Skip to main content

Heuristic View on Quantum Bio-Photon Cellular Communication

  • Chapter
  • First Online:

Abstract

Both classical physics and quantum mechanics may be operational in cell communication. Living cells seem to ‘talk’ to each other with incredible precision and accuracy to maintain synchrony, unity of purpose and health. Gurwitsch called emissions from living cells ‘mitogenic rays’. Kaznacheyev demonstrated optical coupling between two separated cell cultures. Popp termed the communicating coherent rays, bio-photons, which concentrated in the cell nucleus. Albrecht-Buehler suggested that cells exhibited intelligence. Communication (abscopal, bystander, bio-photon, teleportation) between cells or animals seems to rely on frequency-specific transmission from DNA. Garjajev found that DNA not used for protein synthesis was instead used for hyper-communication as an optical biochip. Mothersill found abundant evidence for bystander data transfer from irradiated to nonirradiated cells, tissues or animals. Communication appears unbelievably coordinated and coherent possibly utilizing bio-photon and/or quantum mediated transfer of information.

Jesus said to the people: I am the light of the world. If you follow me, you won’t be stumbling through the darkness, because you will have the light that leads to life [1].

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. John 8:12 (NIV)

    Google Scholar 

  2. Kent A (2014) Our quantum problem. Aeon (https://aeon.co/essays/what-really-happens-in-schrodinger-s-box)

  3. China Launches World’s 1st ‘Hack-Proof’ Quantum Communication Satellite Monday, August 15, 2016 Swati Khandelwal

    Google Scholar 

  4. Ma X-S, Herbst T, Scheidl T et al (2012) Quantum teleportation over 143 kilometers using active feed forward. Nature 489(7415):269–273. doi:10.1038/nature11472

    Article  CAS  PubMed  Google Scholar 

  5. Internet of Things in 2020. A roadmap for the future. 2008. INFSO D.4 Networked Enterprise & RFID; INFSO GT.2 Micro & Nanosystems; RFID Working Group of the European Technology Platform on Smart Systems Integration (EPoSS)

    Google Scholar 

  6. http://ioeassessment.cisco.com/see

  7. Zeilinger A (2010) Dance of the photons: from Einstein to quantum teleportation. Farrar, Straus and Giroux

    Google Scholar 

  8. (=yhs.(https://images.search.yahoo.com/yhs/search;_ylt=A86.JyMxev5XKGAA3X8PxQt.;_ylu=X3oDMTBsOXB2YTRjBHNlYwNzYwRjb2xvA2dxMQR2dGlkAw--?_adv_prop=image&fr=yhs-ima-002&sz=all&va=mammalian+cell&hspart=ima&hsimp)

  9. Bergman J (1999) ATP: the perfect energy currency for the cell. Creation Research Society 36

    Google Scholar 

  10. WikiAnswers (2016) (http://www.answers.com/Q/How_many_molecules_of_ATP_does_the_human_body_use_per_cell_per_second?#slide=1)

  11. Cell biology by the numbers (book.bionumbers.org)

  12. Lewis RL (2005) Do proteins teleport in an RNA world. International Conference on the Unity of Science, New York

    Google Scholar 

  13. New World Encyclopedia (2013) Enzyme (www.newworldencyclopedia.org)

  14. Quantum Biology. University of Illinois at Urbana-Champaign, Theoretical and Computational Biophysics Group. Wikipedia, September, 2016; Quantum Biology: Powerful Computer Models Reveal Key Biological Mechanism Science Daily, October, 2007

    Google Scholar 

  15. Dennis KL (2012) Quantum consciousness (http://realitysandwich.com)

  16. Cifra M, Fields JZ, Farhad A (2011) Electromagnetic cellular interactions. Prog Biophys Mol Biol 105:223–246

    Article  CAS  PubMed  Google Scholar 

  17. Sanders CL (2014) Letter to the editor: speculations about bystander and bio-photons. Dose-Response 12:515–517

    Article  PubMed  PubMed Central  Google Scholar 

  18. Xuan W, Vatansever F, Huang L et al (2013) Transcranial low-level laser therapy improves neurological performance in traumatic brain injury in mice: effect of treatment repetition regimen. PLoS One 8:e53454

