Skip to main content

Coherent Control of Dark Excitons in Semiconductor Quantum Dots

  • Chapter
  • First Online:
Quantum Dots for Quantum Information Technologies

Part of the book series: Nano-Optics and Nanophotonics ((NON))

Abstract

We review studies of the quantum dot confined dark exciton and demonstrate its use as a matter qubit. The dark exciton is an optically forbidden semiconductor electronic excitation, in which an electron-hole pair is generated with parallel spin projections. This optcally inactive excitation lives orders of magnitude longer than the corresponding optically active excitation, the bright exciton, in which the pair has anti-parallel spins. We show that despite its optical inactivity, the dark exciton can be deterministically generated in any desired coherent superposition of its two eigenstates using a single picosecond optical pulse. We provide lower bounds for the dark exciton life and coherence times and show that its coherent state can be fully controlled using short optical pulses. We also study its behavior in an externally applied magnetic field and present a method for its optical depletion from the quantum dot. Our results demonstrate that the dark exciton is an excellent matter spin qubit.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The pulse area up to constant factors is given by \(\sqrt{\frac{P_{avg}\tau }{f}}\) where \(P_{avg}\) is the average power as measured on the power meter, f the repetition frequency, and \(\tau \) the pulse width. Plugging in the numbers above yields a pulse area ratio between the BE and the DE of about 2000.

References

  1. Y. Benny, Y. Kodriano, E. Poem, S. Khatsevitch, D. Gershoni, P.M. Petroff, Phys. Rev. B 84, 075473 (2011)

    Article  ADS  Google Scholar 

  2. Y. Benny, S. Khatsevich, Y. Kodriano, E. Poem, R. Presman, D. Galushko, P.M. Petroff, D. Gershoni, Phys. Rev. Lett. 106, 040504 (2011)

    Article  ADS  Google Scholar 

  3. E. Poem, O. Kenneth, Y. Kodriano, Y. Benny, S. Khatsevich, J.E. Avron, D. Gershoni, Phys. Rev. Lett. 107, 087401 (2011)

    Article  ADS  Google Scholar 

  4. Y. Kodriano, I. Schwartz, E. Poem, Y. Benny, R. Presman, T.A. Truong, P.M. Petroff, D. Gershoni, Phys. Rev. B 85, 241304 (2012)

    Article  ADS  Google Scholar 

  5. E. Poem, Y. Kodriano, C. Tradonsky, N.H. Lindner, B.D. Gerardot, P.M. Petroff, D. Gershoni, Nat. Phys. 6, 993 (2010)

    Article  Google Scholar 

  6. J. McFarlane, P.A. Dalgarno, B.D. Gerardot, R.H. Hadfield, R.J. Warburton, K. Karrai, A. Badolato, P.M. Petroff, App. Phys. Lett. 94, 093113 (2009)

    Article  ADS  Google Scholar 

  7. I. Schwartz, E.R. Schmidgall, L. Gantz, D. Cogan, E. Bordo, Y. Don, M. Zielinski, D. Gershoni, Phys. Rev. X 5, 011009 (2015)

    Google Scholar 

  8. M. Bayer, G. Ortner, O. Stern, A. Kuther, A.A. Gorbunov, A. Forchel, P. Hawrylak, S. Fafard, K. Hinzer, T.L. Reinecke, S.N. Walck, J.P. Reithmaier, F. Klopf, F. Schäfer, Phys. Rev. B 65, 195315 (2002)

