scholar 

  23. Madani S, Mahmoudzadeh G, Khorrami S (2012) Ceramic processing research influence of pH on the characteristics of cobalt ferrite powder prepared by a combination of sol-gel auto-combustion and ultrasonic irradiation techniques. J Ceram Process Res 13(2):123–126

    Google Scholar 

  24. Frolova LA, Pivovarov AA (2015) Investigation of conditions for ultrasound-assisted preparation of nickel ferrite. High Energy Chem 49(1):10–15

    Article  Google Scholar 

  25. Meskin PE, Gavrilov AI, Maksimov VD, Ivanov VK, Churagulov BP (2007) Hydrothermal/microwave and hydrothermal/ultrasonic synthesis of nanocrystalline titania, zirconia, and hafnia. Russ J Inorg Chem 52(11):1648–1656

    Article  Google Scholar 

  26. Larichev MN, Shaitura NS, Laricheva OO (2008) The influence of ultrasonic field on the oxidation of al powders with water. Russ J Phys Chem B 2(5):757–758

    Article  Google Scholar 

  27. Kovacheva D, Ruskov T, Krystev P, Asenov S, Tanev N, Monch I, Koseva R, Wolff U, Gemming T, Markova-Velichkova M, Nihtianova D (2012) Synthesis and characterization of magnetic nano-sized Fe3O4 and CoFe2O4. In: Bulgarian chemical communications, vol 44, Proceedings of the III rd National Crystallographic Symposium, 90–97

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. A. Frolova .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Frolova, L.A., Kushnerov, O.I., Galivets, Y.D. (2017). Effects of Ultrasonic Synthesis Variable on Basic Properties of CoFe2O4 Nanoparticles. In: Fesenko, O., Yatsenko, L. (eds) Nanophysics, Nanomaterials, Interface Studies, and Applications . NANO 2016. Springer Proceedings in Physics, vol 195. Springer, Cham. https://doi.org/10.1007/978-3-319-56422-7_2

Download citation

Publish with us

Policies and ethics