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Garjajer, BI Birshtein, AM Iarochenko et al The DBA-wave biocomputer (http://www.rialian.com/rnboyd/dna-wave.doc)

  20. Garjajev PP (1997) Der wellengenetische Code. ISBN: 5-78160022-1 (in Russian)

    Google Scholar 

  21. Fosar G, Bludorf F Vernetzte Intelligenz (cross-linked intelligence) (http://www.bethcoleman.net/intelligenz.html). ISBN: 3930243237. The book is available in German. Found at www.ryze.com/view.php?who=vitaeb and http://www.fosar-bludorf.com/archiv/biochip_eng.htm

  22. Rosenblum B, Kuttner F (2011) Quantum enigma. Physics encounters consciousness, 2nd edn. Oxford University Press, Oxford, p 304

    Google Scholar 

  23. Cox B, Forshaw JR The quantum universe: everything that can happen does happen. Allen Lance, p 256

    Google Scholar 

  24. Heisenberg W (1958) Physics and philosophy: the revolution in modern science. Harper Perennial Modern Classics edition, p 256

    Google Scholar 

  25. Bohr N (1961) Atomic physics and human knowledge. Science Edition, New York

    Google Scholar 

  26. Gurney RW, Condon EU (1928) Quantum mechanics and radioactive disintegration. Nature 122:439–440

    Article  CAS  Google Scholar 

  27. Paul H 2004 Introduction to quantum optics. From light quanta to quantum teleportation. Cambridge University Press, Cambridge (translated from German by I Jex)

    Google Scholar 

  28. Wang Y, Wang S, Oliva E et al (2014) Gain dynamics in a soft X-ray laser amplifier perturbed by a strong injected X-ray field. Nat Photonics 8:381–384

    Article  CAS  Google Scholar 

  29. Wikipedia (2016) Squeezed coherent state (en.m.wikipedia.org)

  30. Schrödinger E (1935) Discussion of probability relations between separated systems. Math Proc Camb Philos Soc 31:555–563

    Article  Google Scholar 

  31. Schrödinger E (1936) Probability relations between separated systems. Math Proc Camb Philos Soc 32(3):446–452

    Article  Google Scholar 

  32. Moskowitz C Tangled up in spacetime. Scientific American, October 26, 2016

    Google Scholar 

  33. “75 years of entanglement – Science News”, October 13, 2014

    Google Scholar 

  34. Zoller P, Th B, Binosi D et al (2005) Quantum information processing and communication. Eur J Atom Mol Opt Plasma Phys 36:203–228

    CAS  Google Scholar 

  35. Bouwmeester D, Pan J-W, Mattle K et al (1997) Experimental quantum teleportation. Nature 390:575–579

    Article  CAS  Google Scholar 

  36. Wikipedia (2016) Qubit (en.m.wikipedia.org)

  37. Morton JL, Tyryshkin AM, Brown RM et al (2008) Solid-state quantum memory using the 31P nuclear spin. Nature 455:1085–1088

    Article  CAS  Google Scholar 

  38. Saeedi K, Simmons S, Salvail JZ et al (2013) Room-temperature quantum bit storage exceeding 39 minutes using ionized donors in silicon-28. Science 342:830–833

    Article  CAS  PubMed  Google Scholar 

  39. Furusawa A (1998) Unconditional quantum teleportation. Science 282:706–709

    Article  CAS  PubMed  Google Scholar 

  40. Braunstein SL, van Loock P (2005) Quantum information with continuous variables. Rev Mod Phys 77:513–577

    Article  Google Scholar 

  41. Zeilinger A (2000) Quantum teleportation. The science-fiction dream of beaming: objects from place to place is now a reality—at least for particles of light. Sci Am 282:32–43

    Article  Google Scholar 

  42. Bokulich A, Jaeger G (2010) Philosophy of quantum information and entanglement. Cambridge University Press, Cambridge

    Book  Google Scholar 

  43. Polkinghorne J (2014) Physics and theology. http://www.europhysicsnews.org or http://dx.doi.org/10.1051/epn/2014104

  44. Scholkmann F, Fels D, Cifra M (2013) Review article. Non-chemical and non-contact cell-to-cell communication: a short review. Am J Transl Res 5:586–593

