Skip to main content

Nanostructured Lead Sulfide PbS

  • Chapter
  • First Online:

Part of the book series: Springer Series in Materials Science ((SSMATERIALS,volume 256))

Abstract

Lead sulfide is a representative of the abundant family of semiconducting chalcogenides . Lead sulfide PbS is a single compound existing in the Pb–S system.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Lin, J.C., Sharma, R.C., Chang, Y.A.: Pb-S (Lead-Sulfur). In: Massalski, T.B. (ed.) Binary Alloy Phase Diagrams, 2nd edn, vol. 3, pp. 3005–3009. Materials Park, Ohio (1990) (ASM Intern. Publ.)

    Google Scholar 

  2. Lin, J.C., Sharma, R.C., Chang, Y.A.: The Pb-S (lead-sulfur) system. Bull. Alloy Phase Diagr. 7(4), 374–381 (1986)

    Article  Google Scholar 

  3. Scanlon, W.W.: Recent advances in the optical and electronic properties of PbS, PbSe, PbTe and their alloys. J. Phys. Chem. Solids. 8(1), 423–428 (1959)

    Google Scholar 

  4. Schoolar, R.B., Dixon, J.R.: Optical constants of lead sulfide in the fundamental ab-sorption edge region. Phys. Rev. 137(2A), 667–670 (1965)

    Google Scholar 

  5. Zemmel, J.N., Jensen, J.D., Schoolar, R.B.: Electrical and optical properties of epitaxial films of PbS, PbSe, PbTe and SnTe. Phys. Rev. 140(1A), 330–342 (1965)

    Google Scholar 

  6. Hodes, G.: Chemical Solution Deposition of Semiconductor Films, p. 377. Dekker, New York (2002)

    Book  Google Scholar 

  7. Sadovnikov, S.I., Gusev, A.I., Rempel, A.A.: Nanostructured lead sulfide: Synthesis, structure, and properties. Russ. Chem. Rev. 85(7), 731–758 (2016)

    Google Scholar 

  8. Rempel, A.A.: Nanotechnologies. Properties and applications of nanostructured materials. Russ. Chem. Rev. 76(5), 435–461 (2007)

    Google Scholar 

  9. Pawar, S.M, Pawar, B.S., Kim, J.H., Joo, O.-S., Lokhande, C.D.: Recent status of chemical bath deposited metal chalcogenide and metal oxide thin films. Curr. Appl. Phys. 11(2), 117–161 (2011)

    Google Scholar 

  10. Deng, D., Xia, J., Cao, J., Qu, L., Tian, J., Qian, Z.: Forming highly fluorescent near-infrared emitting PbS quantum dots in water using glutathione as surface-modifying molecule. J. Coll. Interf. Sci. 367, 234–240 (2012)

    Article  Google Scholar 

  11. Zhang, B., Li, G., Zhang, J., Zhang, Y., Zhang, L.: Synthesis and characterization of PbS nanocrystals in water/C12E9/cyclohexane microemulsions. Nanotechnology 14(3), 443–446 (2003)

    Article  Google Scholar 

  12. Chakraborty, I., Moulik, S.P.: On PbS nanoparticles formed in the compartments of water/AOT/n-heptane microemulsion. J. Nanoparticle Res. 7(2–3), 237–247 (2005)

    Article  Google Scholar 

  13. Jiao, Y., Gao, X., Lu, J., Chen, Y., Zhou, J., Li, X.: A novel method for PbS quantum dot synthesis. Mater. Lett. 72, 116–118 (2012)

    Article  Google Scholar 

  14. Karim, M.R., Zaman, M.D.A., Zaman, M.D.B.: A conventional synthesis approach to prepare lead sulfide (PbS) nanoparticles via solvothermal method. Chalcogen. Lett. 11(10), 531–539 (2014)

    Google Scholar 

  15. Li, F., Huang, X., Kong, T., Liu, X., Qin, Q., Li, Z.: Synthesis and characterization of PbS crystals via a solvothermal route. J. Alloys Comp. 485(1–2), 554–560 (2009)

    Article  Google Scholar 

  16. Kitaev, G.A., Bol’shchikova, T.P., Fofanov, G.M., Yatlova, L.E., Goryukhina, N.M.: Thermodynamic justification of metal sulfide deposition conditions from aqueous solutions by thiourea. In: Kinetika i Mekhanizm Obrazovaniya Tverdoi Fazy (Kinetics and Formation Mechanism of the Solid Phase), pp. 113–126. Ural Pedagogical Institute, Sverdlovsk (1968) (in Russian)

    Google Scholar 

  17. Gaiduk, A.P., Gaiduk, P.I., Larsen, A.N.: Chemical bath deposition of PbS nanocrystals: Effect of substrate. Thin Solid Films. 516, 3791–3795 (2008)

    Article  Google Scholar 

  18. Wang, J., Tang, S.H., Wang, B.Y., Li, Y.Q.: In-situ interaction of nano-PbS with gelatin. Sci. China Chem. 56(11), 1593–1600 (2013)

    Article  Google Scholar 

  19. Sadovnikov, S.I., Kuznetsova, Yu., V., Rempel, A.A.: Synthesis of a stable colloidal solution of PbS nanoparticles. Neorg. Mater. 50(10), 1049–1056 (2014) (in Russian). (Engl. Transl.: Inorg. Mater. 50(10), 969–975 (2014))

    Google Scholar 

  20. Sadovnikov, S.I., Gusev, A.I.: Chemical deposition of nanocrystalline lead sulfide powders with controllable particle size. J. Alloys Comp. 586, 105–112 (2014)

    Google Scholar 

  21. Kozhevnikova, N.S., Sadovnikov, S.I., Rempel, A.A.: One-pot synthesis of lead sulfide nanoparticles. Zh. Obshch. Khim. 81(10), 1608–1613 (2011) (in Russian). (Engl. Transl.: Russ. J. Gen. Chem. 81, 2062–2066 (2011))

    Google Scholar 

  22. Sadovnikov, S.I., Kuznetsova Yu, V., Rempel, A.A.: A method of producing a colloidal solution of lead sulfide nanoparticles. Patent No. 2567326 of Russian Federation, pp. 1–5 (2015)

    Google Scholar 

  23. Froment, M., Lincot, D.: Phase formation processes in solution at the atomic level: Metal chalcogenide semiconductors. Electrochem. Acta. 40(10), 1293–1303 (1995)

    Article  Google Scholar 

  24. Yusupov, R.A., Abzalov, R.F., Smerdova, S.G., Gafarov, M.R.: Sophisticated heterophase equilibria in the system “Pb (II)—water—KOH”. Chem. Comput. Simul. Butlerov Commun. 3, 29–36 (2000) (in Russian)

    Google Scholar 

  25. O’Brien, P., Saeed, T.: Deposition and characterization of cadmium sulfide thin films by chemical bath deposition. J. Cryst. Growth. 158(4), 497–504 (1996)

    Article  Google Scholar 

  26. O’Brien, P., McAleese, J.: Developing an understanding of the processes controlling the chemical bath deposition of ZnS and CdS. J. Mater. Chem. 8(11), 2309–2314 (1998)

    Article  Google Scholar 

  27. Osherov, A., Ezersky, V., Golan, Y.: The role of solution composition in chemical bath deposition of epitaxial thin films of PbS on GaAs(100). J. Cryst. Growth. 308(2), 334–339 (2007)

    Article  Google Scholar 

  28. De Farias, P.M.A., Saegesser, Santos D., de Menezes, F.D., de Carvalho Ferreira, R., de Lourdes Barjas-Castro, M., Castro, V., Moura Lima, P.R., Fonte, A., Cesar, C.L.: Core-shell CdS/Cd(OH)2 quantum dots: synthesis ana bioconjugation to target res cells antigens. J. Microscopy. 219(3), 103–108 (2005)