    Article  ADS  Google Scholar 

  9. Y. Kodriano, E.R. Schmidgall, Y. Benny, D. Gershoni, Semicond. Sci. Technol. 29, 053001 (2014)

    Article  ADS  Google Scholar 

  10. E.L. Ivchenko, Optical Spectroscopy of Semiconductor Nanostructures (Alpha Science, Harrow, 2005)

    Google Scholar 

  11. T. Takagahara, Phys. Rev. B 62, 16840 (2000)

    Article  ADS  Google Scholar 

  12. S. Gupalov, E. Ivchenko, A. Kavokin, J. Exp. Theor. Phys. 86(2), 388 (1998). doi:10.1134/1.558441

  13. S. Alon-Braitbart, E. Poem, L. Fradkin, N. Akopian, S. Vilan, E. Lifshitz, E. Ehrenfreund, D. Gershoni, B. Gerardot, A. Badolato, P. Petroff, Physica E 32(12), 127 (2006)

    Article  ADS  Google Scholar 

  14. M. Bayer, O. Stern, A. Kuther, A. Forchel, Phys. Rev. B 61, 7273 (2000). doi:10.1103/PhysRevB.61.7273

  15. E.L. Ivchenko, G. Pikus, Superlattices and Other Heterostructures: Symmetry and Optical Phenomena, 2nd edn., Springer Series in Solid-State Sciences (Springer, Berlin, 1997)

    Book  MATH  Google Scholar 

  16. E. Poem, J. Shemesh, I. Marderfeld, D. Galushko, N. Akopian, D. Gershoni, B.D. Gerardot, A. Badolato, P.M. Petroff, Phys. Rev. B 76, 235304 (2007)

    Article  ADS  Google Scholar 

  17. M. Korkusinski, P. Hawrylak, Phys. Rev. B 87, 115310 (2013)

    Article  ADS  Google Scholar 

  18. M. Zielinski, Y. Don, D. Gershoni, Phys. Rev. B 91, 085403 (2015)

    Article  ADS  Google Scholar 

  19. R.J. Young, R.M. Stevenson, A.J. Shields, P. Atkinson, K. Cooper, D.A. Ritchie, K.M. Groom, A.I. Tartakovskii, M.S. Skolnick, Phys. Rev. B 72, 113305 (2005). doi:10.1103/PhysRevB.72.113305

  20. W. Langbein, P. Borri, U. Woggon, V. Stavarache, D. Reuter, A.D. Wieck, Phys. Rev. B 69, 161301 (2004). doi:10.1103/PhysRevB.69.161301

  21. D. Bimberg, M. Grundmann, N. Ledentsov, Quantum Dot Heterostructures (Wiley, New York, 1999)

    Google Scholar 

  22. G.W. Bryant, M. Zieliński, N. Malkova, J. Sims, W. Jaskólski, J. Aizpurua, Phys. Rev. Lett. 105, 067404 (2010). doi:10.1103/PhysRevLett.105.067404

  23. M.A. Dupertuis, K.F. Karlsson, D.Y. Oberli, E. Pelucchi, A. Rudra, P.O. Holtz, E. Kapon, Phys. Rev. Lett. 107, 127403 (2011)

    Article  ADS  Google Scholar 

  24. M. Zielinski, J. Phys. Condens. Matter 25, 465301 (2013)

    Article  ADS  Google Scholar 

  25. T. Smolenski, T. Kazimierczuk, M. Goryca, T. Jakubczyk, L. Klopotowski, L. Cywiński, P. Wojnar, A. Golnik, P. Kossacki, Phys. Rev. B 86, 241305 (2012)

    Article  ADS  Google Scholar 

  26. B.J. Spencer, J. Tersoff, Phys. Rev. B 87, 161301 (2013). doi:10.1103/PhysRevB.87.161301

  27. Y. Don, M. Zielinski, D. Gershoni. arXiv:1601.05530 (2016)

  28. P. Shor, in 35th Annual Symposium on Foundations of Computer Science, 1994 Proceedings (1994), pp. 124–134

    Google Scholar 

  29. L.K. Grover, in Proceedings of the 28th Annual ACM Symposium on the Theory of Computing (1996), p. 212

    Google Scholar 

  30. M.A. Nielsen, I.L. Chuang, Quantum Computation and Quantum Information, Cambridge Series on Information and the Natural Sciences (Cambridge University Press, Cambridge, 2000)

    MATH  Google Scholar 

  31. D.P. DiVincenzo, Fortschr. Phys. 48, 771 (2000)

    Article  Google Scholar 

  32. T.D. Ladd, F. Jelezko, R. Laflamme, Y. Nakamura, C. Monroe, J.L. O’Brien, Nature 464, 45 (2010)

    Article  ADS  Google Scholar 

  33. H.J. Kimble, Nature 453, 1023 (2008)

    Article  ADS  Google Scholar 

  34. J.I. Cirac, P. Zoller, Phys. Rev. Lett. 74, 4091 (1995)

    Article  ADS  Google Scholar 

  35. T. Monz, P. Schindler, J.T. Barreiro, M. Chwalla, D. Nigg, W.A. Coish, M. Harlander, W. Hänsel, M. Hennrich, R. Blatt, Phys. Rev. Lett. 106, 130506 (2011)

    Article  ADS  Google Scholar 

  36. I. Bloch, Nat. Phys. 1, 23 (2007)

    Article  Google Scholar 

  37. M. Anderlini, P.J. Lee, B. Brown, J. Sebby-Strabley, W.D. Phillips, J.V. Porto, Nature 448, 452 (2007)

    Article  ADS  Google Scholar 

  38. L.M.K. Vandersypen, M. Steffen, G. Breyta, C.S. Yannoni, M.H. Sherwood, I.L. Chuang, Nature 414, 883 (2001)

    Article  ADS  Google Scholar 

  39. C. Negrevergne, T.S. Mahesh, C.A. Ryan, M. Ditty, F. Cyr-Racine, W. Power, N. Boulant, T. Havel, D.G. Cory, R. Laflamme, Phys. Rev. Lett. 96, 170501 (2006)

    Article  ADS  Google Scholar 

  40. L. DiCarlo, J.M. Chow, J.M. Gambetta, L.S. Bishop, B.R. Johnson, D.I. Schuster, J. Majer, A. Blais, L. Frunzio, S.M. Girvin, R.J. Schoelkopf, Nature 460, 240 (2009)

    Article  ADS  Google Scholar 

  41. E. Lucero, R. Barends, Y. Chen, J. Kelley, M. Mariantoni, A. Megrant, P. O’Malley, D. Sank, A. Vainsencher, J. Wenner, T. White, Y. Yin, A.N. Cleland, J.M. Martinis, Nat. Phys. 8, 719 (2012)

    Article  Google Scholar 

  42. R. Barends, J. Kelley, A. Megrant, A. Veitia, D. Sank, E. Jeffrey, T.C. White, J. Mutus, A.G. Fowler, B. Campbell, Y. Chen, Z. Chen, B. Chiaro, A. Dunsworth, C. Neill, P. O’Malley, P. Roushan, A. Vainsencher, J. Wenner, A.N. Korotkov, A.N. Cleland, J.M. Martinis, Nature 508, 500 (2014)

    Article  ADS  Google Scholar 

  43. M.V.G. Dutt, L. Childress, L. Jiang, E. Togan, J. Maze, F. Jelezko, A.S. Zibrov, P.R. Hemmer, M.D. Lukin, Science 316, 1312 (2007)

    Article  Google Scholar 

  44. E. Togan, Y. Chu, A.S. Trifonov, L. Jiang, J. Maze, L. Childress, M.V.G. Dutt, A.S. Sorensen, P.R. Hemmer, A.S. Zibrov, M.D. Lukin, Nature 466, 730 (2010)

    Article  ADS  Google Scholar 

  45. J.R. Petta, A.C. Johnson, J.M. Taylor, E.A. Laird, A. Yacoby, M.D. Lukin, C.M. Marcus, M.P. Hanson, A.C. Gossard, Science 309, 2180 (2005)

    Article  ADS  Google Scholar 

  46. D. Loss, D.P. DiVincenzo, Phys. Rev. A 57, 120 (1998)

    Article  ADS  Google Scholar 

  47. A. Imamoglu, D.D. Awschalom, G. Burkard, D.P. DiVincenzo, D. Loss, M. Sherwin, A. Small, Phys. Rev. Lett. 83, 4204 (1999)

    Article  ADS  Google Scholar 

  48. D. Press, T.D. Ladd, B. Zhang, Y. Yamamoto, Nature 456, 218 (2008)

    Article  ADS  Google Scholar 

  49. A. Greilich, S.E. Economou, S. Spatzek, D.R. Yakovlev, D. Retuer, A.D. Wieck, T.L. Reinecke, M. Bayer, Nat. Phys. 5, 262 (2009)

    Article  Google Scholar 

  50. J. Berezovsky, M.H. Mikkelsen, N.G. Stoltz, L.A. Coldren, D.D. Awschalom, Science 320, 349 (2008)

    Article  ADS  Google Scholar 

  51. B.D. Gerardot, D. Brunner, P.A. Dalgarno, P. Ohberg, S. Seidl, M. Kroner, K. Karrai, N.G. Stoltz, P.M. Petroff, R.J. Warburton, Nature 451, 441 (2008)

    Article  ADS  Google Scholar 

  52. K. DeGreve, P.L. McMahon, D. Press, T.D. Ladd, D. Bisping, C. Schneider, M. Kamp, L. Worschech, S. Hofling, A. Forchel, Y. Yamamoto, Nat. Phys. 7, 872 (2011)

    Article  Google Scholar 

  53. T.M. Godden, J.H. Quilter, A.J. Ramsay, Y. Wu, P. Brereton, S.J. Boyle, I.J. Luxmoore, J. Puebla-Nunez, A.M. Fox, M.S. Skolnick, Phys. Rev. Lett. 108, 017402 (2012)

    Article  ADS  Google Scholar 

  54. L. Gantz, I. Schwartz, E.R. Schmidgall, G. Bahir, D. Gershoni, Coherent control of the bright exciton using resonant biexciton optical transitions (2015, in preparation)

    Google Scholar 

  55. K. Muller, T. Kaldewey, R. Ripszam, J.S. Wildmann, A. Bechtold, M. Bichler, G. Koblmuller, G. Abstreiter, J.J. Finley, Sci. Rep. 3, 1096 (2013)

    Article  Google Scholar 

  56. E.D. Kim, K. Truex, X. Xu, B. Sun, D.G. Steel, A.S. Bracker, D. Gammon, L.J. Sham, Phys. Rev. Lett. 104, 167401 (2010)

    Article  ADS  Google Scholar 

  57. D. Press, K.D. Greve, P.L. McMahon, T.D. Ladd, B. Friess, C. Schneider, M. Kamp, S. Hofling, A. Forchel, Y. Yamamoto, Nature Photonics 4, 367 (2010)

    Article  ADS  Google Scholar 

  58. A.J. Ramsay, S.J. Boyle, R.S. Kolodka, J.B.B. Oliveira, J. Skiba-Szymanska, H.Y. Liu, M. Hopkinson, A.M. Fox, M.S. Skolnick, Phys. Rev. Lett. 100, 197401 (2008)

    Article  ADS  Google Scholar 

  59. A. Greilich, S.G. Carter, D. Kim, A.S. Bracker, D. Gammon, Nat. Photonics 5, 703 (2011)

    Article  ADS  Google Scholar 

  60. J. Fischer, W.A. Coish, D.V. Bulaev, D. Loss, Phys. Rev. B 78, 155329 (2008)

    Article  ADS  Google Scholar 

  61. I. Schwartz, D. Cogan, E.R. Schmidgall, Y. Don, L. Gantz, O. Kenneth, N.H. Lindner, D. Gershoni. Science 354, 434–437 (2016)

    Google Scholar 

  62. J.M. Garcia, G. Medeiros-Ribeiro, K. Schmidt, T. Ngo, J.L. Feng, A. Lorke, J. Kotthaus, P.M. Petroff, Appl. Phys. Lett. 71, 2014 (1997)

    Article  ADS  Google Scholar 

  63. G. Ramon, U. Mizrahi, N. Akopian, S. Braitbart, D. Gershoni, T.L. Reinecke, B. Gerardot, P.M. Petroff, Phys. Rev. B 73, 205330 (2006)

    Article  ADS  Google Scholar 

  64. E.R. Schmidgall, I. Schwartz, L. Gantz, D. Cogan, S. Raindel, D. Gershoni, Phys. Rev. B 90, 241411 (2014)

    Article  ADS  Google Scholar 

  65. Y. Benny, Y. Kodriano, E. Poem, D. Gershoni, T.A. Truong, P.M. Petroff, Phys. Rev. B 86, 085306 (2012)

    Article  ADS  Google Scholar 

  66. R. Hanbury Brown, R.Q. Twiss, Nature 177, 27 (1956)

    Article  ADS  Google Scholar 

  67. E. Poem, D. Gershoni, in Radiative cascades in semiconductor quantum dots, ed. by Leah Bergman, Jeanne L. McHalei. Handbook of Luminescent Semiconductor Materials, (CRC Press, Boca Raton, FL, USA, 2011)

    Google Scholar 

  68. Y. Kodriano, E. Poem, N.H. Lindner, C. Tradonsky, B.D. Gerardot, P.M. Petroff, J.E. Avron, D. Gershoni, Phys. Rev. B 82, 155329 (2010)

    Article  ADS  Google Scholar 

  69. E. Poem, Y. Kodriano, C. Tradonsky, B.D. Gerardot, P.M. Petroff, D. Gershoni, Phys. Rev. B 81, 085306 (2010)

    Article  ADS  Google Scholar 

  70. D.V. Regelman, U. Mizrahi, D. Gershoni, E. Ehrenfreund, W.V. Schoenfeld, P.M. Petroff, Phys. Rev. Lett. 87, 257401 (2001)

    Article  ADS  Google Scholar 

  71. E. Moreau, I. Robert, L. Manin, V. Thierry-Mieg, J.M. Gérard, I. Abram, Phys. Rev. Lett. 87, 183601 (2001)

    Article  ADS  Google Scholar 

  72. G. Ortner, M. Bayer, A. Larionov, V. Timofeev, A. Forchel, Y. Lyanda-Geller, T. Reinecke, P. Hawrylak, S. Fafard, Z. Wasilewski, Phys. Rev. Lett. 90, 086404 (2003)

    Article  ADS  Google Scholar 

  73. R. Presman, E.R. Schmidgall, I. Schwartz, E. Poem, Y. Benny, D. Gershoni, in 31st International Conference on the Physics of Semiconductors (Zurich, Switzerland, 2012)

    Google Scholar 

  74. I. Schwartz, D. Cogan, E.R. Schmidgall, L. Gantz, Y. Don, M. Zielinski, D. Gershoni, Phys. Rev. B 92, 201201 (2015)

    Article  ADS  Google Scholar 

  75. M. Fox, Quantum Optics: An Introduction (Oxford University Press, Oxford, 2006)

    MATH  Google Scholar 

  76. T.H. Stievater, X. Li, D.G. Steel, D. Gammon, D.S. Katzer, D. Park, C. Piermarocchi, L.J. Sham, Phys. Rev. Lett. 87, 133603 (2001)

    Article  ADS  Google Scholar 

  77. H. Kamada, H. Gotoh, J. Temmyo, T. Takagahara, H. Ando, Phys. Rev. Lett. 87, 246401 (2001)

    Article  ADS  Google Scholar 

  78. A. Zrenner, E. Beham, S. Stufler, F. Findeis, M. Bichler, G. Abstreiter, Nature 418, 612 (2002)

    Article  ADS  Google Scholar 

  79. L.M. Woods, T.L. Reinecke, R. Kotlyar, Phys. Rev. B 69, 125330 (2004)

    Article  ADS  Google Scholar 

  80. D.V. Bulaev, D. Loss, Phys. Rev. Lett. 95, 076805 (2005)

    Article  ADS  Google Scholar 

  81. D. Heiss, S. Schaeck, H. Huebl, M. Bichler, G. Abstreiter, J.J. Finley, D.V. Bulaev, D. Loss, Phys. Rev. B 76, 241306 (2007)

    Article  ADS  Google Scholar 

  82. S.E. Economou, T.L. Reinecke, Phys. Rev. Lett. 99, 217401 (2007)

    Article  ADS  Google Scholar 

  83. M.P. Nowak, B. Szafran, Phys. Rev. B 83, 035315 (2011)

    Article  ADS  Google Scholar 

  84. L. Gantz, E.R. Schmidgall, I. Schwartz, Y. Don, E. Waks, G. Bahir, D. Gershoni, Phys. Rev. B 94 (2016). doi:10.1103/PhysRevB.94.045426

  85. A. Muller, E.B. Flagg, P. Bianucci, X.Y. Wang, D.G. Deppe, W. Ma, J. Zhang, G.J. Salamo, M. Xiao, C.K. Shih, Phys. Rev. Lett. 99, 187402 (2007)

    Article  ADS  Google Scholar 

  86. Y.M. He, Y. He, Y.J. Wei, D. Wu, M. Atature, C. Schneider, S. Hofling, M. Kamp, C.Y. Lu, J.W. Pan, Nat. Nanotechnol. 8(3), 213 (2013)

    Article  ADS  Google Scholar 

  87. E.R. Schmidgall, I. Schwartz, D. Cogan, L. Gantz, T. Heindel, S. Reitzenstein, D. Gershoni, Appl. Phys. Lett. 106, 193101 (2015)

    Article  ADS  Google Scholar 

  88. E.R. Schmidgall, Y. Benny, I. Schwartz, L. Gantz, Y. Don, D. Gershoni, Phys. Rev. B 93, 245437 (2016)

    Article  ADS  Google Scholar 

  89. Y. Benny, R. Presman, Y. Kodriano, E. Poem, D. Gershoni, T.A. Truong, P.M. Petroff, Phys. Rev. B 89, 035316 (2014)

    Article  ADS  Google Scholar 

  90. N. Akopian, N.H. Lindner, E. Poem, Y. Berlatzky, J. Avron, D. Gershoni, B.D. Gerardot, P.M. Petroff, Phys. Rev. Lett. 96, 130501 (2006)

    Article  ADS  Google Scholar 

  91. M. Müller, S. Bounouar, K.D. Jöns, M. Glässl, P. Michler, Nat. Photon. 8, 224 (2014)

    Article  ADS  Google Scholar 

  92. D. Gammon, E.S. Snow, B.V. Shanabrook, D.S. Katzer, D. Park, Phys. Rev. Lett. 76, 3005 (1996)

    Article  ADS  Google Scholar 

  93. N.H. Lindner, T. Rudolph, Phys. Rev. Lett. 103, 113602 (2009)

    Article  ADS  Google Scholar 

  94. H.J. Briegel, D.E. Browne, W. Duer, R. Raussendorf, M.V. den Nest, Nat. Phys. 5, 19 (2009)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to E. R. Schmidgall or D. Gershoni .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Schmidgall, E.R., Schwartz, I., Cogan, D., Gantz, L., Don, Y., Gershoni, D. (2017). Coherent Control of Dark Excitons in Semiconductor Quantum Dots. In: Michler, P. (eds) Quantum Dots for Quantum Information Technologies. Nano-Optics and Nanophotonics. Springer, Cham. https://doi.org/10.1007/978-3-319-56378-7_4

Download citation

Publish with us

Policies and ethics