    PubMed  PubMed Central  Google Scholar 

  45. Gurwitsch AA (1968) Problems of mitogenetic radiation as an aspect of molecular biology. Meditaina, Leningrad

    Google Scholar 

  46. Beloussov LV (1997) Life of Alexander G. Gurwitsch and his relevant contribution to the theory of morphogenetic fields. Int J Dev Biol 41:771–777

    CAS  PubMed  Google Scholar 

  47. Luckey TD (2008) Evidence for gamma ray photosynthesis. 21st Century science & technology (fall-winter). (http://www.21stcenturysciencetech.com/Articlesn%202008/F-W_2008/Research_Communication.pdf)

    Google Scholar 

  48. Fernandez C (2013) Ultra-violet light emission from HPV-G cells irradiated with low LET radiation from 90-Y: consequences for radiation induced bystander effects. Dose-Response 11:498–516

    PubMed  Google Scholar 

  49. Kaznacheyev VP, Mikhailova LP (1981) Ultraweak radiation in cell interactions (Sverkhslabye izlucheniya v mezhkletochnykh vzaimodeistviyakh). Nauka (In Russian). www.scribd.com/doc/39897582/

  50. Cifra M (2010) Electromagnetic cellular interactions. Prog Biophys Mol Biol 105:223

    Article  PubMed  Google Scholar 

  51. Naba H (1988) Super-high sensitivity systems for detection and spectral analysis of ultra-weak photon emission from biological cells and tissues. Experientia 44:550

    Article  Google Scholar 

  52. Popp FA (1974) Biosignals in the control of cell metabolism: a resonance hypothesis for carcinogenesis. MMW Munch Med Wochenschr 116:381

    CAS  PubMed  Google Scholar 

  53. Ted N (2006) Ultra-weak photon (bio-photon) emissions (UPE) (http://www.anatomyfacts.com/Muscle/photonr.html)

  54. Popp FA (1988) Concerning the question of coherence in biological systems. Cell Biophys 13:218

    Article  CAS  PubMed  Google Scholar 

  55. Bischof M (2003) Introduction to integrative biophysics. In: Popp F (ed) Integrative biophysics, bio-photonics. Kluwer Academic, Dordrecht, pp 1–115

    Google Scholar 

  56. Popp FA, Li KH, Mei WP et al (1988) Physical aspects of bio-photons. Experientia 44:576–585

    Article  CAS  PubMed  Google Scholar 

  57. Bajpai RP (2003) Quantum coherence of bio-photons and living systems. Indian J Exp Biol 41:514

    CAS  PubMed  Google Scholar 

  58. Takeda M (2004) Bio-photon detection as a novel technique for cancer imaging. Cancer Sci 95:656

    Article  CAS  PubMed  Google Scholar 

  59. Albrecht-Buehler G (1992) Rudimentary form of cellular ‘vision’. Proc Natl Acad Sci U S A 89:8288–8292

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Albrecht-Buehler G (1991) Surface extensions of 3T3 cells towards distant infrared light sources. J Cell Biol 114:493–502

    Article  CAS  PubMed  Google Scholar 

  61. Kim M-K, Kim J-Y, Kang J-H et al (2011) On-demand photonic crystal resonators. Laser Photonics Rev 5:479–495

    Article  Google Scholar 

  62. Karnadi I, Kim J-Y, Ahn B-H et al (2012) Efficient photon collection from reconfigurable photonic crystal slab resonator operating at short wavelengths. J Opt Soc Am B 29:2669–2674

    Article  CAS  Google Scholar 

  63. Park DJ, Zhnag C, Ku JC et al (2014) Plasmonic photonic crystals realized through DNA-programmable assembly. Proc Natl Acad Sci 112:977–981

    Article  PubMed  PubMed Central  Google Scholar 

  64. Gisin N (2014) Quantum chance. Nonlocality, teleportation and other quantum marvels. Springer, Berlin

    Google Scholar 

  65. Popp F, Beloussov L (eds) (2013) Kluwer Academic, Dordrecht Conference, pp 1–115. Ultra-weak photon emission for living systems. June 21–23, Palacky University, Olomonc Czech Republic. http://www.upe.2013.upol.cz/program/.html

  66. von Neumann J (1966) The theory of self-reproducing automata. University of Illinois Press, Urbana