    Article  Google Scholar 

  29. Kozhevnikova, N.S., Sadovnikov, S.I., Uritskaya, A.A., Gusev, A.I.: Lead homogeneous and heterogeneous ion equilibria in water solutions. Izv. VUZov. Khimiya i Khim. Technologiya—Chem. Chem. Technol. 55(3), 13–18 (2012). (in Russian)

    Google Scholar 

  30. Kozhevnikova, N.S., Sadovnikov, S.I., Uritskaya, A.A., Gusev, A.I.: Considering the polynuclear complexes in the ionic equilibria of the Pb2+–H2O system. Zh. Obshch. Khim. 82(4), 538–547 (2012) (in Russian) (Engl. Transl.: Russ. J. Gen. Chem. 82(4), 626–634 (2012))

    Google Scholar 

  31. Powell, K.J., Brown, P.L., Byrne, R.H., Gajda, T., Hefter, G., Leuz, A.-K., Sjöberg, S., Wanner, H.: Chemical speciation of environmentally significant metals with inorganic ligands. Part 3: The Pb2+ + OH, Cl, CO3 2–, SO4 2–, and PO4 3– systems (IUPAC Technical Report). Pure Appl. Chem. 81(12), 2425–2476 (2009)

    Google Scholar 

  32. Markov, V.F., Maskaeva, L.N., Ivanov, P.N.: Calculation of the conditions of formation of the solid phase of metal chalcogenides by hydrochemical deposition. Condens. Media Interph. Bound. 6(4), 374–380 (2004). (in Russian)

    Google Scholar 

  33. Wang, Y., Chai, L., Chang, H., Peng, X., Shu, Y.: Equilibrium of hydroxyl complex ions in Pb2+–H2O system. Trans. Nonferrous Met. Soc. China. 19(2), 458–462 (2009)

    Article  Google Scholar 

  34. Semenov, V.N., Ovechkina, N.M., Khoviv, D.A.: Influence щa hydroxo ycomplexes on the process of deposition and phase composition of the SnS and PbS films. Vestn. Voronezhsk. Univ., Ser. Khimiya, Biologiya, Farmatsiya. 2, 50–55 (2007) (in Russian)

    Google Scholar 

  35. Dean, J.N. (ed.): Lange’s Handbook of Chemistry, 15th edn., p. 1424. McGraw-Hill, New York (1998)

    Google Scholar 

  36. Patnaik, P.: Dean’s Analytical Chemistry Handbook, 2nd edn., pp. 1280. McGraw-Hill, New York (2004) (Table 4.2)

    Google Scholar 

  37. Kawai, T.: Ishiguro Shin–ichi, Ohtaki H. A thermodynamic study on hydrolytic reactions of lead(II) ion in an aqueous solution and dioxane-water mixtures. I. Potentiometric study. Bull. Chem. Soc. Jpn. 53(8), 2221–2227 (1980)

    Article  Google Scholar 

  38. Sylva, R.N., Brown, P.L.: The hydrolysis of metal ions. Part 3. Lead(II). J. Chem. Soc., Dalton Trans. 9(9), 1577–1581 (1980)

    Article  Google Scholar 

  39. Cruywagen J.J., van de Water R.F: The hydrolysis of lead(II). A potentiometric and enthalpimetric study. Talanta 40(7), 1091–1095 (1993)

    Article  Google Scholar 

  40. Perera, W.N., Hefter, G., Sipos, P.M.: An investigation of the lead(II) - hydroxide system. Inorg. Chem. 40(16), 3974–3978 (2001)

    Article  Google Scholar 

  41. Pettit, L.D., Powell, K.J.: IUPAC Stability Constants Database (SC-Database, Release 5.8 for Windows). Academic Software and K.J. Powell, Ottley. www.acadsoft.co.uk (2009)

  42. Tikhonov, A.S.: Study of complex lead citrate compounds depending on the pH of the aqueous medium. Sb. Trudov Voronezhsk. Gos. Univ. 49, 23–24 (1958) (in Russian)

    Google Scholar 

  43. SigmaPlot 2001 for Windows, Version 7.0 © 1986–2001, SPSS Inc., USA

    Google Scholar 

  44. Lur’e Yu, Yu.: Handbook on Analytical Chemistry, p. 448. Khimiya, Moscow (1967) (in Russian)

    Google Scholar 

  45. Kitaev, G.A., Bol’shchikova, T.P., Yatlova, L.E.: On the question of solubility of salts of cyanamide with some metals. Zh. Neorg. Khim. 16(12), 3173–3175 (1971). (in Russian)

    Google Scholar 

  46. Sadovnikov, S.I., Gusev, A.I.: Preparation of nanocrystalline lead sulfide powder with controlled particles size. Zh. Obshch. Khim. 84(2), 177–184 (2014) (in Russian). (Engl. Transl.: Russ. J. Gen. Chem. 84(2), 173–180 (2014))

    Google Scholar 

  47. Sadovnikov, S.I., Gusev, A.I.: Hydrochemical precipitation of nanocrystalline lead sulfide powders. Neorg. Mater. 51(12), 1313–1318 (2015) (in Russian). (Engl. Transl.: Inorg. Mater. 51(12), 1219–1224 (2015))

    Google Scholar 

  48. Noda, Y., Ohba, S., Sato, S., Saito, Y.: Charge distribution and atomic thermal parameters of lead chalcogenide crystals. Acta Crystallogr. B. B39(3), 312–317 (1983)

    Article  Google Scholar 

  49. Noda, Y., Masumoto, K., Ohba, S., Saito, Y., Toriumi, K., Iwata, Y., Shibuya, K.: Temperature dependence of atomic thermal parameters of lead chalcogenide, PbS, PbSe, and PbTe. Acta Crystallogr. C. C43(8), 1443–1445 (1987)

    Article  Google Scholar 

  50. Rempel, A.A., Kozhevnikova, N.S., Leenaers, A.J.G., van den Berghe, S.: Towards particle size regulation of chemically deposited lead sulfide (PbS). J. Cryst. Growth. 280, 300–308 (2005)

    Article  Google Scholar 

  51. Sadovnikov, S.I., Gusev, A.I.: A method of producing nanocrystalline lead sulfide, pp. 1–5. Patent No. 2591160 of Russian Federation (2016)

    Google Scholar 

  52. Jiang, Y., Wu, Y., Xie, B., Yuan, S.W., Liu, X.M.: Hydrothermal preparation of uniform cubic-shaped PbS nanocrystals. J. Cryst. Growth. 231, 248–251 (2001)

    Article  Google Scholar 

  53. Yang, Y.J., He, L.Y., Zhang, Q.F.: A cyclic voltametric synthesis of PbS nanoparticles. Electrochem. Commun. 7(4), 361–364 (2005)

    Article  Google Scholar 

  54. Sharon, M., Ramaiaha, K.S., Kumar, M., Neumann-Spallart, M., Levy-Clement, C.: Electrodeposition of lead sulphide in acidic medium. J. Electroanal. Chem. 436, 49–52 (1997)

    Google Scholar 

  55. Yang, Y.J.: A novel electrochemical preparation of PbS nanoparticles. Mater. Sci. Eng. B. 131(1–3), 200–202 (2006)

    Article  Google Scholar 

  56. Pellegri, N., Trbojevich, R., de Sanctis, O.: Fabrication of PbS nanoparticles embedded in silica gel by reverse micelles and sol-gel routes. J. Sol-Gel Sci. Techn. 8, 1023–1028 (1997)