    Google Scholar 

  67. Marcer P, Schempp W (1997) The model of the prokaryote cell as an anticipatory system working by quantum holography. Proceedings of CASYS 97, 11–15 August, HEC-Liege, Belgium, International Journal of Computing Anticipatory Systems, 2, pp 307–315

    Google Scholar 

  68. Tanabe T, Notomi M, Kuromochi E et al (2007) Trapping and delaying photons for one nanosecond in an ultrasmall high-Q photonic crystal nanocavity. Nat Photonics 1:49–52

    Article  CAS  Google Scholar 

  69. Popp FA (2003) Properties of bio-photons and their theoretical implications. Indian J Exp Biol 41:391

    PubMed  Google Scholar 

  70. Popp F-A (2006) Bio-photonen-NHeue Horizonte in der Medizin. Von der Grundlagen zur Bio-photonik. Karl F Haug Verlag, Stuttgart, p 69

    Google Scholar 

  71. Popp FA (1984) Bio-photon emission. New evidence for coherence and DNA as source. Cell Biophys 6:33

    Article  CAS  PubMed  Google Scholar 

  72. Chang JJ, Popp FA (2000) Mechanism of interaction between electromagnetic field and living organisms. Science 43:507–522

    Google Scholar 

  73. Laager F (2008) Sources and functions of ultra-weak photon emission. PhD dissertation, Seoul National University, Seoul, Korea. http://www.upe.wikispaces.com/file/view/thesisfredericlaager.pdf/html

  74. Zhao Z, Chen Y-A, Zhang A-N et al (2004) Experimental demonstration of five-photon entanglement and open-destination teleportation. Nature 430:54–58

    Article  CAS  PubMed  Google Scholar 

  75. Lu C-Y, Zhou X-Q, Guhne O et al (2007) Experimental entanglement of six photons in graph states. Nat Phys 3:91–95

    Article  CAS  Google Scholar 

  76. Yao X-C, Wang T-X, He Lu P-X et al (2012) Observation of eight-photon entanglement. Nat Photonics 6:225–228

    Article  CAS  Google Scholar 

  77. Scientists twist light to send data (2013) University of Southern California Press Room (pressroom.usc.edu/scientists-twist-light-to-send-data/)

  78. Feldman M (2013) Twisted light sends data through optical fiber for first time. IEEE Spectrum, July 2. spectrum-ieee.org/tech-talk/semiconductors/design/twisted-light-sends-datathrough-optical-fiber-for-first-time

  79. Kaznacejev VP, Michailova LP (1981) Ultraschwache Luminiszenz in interzellularen Interaktionen. Novosibirsk, Nauka (Quoted in: Garjajer, BI Birshtein, AM Iarochenko et al. The DBA-wave biocomputer (http://www.rialian.com/rnboyd/dna-wave.doc))

  80. Stanford PULSE Institute and SLAC National Accelerator Laboratory. 2016. Schrodinger’s ‘Cat’ molecules give rise to exquisitely detailed movies. Lab Manager (www.labmanager.com/news/2016/09), September 21

  81. Gerdes HH, Pepperkok R (2013) Cell-to-cell communication: current views and future perspectives. Cell Tissue Res 352:1–3

    Article  PubMed  Google Scholar 

  82. Chaban W, Cho T, Reid CB et al (2013) Physically disconnected non-diffusible cell-to-cell communication between neuroblastoma SH-SY5Y and DRG primary sensory neurons. Am J Transl Res 5:69–79

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Fels D (2009) Cellular communication through light. PLoS One 4:e5086. doi:10.1371/journal.pone.0005086

    Article  PubMed  PubMed Central  Google Scholar 

  84. Beloussov LV (2007) Ultraweak photon emission in cells. In: Bio-photonics and coherent systems in biology. Springer, Berlin, pp 139–159

    Chapter  Google Scholar 

  85. Mayburov SN (2012) Photonic communications and information coding in biological systems (arXiv:1205.4134v1)

    Google Scholar 

  86. Mayburov SN (2009) Coherent and noncoherent photonic communications in biological systems. Conference on Nanotechnology and Nanomaterials, MGOU Publishing, Moscow, Russia, pp 351–358. (https://www.researchgate.net/publication/45872625_Coherent_and_Noncoherent_Photonic_Communications_in_Biological_Systems)

  87. Narby J (2006) Intelligence in nature: an inquiry into knowledge. TarcherPerigee, p 288

    Google Scholar 

  88. Quevli N 1916 Cell intelligence: the cause of growth, heredity and instinctive actions, illustrating that the cell is a conscious, intelligent being, and, by reason thereof, plans and builds all plants and animals in the same manner that man constructs houses, railroads and other structures. Colwell Press, Minneapolis

    Google Scholar 

  89. Loehr F (1959) The power of prayer on plants. Doubleday, New York

    Google Scholar 

  90. Byrd R (1988) Positive therapeutic effects of intercessory prayer in a coronary care unit population. South Med J 81:826–829

    Article  CAS  PubMed  Google Scholar 

  91. Harris W, Gowda M, Kolb JW et al (1999) A randomized, controlled trial of the effects of remote, intercession prayer on outcomes in patients admitted to the coronary care unit. Arch Intern Med 159:2273–2278

    Article  CAS  PubMed  Google Scholar 

  92. Wikipedia (2016) Cellular automaton (https://en.wikipedia.org/wiki/Cellular_automaton#Biology)

  93. Sudbery T (1997) The fastest way from A to B. Nature 390:551–552

    Article  CAS  Google Scholar 

  94. Schempp W (1993) Bohr’s indeterminacy principle in quantum holography, self-adaptive neural network architectures, cortical self-organization, molecular computers, magnetic resonance imaging and solitonic nanotechnology nanobiology, 2, pp 109–164

    Google Scholar 

  95. Ho M-W (2008) The rainbow and the worm. The physics of organisms, 3rd edn. Institute of Science in Society, London, p 408

    Book  Google Scholar 

  96. Clarke PG 2013 Neuroscience, quantum indeterminism and the Cartesian soul. Brain Cogn 84:109–117 (PMID:24355546)

  97. Ramirez S, Liu X, Lin PA et al (2013) Creating a false memory in the hippocampus. Science 341:387–391

    Article  CAS  PubMed  Google Scholar 

  98. Hagen S (2014) Can you ‘see’ in the dark? Rochester Review, January–February, p 14

    Google Scholar 

  99. Hayworth CR, Rojas JC, Padilla E et al (2010) In vivo low-level light therapy increases cytochrome oxidase in skeletal muscle. Photochem Photobiol 86:673–680

    Article  CAS  PubMed  Google Scholar 

  100. Agrawal T, Gupta GK, Rai V et al (2014) Pre-conditioning with low-level (light) therapy: light before the storm. Dose-Response 12:619–644

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Huang Y-Y, Sharma SK, Carroll J et al (2011) Biphasic dose response in low level light therapy-an update. Dose-Response 9:602–618

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Waligorski M (2016) SARI

    Google Scholar 

  103. Fornalski KW, Wysocki P (2016) The Monte Carlo simulation of the adaptive response effect in irradiated cells. Presentation, LOWRAD Conference, Warsaw, Poland. doi:10.13140/RG.2.2.15617.66400

  104. Nagasawa H, Little JB (1992) Induction of sister chromatid exchanges by extremely low-doses of alpha-particles. Cancer Res 52:6394–6396

    CAS  PubMed  Google Scholar 

  105. Dendy PP, Brugmans MJP (2003) Low dose radiation risks. Br J Radiol 76:674–677

    Article  CAS  PubMed  Google Scholar 

  106. Redpath JL (2006) Suppression of neoplastic transformation in vitro by low doses of low LET radiation. Dose-Response 4:302–308

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Azzam EI, De Toledo SM, Raaphorst GP et al (1996) Low-dose ionizing radiation decreases the frequency of neoplastic transformation to a level below the spontaneous rate in C3H 10T1/2 cells. Radiat Res 146:369–373

    Article  CAS  PubMed  Google Scholar 

  108. Ng CY, Chang SH, Yu KN (2017) Effect of photon hormesis on dose responses to alpha particles in zebra fish embryos. Int J Mol Sci 18:385–398

    Article  PubMed Central  Google Scholar 

  109. Wright EG (1998) Radiation-induced genomic instability in haemopoietic cells. Int J Radiat Biol 74:681–687

    Article  CAS  PubMed  Google Scholar 

  110. Mothersill C (2013) Transmission of signals from rats receiving high doses of microbeam radiotherapy to cage mates: an inter-mammal bystander effect. Dose-Response 12:72–92