    Google Scholar 

  57. Xu, L., Chen, X., Wang, L., Sui, Z.M., Zhao, J., Zhu, B.: Formation of lead sulfide nanoparticles via Langmuir-Blodgett technique. Colloids and Surface A: Physicochem. Eng. Aspects 257-258, 457–460 (2005)

    Article  Google Scholar 

  58. Yu, Y., Zhang, K., Sun, S.: One-pot aqueous synthesis of near infrared emitting PbS quantum dots. Appl. Surf. Sci. 258, 7181–7187 (2012)

    Article  Google Scholar 

  59. Gerion, D., Pinaud, F., Williams, S.C., Parak, W.J., Zanchet, D., Weiss, S., Alivisatos, A.P.: Synthesis and properties of biocompatible water-soluble silica-coated CdSe/ZnS semiconductor quantum dots. J. Phys. Chem. B. 105(37), 8861–8871 (2001)

    Article  Google Scholar 

  60. Gao, X., Cui, Y., Levenson, R.M., Chung, L.W.K., Nie, S.: In vivo cancer targeting and imaging with semiconductor quantum dots. Nature Biotechnology. 22(8), 969–976 (2004)

    Article  Google Scholar 

  61. Sathyamoorthy, R., Kungumadevi, L.: Facile synthesis of PbS nanorods induced by concentration difference. Advanc. Powd. Techn. 26(2), 355–361 (2015)

    Article  Google Scholar 

  62. Ding, B., Shi, M., Chen, F., Zhou, R., Deng, M., Wang, M., Chen, H.Z.: Shape-controlled synthesis of PbS submicro-/nanocrystals via hydrothermal method. J. Cryst. Growth. 311(6), 1533–1538 (2009)

    Article  Google Scholar 

  63. Emadi, H., Salavati-Niasari, M.: Hydrothermal synthesis and characterization of lead sulfide nanocubes through simple hydrothermal method in the presence of [bis(salicylate)lead(II)] as a new precursor. Superlatt. Microstr. 54, 118–127 (2013)

    Article  Google Scholar 

  64. Ni, Y., Liu, H., Wang, F., Liang, Y., Hong, J., Ma, X., Xu, Z.: Shape controllable preparation of PbS crystals by a simple aqueous phase route. Cryst. Growth Design. 4(4), 759–764 (2004)

    Article  Google Scholar 

  65. Huang, Q., Gao, L.: Simple route for synthesis of PbS dendritic nanostructured materials. Chem. Lett. 33(10), 1338–1339 (2004)

    Article  Google Scholar 

  66. Zhao, P.T., Chen, G., Hu, Y., He, X.L., Wu, K., Cheng, Y., Huang, K.X.J.: Preparation of dentritic PbS nanostructures by ultrasonic method. J. Cryst. Growth. 303(2), 632–637 (2007)

    Article  Google Scholar 

  67. Ma, Y., Qi, L., Ma, J., Cheng, H.: Hierarchical, star-shaped PbS crystals formed by a simple solution route. Cryst. Growth Design. 4(2), 351–354 (2004)

    Article  Google Scholar 

  68. Ding, Y.H., Liu, X.X., Guo, R.: Synthesis of hollow PbS nanospheres in pluronic F127/cyclohexane/H2O microemulsions. Colloids Surf. A: Physicochem. Eng. Aspects. 296(1–3), 8–18 (2007)

    Article  Google Scholar 

  69. Leontidis, E., Orphanou, M., Kyprianidou-Leondidou, T., Krumeich, F., Caseri, W.: Composite nanotubes formed by self-assembly of PbS nanoparticles. Nano Letters. 3(4), 569–572 (2003)

    Article  Google Scholar 

  70. Li, G., Shi, G., Xu, H., Guang, S., Yin, R., Song, Y.: Nonlinear optical properties of the PbS nanorods synthesized via surfactant-assisted hydrolysis. Mater. Lett. 61(8–9), 1809–1811 (2007)

    Article  Google Scholar 

  71. Wang, W., Li, Q., Li, M., Lin, H., Hong, L.: Growth of PbS microtubes with quadrate cross sections. J. Cryst. Growth. 299(1), 17–21 (2007)

    Article  Google Scholar 

  72. Sun, J.-Q., Shen, X.-P., Guo, L.-J., Chen, K.-M., Liu, Q.: Microwave-assisted synthesis of flower-like PbS crystals. Physica E: Low-Dimens. Systems Nanostructures. 41(8), 1527–1532 (2009)

    Article  Google Scholar 

  73. Jiao, J., Liu, X., Gao, W., Wang, C., Feng, H., Zhao, X., Chen, L.: Synthesis of PbS nanoflowers by biomolecule-assisted method in the presence of supercritical carbon dioxide. Sol. State Sci. 11(5), 976–981 (2009)

    Article  Google Scholar 

  74. Shakouri-Arani, M., Salavati-Niasari, M.: A facile and reliable route to prepare of flower shaped lead sulfide nanostructures from a new sulfur source. J. Industr. Eng. Chem. 20(5), 3141–3149 (2014)

    Article  Google Scholar 

  75. Wu, M., Zhong, H., Jiao, Z., Li, Z., Sun, Y.: Synthesis of PbS nanocrystallites by electron beam irradiation. Colloids Surf. A: Physicochem. Eng. Aspects. 313–314, 35–39 (2008)

    Article  Google Scholar 

  76. Mozafari, M., Moztarzadeh, F., Seifalian, A.M., Tayebi, L.: Self-assembly of PbS hollow sphere quantum dots via gas-bubble technique for early cancer diagnosis. J. Luminesc. 133, 188–193 (2013)

    Article  Google Scholar 

  77. Schiener, A., Wlochowitz, T., Gerth, S., Unruh, T., Rempel, A., Amenitsch, H., Magerl, A.: Nucleation and growth of CdS nanoparticles observed by ultrafast SAXS. MRS Symp. Proc. 1528, 1–6 (2013)

    Article  Google Scholar 

  78. Schiener, A., Magerl, A., Krach, A., Seifert, S., Steinrück, H.-G., Zagorac, J., Zahn, D., Weihrich, R.: In-situ investigation of two-step nucleation and growth of CdS nanoparticles from solution. Nanoscale. 7(26), 11328–11333 (2015)

    Article  Google Scholar 

  79. Gusev, A.I.: Effects of the nanocrystalline state in solids. Uspekhi Fiz. Nauk. 168(1), 55–83 (1998) (in Russian). (Engl. Transl.: Physics - Uspekhi. 41(1), 49–76 (1998))

    Google Scholar 

  80. Gusev, A.I., Rempel, A.A.: Nanocrystalline Materials, p. 224. Nauka - Fizmatlit, Moscow (2000) (in Russian)

    Google Scholar 

  81. Gusev, A.I., Rempel, A.A.: Nanocrysnalline Materials, p. 351. Cambridge Intern. Science Publ, Cambridge (2004)

    Google Scholar 

  82. Gusev A.I.: Nanomaterials, Nanostructures, and Nanotechnologies. 3rd edn., p. 416. Nauka – Fizmatlit, Moscow (2009) (in Russian)

    Google Scholar 

  83. Okuno, T., Lipovskii, A.A., Ogawa, T., Amagai, I., Masumoto, Y.: Strong confinement of PbSe and PbS quantum dots. J. Luminesc. 87–89, 491–493 (2000)

    Google Scholar 

  84. Wundke, K., Auxier, J., Schülzgen, A., Peyghambarian, N., Borrelli, N.F.: Room-temperature gain at 1.3 mm in PbS-doped glasses. App. Phys. Lett. 75(20), 3060–3062 (1999)

    Google Scholar 

  85. Malyarevich, A.M., Gaponenko, M.S., Savitski, V.G., Yumashev, K.V., Rachkovskaya, G.E., Zakharevich, G.B.: Nonlinear optical properties of PbS quantum dots in boro-silicate glass. J. Non-Crystall. Solids. 353, 1195–1200 (2007)

    Article  Google Scholar 

  86. Kai, Xu, Heo, Jong: Precipitation of PbS quantum dots in glasses by thermal diffusion of Ag+ ions from silver pastes. J. Non-Crystall. Solids. 387, 76–78 (2014)

    Article  Google Scholar 

  87. Del Monte, F., Xu, Y., Mackenzie, J.D.: Preparation and characterization of PbS quantum dots doped ormocers. J. Sol-Gel Sci. Techn. 17, 37–45 (2000)

    Article  Google Scholar 

  88. Pinero, M., de la Rosa-Fox, N., Erge-Montilla, R., Esquivias, L.: Small angle neutron scattering study of PbS quantum dots synthetic routes via sol-gel. J. Sol-Gel Sci. Techn. 26, 527–531 (2003)

    Article  Google Scholar 

  89. Krauss, T.D., Wise, F.W., Tanner, D.B.: Observation of coupled vibrational modes of a semiconductor nanocrystal. Phys. Rev. Lett. 76(8), 1376–1379 (1996)

    Article  Google Scholar 

  90. Haché, A.: LeBlanc Serge-Emile, LoCascio M., Martucci A. Optical switchings pectroscopy of PbS quantum dots with dual-wavelength pump-probe. Physica E. 17, 104–106 (2003)

    Article  Google Scholar 

  91. Ullrich, B., Wang, J.S.: Impact of laser excitation variations on the photoluminescence of PbS quantum dots on GaAs. J. Luminesc. 143, 645–648 (2013)

    Article  Google Scholar 

  92. Yu, Y., Zhang, K., Sun, S.: Effect of ligands on the photoluminescence properties of water-soluble PbS quantum dots. J. Molec. Str. 1031, 194–200 (2013)

    Article  Google Scholar 

  93. Pentia, E., Pintilie, L., Matei, I., Botila, T., Pintilie, I.: Combined chemical-physical methods for enhancing IR photoconductive properties of PbS thin films. Infrared Phys. Techn. 44(3), 207–211 (2003)

    Article  Google Scholar 

  94. Hodes, G.: Semiconductor and ceramic nanoparticle films deposited by chemical bath deposition. Phys. Chem. Chem. Phys. 9(18), 2181–2196 (2007)

    Article  Google Scholar 

  95. Sadovnikov, S.I., Gusev, A.I., Rempel, A.A.: New crystalline phase in thin lead sulfide films. Pisma v ZhETF. 89(5), 279–284 (2009) (in Russian). (Engl. Transl.: JETP Lett. 89(5), 238–243 (2009))

    Google Scholar 

  96. Sadovnikov, S.I., Rempel, A.A.: Crystal structure of nanostructured PbS films at temperatures of 293–423 K. Fiz. tverd. Tela. 51(11), 2237–2245 (2009) (in Russian). (Engl. Transl.: Phys. Sol. State. 51(11), 2375–2383 (2009))

    Google Scholar 

  97. Sadovnikov, S.I., Kozhevnikova, N.S., Gusev, A.I.: Optical properties of nanostructured lead sulfide films with a D03 cubic structure. Fiz. Tekhn. Poluprovodnikov. 45(12), 1621–1632 (2011) (in Russian). (Engl. Transl.: Semiconductors. 45(12), 1559–1570 (2011))

    Google Scholar 

  98. Sadovnikov, S.I., Kozhevnikova, N.S., Pushin, V.G., Rempel, A.A.: Microstructure of nanocrystalline PbS powders and films. Neorg. Mater. 48(1), 26–33 (2012) (in Russian). (Engl. Transl.: Inorg. Mater. 48(1), 21–27 (2012))

    Google Scholar 

  99. Sadovnikov, S.I., Kozhevnikova, N.S.: Microstructure and crystal structure of nanocrystalline powders and films. Fiz. tverd. Tela. 54(8), 1459–1465 (2012) (in Russian). (Engl. Transl.: Phys. Sol. State. 54(8), 1554–1561 (2012))

    Google Scholar 

  100. Sadovnikov, S.I., Gusev, A.I.: Structure and properties of PbS films. J. Alloys Comp. 573, 65–75 (2013)

    Article  Google Scholar 

  101. Sadovnikov, S.I., Rempel, A.A.: Method of producing thin films of lead sulfide, pp. 1–5. Patent No. 2553858 of Russian Federation (2015)

    Google Scholar 

  102. Fainer, N.I., Kosinova, M.L., Rumyantsev, YuM, Salman, E.G., Kuznetsov, F.A.: Growth of PbS and CdS thin films by low-pressure chemical vapour deposition using dithiocarbamates. Thin Solid Films. 280(1–2), 16–19 (1996)

    Article  Google Scholar 

  103. Chamberlin, R.R., Sharman, J.S.: Chemical spray deposition process for inorganic films. J. Electrochem. Soc. 113(1), 86–89 (1966)

    Article  Google Scholar 

  104. Thangaraju, B., Kaliannan, P.: Polycrystalline lead thin chalcogenide thin films grown by spray pyrolysis. Cryst. Res. Technol. 35(1), 71–75 (2000)

    Article  Google Scholar 

  105. Nicolau, Y.F.: Solution deposition of thin solid compound films by a successive ionic-layer adsorption and reaction process. Appl. Surf. Sci. 22(23), 1061–1074 (1985)

    Article  Google Scholar 

  106. Nicolau, Y.F.: Process and apparatus for the deposition on a substrate of a thin film of a compound containing at least one cationic constituent and at least one anionic constituent, pp. 1–3. US Patent No. 4675207 (1987)

    Google Scholar 

  107. Kanniainen, T., Lindroos, S., Ihanus, J., Leskela, M.: Growth of strongly orientated lead sulfide thin films by successive ionic layer adsorption and reaction (SILAR) technique. J. Mater. Chem. 6(2), 161–164 (1996)

    Article  Google Scholar 

  108. Puišo, J., Tamuleviius, S., Laukaitis, G., Lindroos, S., Leskelä, M., Snitka, V.: Growth of PbS thin films on silicon substrate by SILAR technique. Thin Solid Films. 403–404, 457–461 (2002)

    Article  Google Scholar 

  109. Puišo, J., Lindroos, S., Tamulevičius, S., Leskelä, M., Snitka, V.: Growth of ultra thin PbS films by SILAR technique. Thin Solid Films. 428, 223–226 (2003)

    Article  Google Scholar 

  110. Preetha, K.C., Murali, K.V., Ragina, A.J., Deepa, K., Remadevi, T.L.: Effect of cationic precursor pH on optical and transport properties of SILAR deposited nano crystalline PbS thin films. Curr. Appl. Phys. 12(1), 53–59 (2012)

    Article  Google Scholar 

  111. Yucel, E., Yucel, Y., Beleli, B.: Process optimization of deposition conditions of PbS thin films grown by a successive ionic layer adsorption and reaction (SILAR) method using response surface methodology. J. Cryst. Growth. 422, 1–7 (2015)

    Article  Google Scholar 

  112. Nair, P.K., Garcia, V.M., Hernandez, A.B., Nair, M.T.S.: Photoaccelerated chemical deposition of PbS thin films: novel applications in decorative coatings and imaging techniques. J. Phys. D: Appl. Phys. 24(8), 1466–1472 (1991)

    Article  Google Scholar 

  113. Zhukovskiy, M.A., Stroyuk, A.L., Shvalagin, V.V., Smirnova, N.P., Lytvyn, O.S., Eremenko, A.M.: Photocatalytic growth of CdS, PbS, and CuxS nanoparticles on the nanocrystalline TiO2 films. J. Photochem. Photobiol. A: Chem. 203(2–3), 137–144 (2009)

    Article  Google Scholar 

  114. Ananikov, V.P., Khemchyan, L.L., Ivanova, Y.V., Bukhtiyarov, V.I., Sorokin, A.M., Prosvirin, I.P., Vatsadze, S.Z., Medved’ko, A.V., Nuriev, V.N., Dilman, A.D., Levin, V.V., Koptyug, I.V., Kovtunov, K.V., Zhivonitko, V.V., Likholobov, V.A., Romanenko, A.V., Simonov, P.A., Nenajdenko, V.G., Shmatova, O.I., Muzalevskiy, V.M., Nechaev, M.S., Asachenko, A.F., Morozov, O.S., Dzhevakov, P.B., Osipov, S.N., Vorobyeva, D.V., Topchiy, M.A., Zotova, M.A., Ponomarenko, S.A., Borshchev, O.V., Luponosov, Y.N., Rempel, A.A., Valeeva, A.A., Stakheev, A.Y., Turova, O.V., Mashkovsky, I.S., Sysolyatin, S.V., Malykhin, V.V., Bukhtiyarova, G.A., Terent’ev, A.O., Krylov, I.B.: Development of new methods in modern selective organic synthesis: preparation of functionalized molecules with atomic precision. Russ. Chem. Rev. 83(10), 885–985 (2014)

    Google Scholar 

  115. Chen, J.-H., Chao, C.-G., Ou, J.-C., Liu, T.-F.: Growth and characteristics of lead sulfide nanocrystals produced by the porous alumina membrane. Surf. Sci. 601(22), 5142–5147 (2007)

    Article  Google Scholar 

  116. Qadri, S.B., Yang, J., Ranta, B.R., Skelton, E.F., Hu, J.Z.: Pressure induced structural transitions in nanometer size particles of PbS. Appl. Phys. Lett. 69(15), 2205–2207 (1996)

    Article  Google Scholar 

  117. Knorr, K., Ehm, L., Hytha, M., Winkler, B., Depmeier, W.: The high-pressure & #x03B1;/β phase transition in lead sulphide (PbS). Eur. Phys. J. B. 31(3), 297–303 (2003)

    Article  Google Scholar 

  118. Zhang, J., Sun, L., Liao, S., Yan, C.: Size control and photoluminescence enhancement of CdS nanoparticles prepared via reverse micelle method. Solid State Commun. 124(1–2), 45–48 (2002)

    Article  Google Scholar 

  119. Metin, H., Esen, R.: Annealing studies on CBD grown CdS thin films. J. Cryst. Growth 258(1–2), 141–148 (2003)

    Article  Google Scholar 

  120. Wu, G.S., Yuan, X.Y., Xie, T., Xu, G.C., Zhang, L.D., Zhuang, Y.L.: A simple synthesis route to CdS nanomaterials with different morphologies by sonochemical reduction. Mat. Lett. 58(5), 794–797 (2004)

    Article  Google Scholar 

  121. Vorokh, A.S., Rempel, A.A.: Atomic structure of cadmium sulfide nanoparticles. Fiz. tverd. Tela. 49(1), 143–148 (2007) (in Russian). (Engl. Transl.: Phys. Sol. State. 49(1), 148–153 (2007))

    Google Scholar 

  122. Rempel, A.A., Magerl, A.: Non-periodicity in nanoparticles with close-packed structures. Acta Crystallogr. A. A66(4), 479–483 (2010)

    Article  Google Scholar 

  123. Qadri, S.B., Singh, A., Yousuf, M.: Structural stability of PbS films as a function of temperature. Thin Solid Films. 431–432, 506–510 (2003)

    Article  Google Scholar 

  124. Fernandez-Lima, F.A., Gonzalez-Alfaro, Y., Larramendi, E.M., Fonseca Filho, H.D., Maia da Costa, M.E.H., Freire Jr., F.L., Prioli, R., de Avillez, R.R., da Silveira, E.F., Calzadilla, O., de Melo, O., Pedrero, E., Hernández, E.: Structural characterization of chemically deposited PbS thin films. Mater. Sci. Eng. B. 136(2–3), 187–192 (2007)

    Article  Google Scholar 

  125. Gotoh, Y., Onoda, M., Goto, M., Oosawa, Y.: Preparation and characterization of “PbVS3” a new composite layered compound. Chem. Lett. 18(7), 1281–1282 (1989)

    Article  Google Scholar 

  126. Wiegers, G.A., Meetsma, A., Haange, R.J., van Smaalen, S., de Boer, J.L., Meerschaut, A., Rabu, P., Rouxel, J.: The incommensurate misfit layer structure of (PbS)1.14NbS2 “PbNbS3” and (LaS)1.14NbS2 “LaNbS3”: an x-ray diffraction study. Acta Crystallog. B46(3), 324–332 (1990)

    Google Scholar 

  127. Wullf, J., Meetsma, A., van Smaalen, S., Haange, R.J., de Boer, J.L., Wiegers, G.A.: Structure, electrical transport and magnetic properties of the misfit layer compound (PbS)1.13TaS2. J. Solid State Chem. 84(1), 118–129 (1990)

    Article  Google Scholar 

  128. Wiegers, G.A.: Misfit layer compounds: Structures and physical properties. Progr. Solid State Chem. 24(1–2), 1–139 (1996)

    Article  Google Scholar 

  129. Sadovnikov, S.I., Rempel, A.A.: Nonstoichiometric distribution of sulfur atoms in lead sulfide structure. Dokl. Akad. Nauk. 428(1), 48–52 (2009) (in Russian). (Engl. Transl.: Dokl. Phys. Chem. 428(1), 167–171 (2009)

    Google Scholar 

  130. X’Pert Plus Version 1.0. Program for Crystallography and Rietveld analysis Philips Analytical B. V. © Koninklijke Philips Electronics N. V

    Google Scholar 

  131. Philips Analytical.: Philips Analytical X’Celerator. J. Appl. Crystallogr. 34(4), 538 (2001)

    Google Scholar 

  132. Morton, R.W., Simon, D.E., Gislason, J.J., Taylor, S.: Managing background profiles using a new X’Celerstor detector. Adv. X-ray Anal. 46, 80–85 (2003)

    Google Scholar 

  133. Rietveld, H.M.: A profile refinement method for nuclear and magnetic structures. J. Appl. Cryst. 2(2), 65–71 (1969)

    Article  Google Scholar 

  134. Sadovnikov, S.I., Rempel, A.A.: Correlation of sulfur atoms in nonmetal planes of lead sulfide films with the D03 structure. Fiz. tverd. Tela. 52(12), 2299–2306 (2010) (in Russian). (Engl. Transl.: Phys. Sol. State. 52(12), 2458-2466 (2010))

    Google Scholar 

  135. Gusev, A.I., Rempel, A.A., Magerl, A.J.: Disorder and Order in Strongly Nonstoichiometric Compounds. Transition Metal Carbides, Nitrides and Oxides, p. 608. Springer, Berlin (2001)

    Google Scholar 

  136. Sadovnikov, S.I, Rempel, A.A.: Simulation of pair and three-particle correlations in a binary solid solution with a hexagonal lattice. Fiz. tverd. Tela. 50(6), 1085–1089 (2008). (in Russian). (Engl. Transl.: Phys. Sol. State. 50(6), 1131–1136 (2008))

    Google Scholar 

  137. Moss, T.S.: Optical Properties of Semiconductors, p. 279. In: Hogarth, C.A. (ed.) Butterworths Sci. Publ. Ltd., London (1959)

    Google Scholar 

  138. Zemmel, J.N., Jensen, J.D., Schoolar, R.B.: Electrical and optical properties of epitaxial films of PbS, PbSe, PbTe and SnTe. Phys. Rev. 140(1A), 330–342 (1965)

    Google Scholar 

  139. Ukhanov Yu, I.: Optical Properties of Semiconductors, p. 366. Nauka, Moscow (1977) (in Russian)

    Google Scholar 

  140. Gusev, A.I.: Nanocrystalline Materials: Production and Properties, p. 200. Ural Division of the RAS, Ekaterinburg (1998) (in Russian)

    Google Scholar 

  141. Sashchiuk, A., Lifshitz, E., Reisfeld, R., Saraidarov, T., Zelner, M., Willenz, A.J.: Optical and conductivity properties of PbS nanocrystals in amorphous zirconia sol-gel films. Sol-Gel Sci. Techn. 24(1), 31–38 (2002)

    Article  Google Scholar 

  142. Yu, B., Yin, G., Zhu, G., Gan, F.: Optical nonlinear properties of PbS nanoparticles studied by the Z-scan technique. Opt. Mater. 11(1), 17–21 (1998)

    Article  Google Scholar 

  143. Jana, S., Thapa, R., Maity, R., Chattopadhyay, K.K.: Optical and dielectric properties of PVA capped nanocrystalline PbS thin films synthesized by chemical bath deposition. Phys. E. 40(10), 3121–3126 (2008)

    Article  Google Scholar 

  144. Brus, L.E.: Electron-electron and electron-hole interactions in small semiconductor crystallites: The size dependence of the lowest excited electronic state. J. Chem. Phys. 80(9), 4403–4409 (1984)

    Article  Google Scholar 

  145. Wang, Y., Herron, N.: Nanometer-sized semiconductor clusters: materials synthesis, quantum size effects, and photophysical properties. J. Chem. 95(2), 525–532 (1991)

    Google Scholar 

  146. Najdovski, M., Minceva-Sukarova, B., Drake, A., Grozdanov, I., Chunnilall, C.J.: Optical properties of thin solid films of lead sulfide. J. Mol. Struct. 349(1), 85–88 (1995)

    Article  Google Scholar 

  147. Parra, R.S., George, P.J., Sánchez, G.G., Jiménez González, A.E., Baños, L., Nair, P.K.: Optical and electrical properties of PbS+ In thin films subjected to thermal processing. J. Phys. Chem. Solids. 61(5), 659–668 (2000)

    Article  Google Scholar 

  148. Valenzuel-Jaureguia, J.J., Ramirez-Bon, R., Mendoza-Galvan, A., Sotelo-Lerma, M.: Optical properties of PbS thin films chemically deposited at different temperatures. Thin Solid Films 441, 104–110 (2003)

    Article  Google Scholar 

  149. Peterson, J.J., Krauss, T.D.: Fluorescence spectroscopy of single lead sulfide quantum dots. Nano Lett. 6(3), 510–514 (2006)

    Article  Google Scholar 

  150. Zhao, Y., Zou, J., Shi, W.: In situ synthesis and characterization of lead sulfide nanocrystallites in the modified hyperbranched polyester by gamma-ray irradiation. Mater. Sci. Eng. B. 121(1–2), 20–24 (2005)

    Article  Google Scholar 

  151. Sadovnikov, S.I., Kozhevnikova, N.S., Rempel, A.A.: The structure and optical properties of nanocrytalline lead sulfide films. Fiz. Tekhn. Poluprovodnikov. 44(10), 1394–1400 (2010) (in Russian). (Engl. Transl.: Semiconductors. 44(10), 1349–1356 (2010))

    Google Scholar 

  152. Tauc, J. (ed.): Amorphous and Liquid Semiconductors. Plenum, New York (1974)

    Google Scholar 

  153. Klingshirn, C.F.: Semiconductor Optics, p. 797. Springer, New York (2005)

    Book  Google Scholar 

  154. Pankove, J.I.: Optical processes in semiconductors, 2nd edn, p. 428. Dover Publ, New York (1975)

    Google Scholar 

  155. Elliot, R.J.: Intensity of optical absorption by excitons. Phys. Rev. 108(6), 1384–1389 (1957)

    Article  Google Scholar 

  156. Mittleman, D.M., Schoenlein, R.W., Shiang, J.J., Colvin, V.L., Alivisatos, A.P., Shank, C.V.: Quantum size dependence of femtosecond electronic dephasing and vibrational dynamics in CdSe nanocrystals. Phys. Rev. B. 49(20), 14435–14447 (1994)

    Article  Google Scholar 

  157. Mozer, F., Urbach, F.: Optical absorption of pure silver halides. Phys. Rev. 102(6), 1519–1523 (1956)

    Article  Google Scholar 

  158. Kumara, D., Agarwal, G., Tripathi, B., Vyas, D., Kulshrestha, V.: Characterization of PbS nanoparticles synthesized by chemical bath deposition. J. Alloys Comp. 484, 463–466 (2009)

    Article  Google Scholar 

  159. Wang, Y., Suna, A., Mahier, W., Kasowski, R.: PbS in polymers. From molecules to bulk solids. J. Chem. Phys. 87(12), 7315–7322 (1987)

    Article  Google Scholar 

  160. Hellwege, K.-H., Madelung, O. (eds): Landolt-Börnstein: Zahlenwerte und Funktionen aus Naturwissenschaften und Technik – Neue Serie/Grouppe III: Kristall- und Festkorperphysik, Band 17f, pp. 155–162. Springer, Berlin (1983)

    Google Scholar 

  161. Mamiyev, Z.Q.: Balayeva N.O. Preparation and optical studies of PbS nanoparticles. Optic. Mat. 46, 522–525 (2015)

    Google Scholar 

  162. Lifshitz, E., Sirota, M., Porteanu, H.: Continuous and time-resolved photoluminescence study of lead sulfide nanocrystals, ebmedded in polymer film. J. Cryst. Growth. 196, 126–134 (1999)

    Google Scholar 

  163. Navaneethan, M., Sabarinathan, M., Harish, S., Archana, J., Nisha, K.D., Hayakawa, Y., Ponnusamy, S., Muthamizhchelvan, C.: Chemical synthesis and functional properties of multi-ligands passivated lead sulfide nanoparticles. Mat. Lett. 158, 75–79 (2015)

    Google Scholar 

  164. Sharma, S.S:. Thermal expansion of crystals. Part VIII. Galena and pyrite. Proc. Indian Acad. Sci. Sect.A. A34(2), 72–76 (1951)

    Google Scholar 

  165. Novikova, S.I., Abrikosov, N.Kh.: Investrigation of thermal expansion of the lead chalcogenides. Fiz. Tved. Tela. 5(7), 1913–1916 (1963) (in Russian) (Engl. Transl.: Sov. Phys. Solid State. 5(7), 1558–1559 (1963)

    Google Scholar 

  166. Zhang, Yi, Ke, X., Chen, C., Yang, J., Kent, P.R.C.: Thermodynamic properties of PbTe, PbSe, and PbS: First-principles study. Phys. Rev. B. B80(2), 12 (2009) Paper 024304

    Google Scholar 

  167. Sadovnikov, S.I., Kozhevnikova, N.S., Rempel, A.A., Magerl, A.: Thermal expansion of a lead sulfide nanofilm. Thin Solid Films. 548, 230–234 (2013)

    Google Scholar 

  168. Sadovnikov, S.I., Gusev, A.I.: Effect of particle size on the thermal expansion of nanostructured lead sulfide films. J. Alloys Comp. 610, 196–202 (2014)

    Google Scholar 

  169. Sadovnikov, S.I., Gusev, A.I.: Thermal expansion of nanostructured PbS films and anharmonicity of atomic vibrations. Fiz. Tverd. Tela. 56(11), 2274–2278 (2014) (in Russian). (Engl. Transl.: Phys. Sol. State. 56(11), 2353–2358 (2014)

    Google Scholar 

  170. Ashcroft, N.W., Mermin, N.D.: Solid State Physics, pp. 492–494. Cornell University, New York (1976)

    Google Scholar 

  171. Petrov Yu, I. Physics of Small Particles, 360 pp. Nauka, Moscow (1982) (in Russian)

    Google Scholar 

  172. Bolt, R.H.: Frequency distribution of eigentones in a three-dimensional continuum. J. Acoust. Soc. Am. 10(3), 228–234 (1939)

    Google Scholar 

  173. Maa, D.-Y.: Distribution of eigentones in a rectangular chamber at low frequency range. J. Acoust. Soc. Am. 10(3), 235–238 (1939)

    Google Scholar 

  174. Montrol, E.W.: Size effect in low temperature heat capacities. J. Chem. Phys. 18(2), 183–185 (1950)

    Google Scholar 

  175. Chudinov, A.A.: Dependence of velocity of ultrasound in monocrystals PbS on temperature in the range of 80–640 K. Fiz. tverd. Tela. 5(5), 1458–1460 (1963). (in Russian). (Engl. Transl.: Sov. Phys. Sol. State. 5(5), 1061–1062 (1963))

    Google Scholar 

  176. Padaki, V., Lakshimikumar, S., Subramanyam, S., Gopal, E:. Elastic constants of galena down to liquid helium temperatures. Pramana (J. Phys.) 17(1), 25–32 (1981)

    Google Scholar 

  177. Li, W., Chen, J.-F., Wang, T.: Electronic and elastic properties of PbS under pressure. Physica B. 405, 1279–1282 (2010)

    Google Scholar 

  178. Bhardwaj, P:. Investigation of structural phase transition of PbS. ISRN Cond. Matter Physics. 2012 (2012). Article ID 596397

    Google Scholar 

  179. Pei, Y.-L., Liu, Y.: Electrical and thermal transport properties of Pb-based chalcogenides: PbTe, PbSe, and PbS. J. Alloys Comp. 514, 40–44 (2012)

    Google Scholar 

  180. Peresada, G.I., Ponyatovskii, E.G., Sokolovskaya, Zh.D.: Pressure dependence of the elastic constants of PbS. Phys. Status Sol. 35(2), K177–K180 (1976)

    Google Scholar 

  181. Choudhury, N., Sarma, B.K.: Structural characterization of lead sulfide thin films by means of X-ray line profile analysis. Bull. Mater. Sci. 32(1), 43–47 (2009)

    Google Scholar 

  182. Sadovnikov, S.I., Kozhevnikova, N.S., Rempel, A.A.: Thermal stability of lead sulfide nanocrystalline films. Fiz. Khim. Stekla. 35(1), 74–82 (in Russian). (Engl. Transl.: Glass Phys. Chem. 35(1), 60–66 (2009))

    Google Scholar 

  183. Sadovnikov, S.I., Kozhevnikova, N.S., Rempel, A.A:. Oxidation of nanocrystalline lead sulfide in air. Zh. neorg. Khimii. 56(12), 1951–1957 (2011) (in Russian). (Engl. Transl.: Russ. J. Inorg. Chem. 56(12), 1864–1869 (2011))

    Google Scholar 

  184. Sadovnikov, S.I., Kozhevnikova, N.S., Rempel, A.A.: Stability and recrystallization of PbS nanoparticles. Neorg. Mater. 47(8), 929–935 (2011) (in Russian). (Engl. Transl.: Inorg. Mater. 47(8), 837–843 (2011))

    Google Scholar 

  185. Gertsman, V.Y., Birringer, R., Valiev, R.Z., Gleiter, H.: On the structure and strength of ultrafine-grained copper produced by severe plastic deformation. Scr. Met. Mat. 30(2), 229–234 (1994)

    Google Scholar 

  186. Mikhlin Yu, L., Romanchenko, A.S., Shagaev, A.A.: Scanning probe microscopy studies of PbS surfaces oxidized in air and etched in aqueous acid solutions. Appl. Surf. Sci. 252(16), 5645–5648 (2006)

    Google Scholar 

  187. Ihly, R., Tolentino, J., Liu, Y., Gibbs, M., Law, M.: The photothermal stability of PbS quantum dot solids. ACS Nano. 5(10), 8175–8186 (2011)

    Google Scholar 

  188. García, V.M., Nair, M.T.S., Nair, P.K.: Optical properties of PbS·Cu x S and Bi2S3·CuxS thib films with reference to solar control and solar absorber applications. Sol. Energy Mater. 23(1), 47–59 (1991)

    Google Scholar 

  189. Nair, P.K., Gomezdaza, O., Nair, M.T.S.: Metal sulphide thin film photography with lead sulphide thin films. Adv. Mater. Opt. Electron. 1(3), 139–145 (1992)

    Google Scholar 

  190. Loiko, P.A., Rachkovskaya, G.E., Zakharevich, G.B., Gurin, V.S., Gaponenko, M.S., Yumashev, K.V.: Optical properties of novel PbS and PbSe quantum-dot-doped alumino-alkali-silicate glasses. J. Non-Cryst. Solids 358(15), 1840–1845 (2012)

    Article  Google Scholar 

  191. Carrillo-Castillo, A., Salas-Villasenor, A., Mejia, I., Aguirre-Tostado, S., Gnade, B.E., Quevedo-Lopez, M.A.: P-type thin films transistors with solution-deposited lead sulfide films as semiconductor. Thin Solid Films. 520, 3107–3110 (2012)

    Google Scholar 

  192. He, J., Luo, M., Hu, L., Zhou, Y., Jiang, S., Song, H., Ye, R., Chen, J., Gao, L., Tang, J.: Flexible lead sulfide colloidal quantum dot photodetector using pencil graphite electrodes on paper substrates. J. Alloys Comp. 596, 73–78 (2014)

    Article  Google Scholar 

  193. Slonopas, A., Alijabbari, N., Saltonstall, C., Globus, T., Norris, P.: Chemically deposited nanocrystalline lead sulfide thin films with tunable properties for use in photovoltaics. Electrochim. Acta. 151, 140–149 (2015)

    Article  Google Scholar 

  194. Sabet, M., Salavati-Niasari, M.: Deposition of lead sulfide nanostructure films on TiO2 surface via different chemical methods due to improving dye-sensitized solar cells efficiency. Electrocim. Acta. 169, 168–179 (2015)

    Article  Google Scholar 

  195. Jang, J., Song, J.H., Choi, Y., Baik, S.J., Jeong, S.: Photovoltaic light absorber with spatial energy band gradient using PbS quantum dot layers. Solar Energy Mater. Solar Cells. 141, 270–274 (2015)

    Article  Google Scholar 

  196. Zimin, S.P., Gorlachev, E.S.: Nanostructured Lead Chalcogenides, 230 pp. Yaroslavl’s State University, Yaroslavl (2011) (in Russian)

    Google Scholar 

  197. Markov, V.F., Maskaeva, L.N.: Lead sulfide semiconductor sensing element for nitrogen oxide gas analyzers. Zh. Anal. Khimii. 56(8), 846–850 (2001) (in Russian). (Engl. Transl.: J. Anal. Chem. 56(8), 754–757 (2001))

    Google Scholar 

  198. Fu, T.: Research on gas-sensing properties of lead sulfide-based sensor for detection of NO2 and NH3 at room temperature. Sens. Actuators B. 140(1), 116–121 (2009)

    Article  Google Scholar 

  199. Bandyopadhyay, S.: Performance of nanocrystalline PbS gas sensor with improved cross-sensitivity. Particul. Sci. Technol. 30(1), 43–54 (2012)

    Article  Google Scholar 

  200. Karami, H., Ghasemi, M., Matini, S.: Synthesis, characterization and application of lead sulfide nanostructures as ammonia gas sensing agent. Int. J. Electrochem. Sci. 8(10), 11661–11679 (2013)

    Google Scholar 

  201. Kaci, S., Keffous, A., Hakoum, S., Mansri, A.: Hydrogen sensitivity of the sensors based on nanostructured lead sulfide thin films deposited on a-SiC: H and p-Si(100) substrates. Vacuum 116, 27–30 (2015)

    Article  Google Scholar 

  202. Kullick, T., Quack, R., Röhrkasten, C., Pekeler, T., Scheper, T., Schügerl, K.: PbS-field-effect-transistor for heavy-metal concentration monotoring. Chem. Eng. Technol. 18(4), 225–228 (1995)

    Article  Google Scholar 

  203. Markov, V.F., Maskaeva, L.N., Zurabin, I.V., Zamaraeva, N.V.: Application of thin films of lead sulfide doped with halogens, to monitor the content of lead ions in aqueous media. Water: Chem. Ecolog. 6, 80–85 (2012) (in Russian)

    Google Scholar 

  204. Xie, Y., Qiao, Z., Chen, M., Liu, X., Qian, Y.: Irradiation route to semiconductor/polymer nanocable fabrication. Adv. Mater. 11(18), 1512–1515 (1999)

    Article  Google Scholar 

  205. Garcia, O.P., de Albuquerque, M.C.C., da Silva Aquino, K.A., de Araujo, P.L.B., de Araujo, E.S.: Use of lead(II) sulfide nanoparticles as stabilizer for PMMA exposed to gamma irradiation. Mater. Res. 18(2), 365–372 (2015)

    Article  Google Scholar 

  206. Kirpichnikov, M.P., Kochetkov, S.N.: Chemistry and biomedicine: diversity and unity of goals. Russ. Chem. Rev. 84(1), 1 (2015)

    Article  Google Scholar 

  207. Povolotskaya, A.V., Povolotskiy, A.V., Manshina, A.A.: Hybrid nanostructures: synthesis, morphology and functional properties. Russ. Chem. Rev. 84(6), 579–600 (2015)

    Article  Google Scholar 

  208. Andreakou, P., Brossard, M., Bernechea, M., Konstantatos, G., Lagoudakis, P. Resonance energy transfer from PbS colloidal quantum dots to bulk silicon: the road to hybrid photovoltaics. In: Proceedings of SPIE “Physics, Simulation, and Photonic Engineering of Photovoltaic Devices”, vol. 8256, pp. 82561L-1–82561L-6 (2012)

    Google Scholar 

  209. Narayanan, S., Sathy, B.N., Mony, U., Koyakutty, M., Nair, S.V., Menon, D.: Biocompatible magnetite/gold nanohybrid contrast agents via green chemistry for MRI and CT bioimaging. ACS Appl. Mater. Interfaces. 4(1), 251–260 (2012)

    Google Scholar 

  210. Genuino, H., Huang, H., Njagi, E., Stafford, L., Suib, S.L.: A review of green synthesis of nanophase inorganic materials for green chemistry applications. In: Perosa, A., Selvav, M. (eds.) Handbook of Green Chemistry, vol. 8, pp. 217–244. Green Nanoscience. Wiley-VCH, Weinheim (2012)

    Google Scholar 

  211. Shen, A., Chen, L., Xie, W., Hu, J., Zeng, A., Richards, R., Hu, J.: Triplex Au–Ag–C core–shell nanoparticles as a novel Raman label. Adv. Funct. Mater. 20(6), 969–975 (2010)

    Article  Google Scholar 

  212. Lu, Y.J., Wei, K.C., Ma, C.C., Yang, S.Y., Chen, J.P.: Dual targeted delivery of doxorubicin to cancer cells using folate-conjugated magnetic multi-walled carbon nanotubes. Colloids Surf. B. 89, 1–9 (2012)

    Google Scholar 

  213. Argyo, C., Weiss, V., Braeuchle, C., Bein, T. Multifunctional mesoporous silica nanoparticles as a universal platform for drug delivery. Chem. Mater. 26(1), 435–451 (2014)

    Google Scholar 

  214. Fernandes, A.M., Abdalhai, M.H., Ji, J., Xi, B.-W., Xie, J., Sun, J., Noeline, R., Lee, B.H., Sun, X.: Development of highly sensitive electrochemical genosensor based on multiwalled carbon nanotubes-chitosan-bismuth and lead sulfide nanoparticles for the detection of pathogenic Aeromonas. Biosens. Bioelectr. 63, 399–406 (2015)

    Google Scholar 

  215. Li, Q., Hu, X., Bai, Y., Alattar, M., Ma, D., Cao, Y., Hao, Y., Wang, L., Jiang, C.: The oxidative damage and inflammatory response induced by lead sulfide nanoparticles in rat lung. Food Chem. Toxicol. 60, 213–217 (2013)

    Google Scholar 

  216. Cao, Y., Liu, H., Li, Q., Wang, Q., Zhang, W., Chen, Y., Wang, D., Cai, Y.: Effect of lead sulfide nanoparticles exposure on calcium homeostasis in rat hippocampus neurons. J. Inorg. Biochem. 126, 70–75 (2013)

    Google Scholar 

  217. Huang, N., Zhao, Q., Xiao, J., Qi, L.: Controllable self-assembly of PbS nanostars into ordered structures: Close-packed arrays and patterned arrays. ACS Nano. 4(8), 4707–4716 (2010)

    Google Scholar 

  218. Sadovnikov, S.I., Gusev, A.I., Rempel, A.A.: Nonstoichiometry of nanocrystalline monoclinic silver sulfide. Phys. Chem. Chem. Phys. 17(19), 12466–12471 (2015)

    Google Scholar 

  219. Gusev, A.I., Sadovnikov, S.I., Chukin, A.V., Rempel, A.A.: Thermal expansion of nanocrystalline and coarse-crystalline silver sulfide Ag2S. Fiz. Tverd. Tela. 58(2), 246–251 (2016) (in Russian). (Engl. Transl.: Phys. Solid State. 58(2), 251–257 (2016))

    Google Scholar 

  220. Sadovnikov, S.I. Gusev, A.I., Chukin, A.V., Rempel, A.A.: High-temperature X-ray diffraction and thermal expansion of nanocrystalline and coarse-crystalline acanthite α-Ag2S and argentite β-Ag2S. Phys. Chem. Chem. Phys. 18(6), 4617–4626 (2016)

    Google Scholar 

  221. Chen, X.F., He, G., Liu, M., Zhang, J.W., Deng, B., Wang, P.H., Zhang, M., Lv, J.G., Sun, Z.Q.: Modulation of optical and electrical properties of sputtering-derived amorphous InGaZnO thin films by oxygen partial pressure. J. Alloys Comp. 615, 636–642 (2014)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stanislav I. Sadovnikov .

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Cite this chapter

Sadovnikov, S.I., Rempel, A.A., Gusev, A.I. (2018). Nanostructured Lead Sulfide PbS. In: Nanostructured Lead, Cadmium, and Silver Sulfides. Springer Series in Materials Science, vol 256. Springer, Cham. https://doi.org/10.1007/978-3-319-56387-9_2

Download citation

Publish with us

Policies and ethics