    PubMed  PubMed Central  Google Scholar 

  111. Ahmad SB (2013) Ultra-violet light emission from HPV-G cells irradiated with low LET radiation from 90Y: consequences for radiation induced bystander effects. Dose-Response (Pre-press)

    Google Scholar 

  112. Mothersill C (2006) A role for bioelectric effects in the induction of bystander signals by ionizing radiation. Dose-Response 5:214

    Google Scholar 

  113. Mothersill C (2013) Alternative medicine techniques have non-linear effects on radiation response and can alter the expression of radiation induced bystander effects. Dose-Response 11:82

    Article  PubMed  Google Scholar 

  114. Mothersill C, Seymour C (1997) Medium from irradiated human epithelial cells but not human fibroblasts reduces the clonogenic survival of unirradiated cells. Int J Radiat Biol 71:421–427

    Article  CAS  PubMed  Google Scholar 

  115. Daev EV. 2007. Chromosomal abnormalities and splenocyte production in laboratory mouse males after exposure to stress chemosignals. Tsitologiia 49:696 (quoted in Mothersill110).

    Google Scholar 

  116. Woenckhaus E. 1930. Beitrag zur Allgemeinwirkung der Rontgenstrahlen. Naunyn Schmiedeberg’s Arch Pharmacol 150:182 (quoted in Mothersill110).

    Google Scholar 

  117. Fernandez-Palomo C, Schulke E, Brauer-Krisch E et al (2016) Investigation of abscopal and bystander effects in immunocompromised mice after exposure to pencil-beam and micro-beam synchroton radiation. Health Phys 111:149–159

    Article  CAS  PubMed  Google Scholar 

  118. Hanu C, Wong R, Sur RK et al (2016) Low-dose non-targeted radiation effects in human esophageal adenocarcinoma cell lines. Dose-Response 93(2):165–173

    Google Scholar 

  119. Azzam EL (2004) The radiation-induced bystander effect: evidence and significance. Hum Exp Toxicol 23:61

    Article  PubMed  Google Scholar 

  120. Chen S, Zhao Y, Han W et al (2011) Rescue effects in radiobiology: Unirradiated bystander cells assist irradiated cells through intercellular signal feedback. Mutat Res 706:59–64

    Article  CAS  PubMed  Google Scholar 

  121. Lam RKK, Fung YK, Han W et al (2015) Rescue effects: irradiated cells help by unirradiated bystander cells. Int J Mol Sci 16:2591–2609

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Kong EY, Choi VWY, Cheng SH et al (2014) Some properties of the signal involved in unirradiated zebrafish embryos rescuing a-particle irradiated zebra fish embryos. Int J Radiat Biol 90:1133–1142

    Article  CAS  PubMed  Google Scholar 

  123. Elsasser WM (1981) Principles of a new biological theory: a summary. J Theor Biol 89:131–150

    Article  CAS  PubMed  Google Scholar 

  124. Marcus CS (2016) Destroying the linear no-threshold basis for radiation regulation: a commentary. Dose-Response 14(4):1–3. doi:10.1177/1559325816673491

    Article  Google Scholar 

  125. Hill M (2000) Adaptive state of mammalian cells and its nonseparability suggestive of a quantum system. Scr Med (Brno) 73:211–222

    Google Scholar 

  126. Ho M-W 2003 Living with the fluid genome. Institute of Science in Society, London. ISBN: 0-9544923-0-07

    Google Scholar 

  127. Van Wijk R (2001) Bio-photons and bio-communication. J Sci Explor 15:183

    Google Scholar 

  128. Farhadi A, Forsyth C, Banan A et al (2007) Evidence of non-chemical, non-electrical intercellular signaling in intestinal epithelial cells. Bioelectrochemistry 71:142–148

    Article  CAS  PubMed  Google Scholar 

  129. Bio-photon communication: can cells talk using light? (2012) MIT Technology Review. (arxiv.org/abs/1205.4134)

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Sanders, C.L. (2017). Heuristic View on Quantum Bio-Photon Cellular Communication. In: Radiobiology and Radiation Hormesis . Springer, Cham. https://doi.org/10.1007/978-3-319-56372-5_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-56372-5_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-56371-8

  • Online ISBN: 978-3-319-56372-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics