Skip to main content

Benefits in Disease Prevention, Control, and Cure

  • Chapter
  • First Online:
Radiobiology and Radiation Hormesis
  • 828 Accesses

Abstract

The health benefits from low dose ionizing radiation are many, that proceed beyond the benefits of preventing many diseases and prolonging lifespan or even reversing aging. Moderate doses of X-rays from 0.5-3.0 Gy were successfully used in the first half of the 20th century to treat many inflammatory and infectious diseases. Low dose radiation (LDR) may also be effective in treating viral infections such as hepatitis and HIV/AIDS, as well as difficult to treat infections like MRSA. A few cases of neurodegenerative disease (AD, PD) have responded to a series of brain CT scans. The addition of LDR to high dose radiotherapy or chemotherapy has significantly improved survival for non-Hodgkins lymphoma and other tumor types. The use of radioactive pads (Chapter 7) is also effective in treating a wide variety of health issues.

Don’t take life so seriously. It’s not like you’re going to get out alive (Kermit the Frog)

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    UNICEF. Malawi death rate for 2013.

  2. 2.

    U.S. Nuclear Regulatory Commission (2007).

References

  1. Taylor LS (1980) Some nonscientific influences on radiation protection standards and practice. The 1980 Sievert lecture. Health Phys 39:851–874 (The lecture was delivered at the Fifth International Congress of the International Radiation Protection Association, Jerusalem, Israel in March, 1980)

    Google Scholar 

  2. Bavley H (1950) Shoe-fitting with X-ray. National Safety News 62:107–111 (orau.org https://www.orau.org/ptp/collection/shoefittingfluor/shoe.htm)

  3. Moeller DW (1996) A historical note—the shoe-fitting fluoroscope. HPS Newsletter June, pp 6–8

    Google Scholar 

  4. Murphy SL, Kochanek KD, Xu J et al (2015) Mortality in the United States, 2014. NCHS Data Brief No. 229

    Google Scholar 

  5. Buettner D (2009) The blue zones. 9 Lessons for living longer lives from the people who’ve lived the longest. National Geographic, Washington, DC, 320 p

    Google Scholar 

  6. World Health Organization (2002) World Health Report 2002. Reducing Risks, Promoting Healthy Life. WHO, Geneva. (www.who.int/whr)

    Google Scholar 

  7. Doll R, Peto R (1981) The causes of cancer: quantitative estimates of avoidable risks of cancer in the United States today. J Natl Cancer Inst 66:1191–1308

    Article  CAS  PubMed  Google Scholar 

  8. Remington PL, Brownson RC (2011) Fifty years of progress in chronic disease epidemiology and control. MMWR Surveill Summ 60(Suppl 4):70–77

    Google Scholar 

  9. Smith GM, Thorne MC (2016) Communicating the significance of different levels of dose. J Radiol Prot 36:1004–1007

    Article  CAS  PubMed  Google Scholar 

  10. Doss M (2016) Evidence against the LNT model with appendix.pdf (mohan.doss@fccc.edu)

    Google Scholar 

  11. Executive Summary (2009) Evaluation of Updated Research on the Health Effects and Risks Associated with Low-Dose Ionizing Radiation. EPRI Technical Report No. 1019227

    Google Scholar 

  12. Nuclear and Radiation Studies Board, Division of Earth and Life Studies, National Research Council (2012) Analysis of cancer risks in populations near nuclear facilities. The National Academies Press, Washington, DC, p 424

    Google Scholar 

  13. Muckerheide J (2000) It’s time to tell the truth about the health effects of low-dose radiation. 21st Century Science & Technology Magazine. http://www.21stcenturysciencetech.com/articles/nuclear.html?LNT%20Myth

  14. Walinder G (1995) Has radiation protection become a health hazard? Karnkraftsakerhet & Utbildning AB, Swedish Nuclear Training and Safety Center, Nykoping, Sweden

    Google Scholar 

  15. UNSCEAR (1958) Report of the United Nations Scientific Committee on the Effects of Atomic Radiation. General Assembly, Supplement No. 17 (A/3838), New York

    Google Scholar 

  16. Beir V (1990) Health effects of exposure to low levels of ionizing radiation. National Academy Press, Washington, DC

    Google Scholar 

  17. Jaworowski Z (2010) Radiation hormesis—a remedy for fear. Hum Exp Toxicol 29:263–270

    Article  PubMed  Google Scholar 

  18. UNSCEAR (2012) Report of the United Nations Scientific Committee on the Effects of Atomic Radiation. Sources, effects and risks of ionizing radiation. Report to the General Assembly, with scientific annexes, New York

    Google Scholar 

  19. Wald N (1958) Leukemia in Hiroshima city atomic bomb survivors. Science 127:699–700

    Article  CAS  PubMed  Google Scholar 

  20. Fliedner TM, Graessle DH, Feinendegen LE (2012) Hemopoietic response to low dose-rates of ionizing radiation shows stem cell tolerance and adaptation. Dose Response 10:644–663

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. O’Brien FW (1929) The roentgen diagnoses and treatment of enlarged symptomless thymus. Am J Roentgenol Radiat Ther 21:271

    Google Scholar 

  22. Janower MI (1971) Neoplasms after childhood irradiation of the thymus gland. JAMA 215:753

    Article  CAS  PubMed  Google Scholar 

  23. Henry H (1961) Is all nuclear radiation harmful? JAMA 176:671–675

    Article  CAS  PubMed  Google Scholar 

  24. Hempelmann LH (1968) Risk of thyroid neoplasms after irradiation in children. Science 160:159

    Article  CAS  PubMed  Google Scholar 

  25. Adams MJ (2010) Thyroid cancer risk 40+ years after irradiation for an enlarged thymus: an update of the Hempelmann cohort. Radiat Res 174:753

    Article  CAS  PubMed  Google Scholar 

  26. Siegel R, Naishadham D, Jemal A (2012) Cancer statistics, 2012. CA Cancer J Clin 62:10–29

    Article  PubMed  Google Scholar 

  27. Sanders CL (1996) Prevention and therapy of cancer and other common diseases: alternative and traditional approaches. Infomedix, Richland, WA, p 3000

    Google Scholar 

  28. Rattan SI (2006) Theories of biological aging: genes, proteins, and free radicals. Free Radic Res 40:1230–1238

    Article  CAS  PubMed  Google Scholar 

  29. Le Bourg E, Rattan SIS (2014) Preface: hormesis and its use in human health. Scope and perspective. In: Rattan SIS, Le Bourg E (eds) Hormesis in health and disease. CRC, Boca Raton, FL

    Google Scholar 

  30. Rattan SIS, Demirovic D (2010) Hormesis can and does work in humans. Dose Response 8:58–63

    Article  Google Scholar 

  31. Greaves M (2014) Does everyone develop covert cancer? Nat Rev Cancer. doi:10.1038/nrc3703

    PubMed  Google Scholar 

  32. Global Cancer (2011) Facts & Figures, 2nd ed, American Cancer Society

    Google Scholar 

  33. Laine L (2006) GI risk and risk factors of NSAIDs. J Cardiovasc Pharmacol 47(Suppl 1):S60–S66

    Article  CAS  PubMed  Google Scholar 

  34. Moeller DW (2001) I am confused. HPS Newsletter 29(11)

    Google Scholar 

  35. Rogers N (2012) Forbidden science: low level radiation and cancer. American Thinker, July 6

    Google Scholar 

  36. Dauer LT, Brooks AL, Hoel DG et al (2010) Review and evaluation of updated research on the health effects associated with low-dose ionizing radiation. Radiat Prot Dosimetry 140:103–136

    Article  CAS  PubMed  Google Scholar 

  37. Mattson MP (2008) Hormesis defined. Ageing Res Rev 7:1–7

    Article  CAS  PubMed  Google Scholar 

  38. Schubauer-Berigan MK, Macievic GV, Utterback DF et al (2005) An epidemiologic study of mortality and radiation-related risk of cancer among workers at the Idaho National Engineering and Environmental Laboratory, a U.S. Department of Energy facility. HHS (NIOSH) Publication No. 2005-131, Cincinnati, OH

    Google Scholar 

  39. Sanders CL (2010) Radiation hormesis and the linear-no-threshold assumption. Springer, Berlin

    Book  Google Scholar 

  40. Higson DJ (2004) The bell tolls for LNT. Health Phys 87:547–550

    Article  Google Scholar 

  41. Luckey TD (2000) Radiobiology deception reject health. Paper 8788, Proc ICONE 8. 8th Annual Conf Nucl Engineering, Baltimore, MD, April

    Google Scholar 

  42. Luckey TD (2008) Abundant health from radioactive waste. Int J Low Radiat 5:71–82

    Article  Google Scholar 

  43. Sanders CL (2012) Potential treatment of inflammatory and proliferative diseases by ultra-low doses of ionizing radiations. Dose Response 10:610–625

    Article  PubMed  PubMed Central  Google Scholar 

  44. Soutar I (2016) Radiant beads (radiation hormesis tools). www.radiant-beads.com

  45. Soutar I (2016) Hormesis and low dose radiation. Healing yourself with low dose nuclear radiation (www.radiation-hormesis.com)

  46. Pollycove M, Feinendegen LE (2003) Radiation-induced versus endogenous DNA damage: possible effect of inducible protective responses in mitigating endogenous damage. Hum Exp Toxicol 22:290–306

    Article  CAS  PubMed  Google Scholar 

  47. Hoeijmakers JH (2009) DNA damage, aging and cancer. N Engl J Med 361:1475–1485

    Article  CAS  PubMed  Google Scholar 

  48. Liu SZ (2007) Cancer control related to stimulation of immunity by low-dose radiation. Dose Response 5:39–47

    Article  CAS  Google Scholar 

  49. Sakai K, Hoshi Y, Nomura T, Oda T, Iwasaki T, Fujita K, Yamada T, Tanooka H (2003) Suppression of carcinogenic process in mice by chronic low dose rate gamma-irradiation. Int J Low Radiat 1:142–146

    Article  Google Scholar 

  50. Nomura T, Sakai K, Ogata H et al (2013) Prolongation of life span in the accelerated aging klotho mouse model, by low-dose-rate continuous [gamma] irradiation. Radiat Res 179:717–724

    Article  CAS  PubMed  Google Scholar 

  51. Boonstra R, Manzon RG, Mihok S et al (2009) Hormetic effects of gamma radiation on the stress axis of natural populations of meadow voles (Microtus pennsylvanicus). Environ Toxicol Chem 24:334–343

    Article  Google Scholar 

  52. Luckey TD (1980) Hormesis with ionizing radiation. CRC, Boca Raton, FL

    Google Scholar 

  53. Brown SO, Krise GM, Pace HB (1963) Continuous low-dose radiation effects on successive litters of the albino rat. Radiat Res 19:270–276

    Article  CAS  PubMed  Google Scholar 

  54. Caratero A, Courtade M, Bonnet L et al (1998) Effect of a continuous gamma irradiation at a very low dose on the life span of mice. Gerontology 44:272–276

    Article  CAS  PubMed  Google Scholar 

  55. Dupont P (2003) A database of cancer induction by low-dose radiation in mammals: overview and initial observations. Int J Low Radiat 1:120–131

    Article  Google Scholar 

  56. Brucer M (1990) A chronology of nuclear medicine. Heritage, St. Louis

    Google Scholar 

  57. Yamamoto O, Seyuma T, Itoh H et al (1995) Oral administration of tritiated water (HTO) in mouse. II. Tumours development. Int J Radiat Biol 68:47–54

    Article  PubMed  Google Scholar 

  58. Yu X, Lu L, Wen S, Wang Y (2009) The effects of Fhit on tumorigenesis after multi-exposure to low-dose radiation. Int J Clin Exp Med 2:348–353

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Cameron JR (1992) The good news about low level radiation exposure: health effects of low level radiation in shipyard workers. Health Phys Soc Newsl 20:9

    Google Scholar 

  60. Luan YC (1998) Follow-up study of the incidence of the Co-60 radiation contaminated building in Taiwan. RBC Pollution Prevention Society of R.O.C.; also, personal communication, Nuclear Energy Research Institute, Yang Ming Univ., Taiwan, p 1997

    Google Scholar 

  61. Chen WL, Luan YC, Shieh MC et al (2004) Is chronic radiation an effective prophylaxis against cancer? J Am Phys Surg 9:6–10

    Google Scholar 

  62. Howe GR, Zablotska LB, Fix JJ et al (2004) Analysis of the mortality experience amongst U.S. nuclear power industry workers after chronic low-dose exposure to ionizing radiation. Radiat Res 162:517–526

    Article  CAS  PubMed  Google Scholar 

  63. Sanders CL, Scott BR (2008) Smoking and hormesis as confounding factors in radiation pulmonary carcinogenesis. Dose Response 6(1):53–79

    Article  CAS  Google Scholar 

  64. Atkinson WD, Law DV, Bromley KJ et al (2004) Mortality of employees of the United Kingdom Atomic Authority, 1946–1997. Occup Environ Med 61:577–585

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Sponsler R, Cameron JR (2005) Nuclear shipyard worker study (1980–1988): a large cohort exposed to low-dose-rate gamma radiation. Int J Low Radiat 1:463–478

    Article  Google Scholar 

  66. Beir V (1990) “Health Effects of Exposure to Low Levels of Ionizing Radiation,” Report of the Advisory Committee on the Biological Effects of Ionizing Radiations (BEIR Committee). National Academy of Sciences-National Research Council, Washington, DC

    Google Scholar 

  67. Cardis E, Gilbert ES, Carpenter L et al (1995) Effects of low doses and low dose rates of external ionizing radiation: cancer mortality among nuclear industry workers in three countries. Radiat Res 142:117–132

    Article  CAS  PubMed  Google Scholar 

  68. Cardis E, Vrijheid M, Blettner M et al (2005) Risk of cancer after low doses of ionizing radiation: retrospective cohort study in15 countries. Br Med J 331:77–80

    Article  CAS  Google Scholar 

  69. Cardis E, Vrijheid M, Blettner M et al (2007) The 15-country collaborative study of cancer risk among radiation workers in the nuclear industry: estimates of radiation-related cancer risks. Radiat Res 167:396–416

    Article  CAS  PubMed  Google Scholar 

  70. Vrijheid M, Cardis E, Blettner M et al (2007) The 15-country collaborative study of cancer risk among radiation workers in the nuclear industry: design, epidemiological methods and descriptive results. Radiat Res 167:361–379

    Article  CAS  PubMed  Google Scholar 

  71. Fornalski KW, Dobrzynski L (2013) The cancer risk among workers of the nuclear centre at Swierk, Poland. Nukleonika 58:537–542

    CAS  Google Scholar 

  72. Tubiana M (2011) A new method of assessing the dose-carcinogenic effect relationship in patients exposed to ionizing radiation. A concise presentation of preliminary data. Health Phys 100:296

    Article  CAS  PubMed  Google Scholar 

  73. Nam RK, Cheung P, Herschorn S et al (2014) Incidence of complications other than urinary incontinence or erectile dysfunction after radical prostatectomy or radiotherapy for prostate cancer. A population-based cohort study. Lancet Oncol 15:223–231

    Article  PubMed  Google Scholar 

  74. Muckerheide J (2005) There has never been a time that the beneficial effects of low-dose ionizing radiation were not known. Radiation, Science and Health. http://cnts.wpi.edu/rsh/docs/

  75. Caffrey WG, Wilson NE (1897) Medicinal properties of Rontgen rays. The Electrical World, p 67, January 9

    Google Scholar 

  76. Solokoff Röntgenstrahlen gegen Gelenkrheumatismus (1898) Wiener Medizinische Wochenschrift, p 570

    Google Scholar 

  77. Mould RF (1993) A century of X-rays and radioactivity in medicine. With emphasis on photographic records of the early years. Institute of Physics, Bristol, p 84

    Google Scholar 

  78. Pusey WA (1911) The biological effects of radium. Science 33:1001

    Article  CAS  PubMed  Google Scholar 

  79. Gudkov A, Komarova EA (2016) P53 and the carcinogenicity of chronic inflammation. Cold Spring Harb Perspect Med. doi:10.1101/cshperspect.a026161

    PubMed  Google Scholar 

  80. Mishra KP (2017) Carcinogenic risk from low-dose radiation exposure is overestimated. J Radiat Cancer Res 8:1–3

    Article  Google Scholar 

  81. Cuttler JM (2013) Commentary on Fukushima and beneficial effects of low radiation. Dose Response 11:447–458

    Article  PubMed Central  Google Scholar 

  82. Calabrese EJ (2008) Pain and U-shaped dose responses: occurrence, mechanisms and clinical implications. Crit Rev Toxicol 38:579–590

    Article  CAS  PubMed  Google Scholar 

  83. Micke O, Seegenschmiedt MH (2002) Consensus guidelines for radiation therapy of benign diseases: a multicenter approach in Germany. Int J Radiat Oncol Biol Phys 52:496–513

    Article  PubMed  Google Scholar 

  84. Scott SG (1926) Method of treating asthma by radiation. Br J Med 1:939–941

    Article  CAS  Google Scholar 

  85. Hattori S (2000) The therapeutic application of low dose radiation (hormetic effects). Central Research Institute of Electric Power Industry (CRIEPI), Tokyo, Japan

    Google Scholar 

  86. Williams J, Chen Y, Y Rubin P et al (2003) The biological basis of a comprehensive grading system for the adverse effects of cancer treatment. Semin Radiat Oncol 13:182–188

    Article  PubMed  Google Scholar 

  87. Rödel F, L Keilholz L, Herrmann M et al (2007) Radiobiological mechanisms in inflammatory diseases of low-dose radiation therapy. Int J Radiat Biol 83:357–366

    Article  PubMed  CAS  Google Scholar 

  88. Seegenschmiedt MH, Micke O, Willich N (2004) Radiation therapy for nonmalignant diseases in Germany. Current concepts and future perspectives. Strahlenther Onkol 180:718–730

    Article  PubMed  Google Scholar 

  89. Seegenschmiedt MH, Makoski HB, Trott KR et al (2008) Radiotherapy for non-malignant disorders. Berlin, Heidelberg

    Book  Google Scholar 

  90. Lagouge M, Larsson NG (2013) The role of mitochondrial DNA mutations and free radicals in disease and ageing. J Int Med 273:529–543

    Article  CAS  Google Scholar 

  91. El-Ghazaly MA, Sadik NAH, Rashed ER et al (2015) Neuroprotective effect of EGb761® and low-dose whole-body γ-irradiation in a rat model of Parkinson’s disease. Toxicol Ind Health 31:1128–1143

    Article  CAS  PubMed  Google Scholar 

  92. Goldman S (2013) Scientists coax brain to regenerate cells lost in Huntington’s disease. Rochester Review, September–October, p 16

    Google Scholar 

  93. Greene-Schloesser D, Robbins ME, Peiffer AM, Shaw EG, Wheeler KT, Chan MD (2012) Radiation-induced brain injury. a review. Front Oncol 2:73

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Cameron HA, McKay R (1999) Restoring production of hippocampal neurons in old age. Nat Neurosci 2:894–897

    Article  CAS  PubMed  Google Scholar 

  95. Wersinger C (2002) Inflammation and Parkinson’s disease. Inflamm Allergy 1:221

    CAS  Google Scholar 

  96. Cherry JD, Bin L, Frost JL et al (2012) Galactic cosmic radiation leads to cognitive impairment and increased Ab plaque accumulation in a mouse model of Alzheimer’s disease. PLoS One 7(12):e52375

    Article  CAS  Google Scholar 

  97. Toni N, Laplagne DA, Zhao C et al (2008) Neurons born in the adult dentate gyrus form functional synapses with target cells. Nat Neurosci 11:901–907

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Rodel F, Frey B, Gaipi U et al (2012) Modulation of inflammatory immune reactions by low-dose ionizing radiation: molecular mechanisms and clinical application. Curr Med Chem 19:1741–1780

    Article  CAS  PubMed  Google Scholar 

  99. Seegenschmiedt MH, Keilholz L, Martus P et al (1997) Prevention of heterotopic ossification about the hip: final results of two randomized trials in 410 patients using either preoperative or postoperative radiation therapy. Int J Radiat Oncol Biol Phys 39:161–171

    Article  CAS  PubMed  Google Scholar 

  100. Cannon B, Randolph JG, Murray JE (1959) Malignant irradiation for benign conditions. NEJM 260:197–202

    Article  CAS  PubMed  Google Scholar 

  101. Court-Braun WM, Doll R (1965) Mortality from cancer and other causes after radiotherapy for ankylosing spondylitis. Br Med J 2:1327–1332

    Article  Google Scholar 

  102. Calabrese EJ (2013) Low dose radiation therapy (LD-RT) is effective in the treatment of arthritis. Animal model findings. Int J Radiat Biol 89:287–294

    Article  CAS  PubMed  Google Scholar 

  103. von Pannewitz G (1933) Die Röntgentherapie der Arthritis deformans. Ergebnisse der medizinischen Strahlenforschung 6:62–126

    Google Scholar 

  104. Micke O, Seegenschmiedt MH (2004) Radiotherapy in painful heel spurs (plantar fasciitis)-results of a national patterns of care study. Int J Radiat Oncol Biol Phys 58:828–843

    Article  PubMed  Google Scholar 

  105. Heyd R, Seegenschmiedt MH, Rades D et al (2010) Radiotherapy for symptomatic vertebral hemangiomas: results of a multicenter study and literature review. Int J Radiat Oncol Biol Phys 77:217–225

    Article  PubMed  Google Scholar 

  106. Leer JW, van Houtte P, Seegenschmiedt MH (2007) Radiotherapy of non-malignant disorders: where do we stand? Radiother Oncol 83:175–177

    Article  PubMed  Google Scholar 

  107. Niewald M, Seegenschmiedt MH, Micke O et al (2008) Randomized multicenter trial on the effect of radiotherapy for plantar Fasciitis (painful heel spur) using very low doses—a study protocol. Radiat Oncol 3:27

    Article  PubMed  PubMed Central  Google Scholar 

  108. Muecke R, Micke O, Reichl B et al (2007) Demographic, clinical and treatment related predictors for event-free probability following low-dose radiotherapy for painful heel spurs - a retrospective multicenter study of 502 patients. Acta Oncol 46:239–246

    Article  PubMed  Google Scholar 

  109. Heyd R, Tselis N, Ackermann H et al (2007) Radiation therapy for painful heel spurs: results of a prospective randomized study. Strahlenther Onkol 183:3–9

    Article  PubMed  Google Scholar 

  110. Heyd R, Dorn AP, Herkstroter M et al (2010) Radiation therapy for early stages of morbus Ledderhose. Strahlenther Onkol 186:24–29

    Article  PubMed  Google Scholar 

  111. Calabrese EJ, Dhawan G, Kapoor R (2014) Use of X-rays to treat shoulder tendonitis/bursitis: a historical assessment. Arch Toxicol 88:1503–1507

    Article  CAS  PubMed  Google Scholar 

  112. Budras KD, Hartung K, Munzer BM (1986) Light and electron microscopy studies of the effect of roentgen irradiation on the synovial membrane of the inflamed knee joint. Berl Munch Tierarztl Wochenschr 99:148–152

    CAS  PubMed  Google Scholar 

  113. Fischer U, Kamprad F, Koch F et al (1998) The effects of low-dose Co-60 irradiation on the course of aseptic arthritis in a rabbit knee joint. Strahlenther Onkol 174:633–639

    Article  CAS  PubMed  Google Scholar 

  114. Trott KR, Parker R, Seed MP (1995) The effect of X-rays on experimental arthritis in the rat. Strahlenther Onkol 171:534–538

    CAS  PubMed  Google Scholar 

  115. Nakatsukasa H, Tsukimoto M, Ohshima Y et al (2008) Suppressing effects of low-dose gamma-ray irradiation on collagen-induced arthritis. J Radiat Res 49:381–389

    Article  CAS  PubMed  Google Scholar 

  116. Nakatsukasa H, Tsukimoto M, Tokunaga A et al (2010) Repeated gamma irradiation attenuates collagen-induced arthritis via up-regulation of regulatory T cells but not by damaging lymphocytes directly. Radiat Res 174:313–324

    Article  CAS  PubMed  Google Scholar 

  117. Frey B, Gaipl US, Sarter K et al (2009) Whole body low dose irradiation improves the course of beginning polyarthritis transgenic mice. Autoimmunity 42:346–348

    Article  CAS  PubMed  Google Scholar 

  118. Niewald M, Fleckenstein J, Naumann S et al (2007) Long-term results of radiotherapy for periarthritis of the shoulder: a retrospective evaluation. Radiat Oncol 2:34

    Article  PubMed  PubMed Central  Google Scholar 

  119. Adamietz B, Schulz-Wendtland R, Alibek S et al (2010) Calcifying tendonitis of the shoulder joint: predictive value of pretreatment sonography for the response to low-dose radiotherapy. Strahlenther Onkol 186:18–23

    Article  PubMed  Google Scholar 

  120. Betz N, Ott OJ, Adamietz B et al (2010) Radiotherapy in early-stage Dupuytren’s contracture. Long-term results after 13 years. Strahlenther Onkol 186:82–90

    Article  PubMed  Google Scholar 

  121. Mücke R, Seegenschmiedt MH, Heyd R et al (2010) Radiotherapy in painful gonarthrosis. Results of a national patterns-of-care study. Strahlenther Onkol 186:7–17

    Article  PubMed  Google Scholar 

  122. Otani A (2012) Low-dose-rate, low-dose irradiation delays neurodegeneration in a model of retinitis pigmentosa. Am J Pathol 180:328

    Article  CAS  PubMed  Google Scholar 

  123. Berk LB, Hodes PJ (1991) Roentgen therapy for infections: an historical review. Yale J Biol Med 64:155–165

    CAS  PubMed  PubMed Central  Google Scholar 

  124. Shrader W (1896) Experiments with X-rays upon germs. Electr Eng 22:176–177

    Google Scholar 

  125. Freund L (1904) Elements of general radiotherapy for practitioners. Rebman, New York

    Google Scholar 

  126. Lortet L, Genoud P (1896) Tuberculare experimentale attenuee par la radiation Rontgen. Académie des sciences, pp 1511–1512

    Google Scholar 

  127. Ford FA (1927) The effect of roentgen rays on the development of tuberculosis in guinea pigs. Radiology 9:235. doi:10.1148/9.3.235

    Article  Google Scholar 

  128. Kelly JF, Dowell DA (1942) Roentgen treatment of infection. Year Book, Chicago

    Google Scholar 

  129. Cuttler JM (2008) Book review: Roentgen treatment of infections by JF Kelly and DA Dowell. Can Nucl Soc Bull 29:43–44

    Google Scholar 

  130. Cragle DL, McLain RW, Qualters JR et al (1988) Mortality among workers at a nuclear fuels production facility. Am J Ind Med 14:379–401

    Article  CAS  PubMed  Google Scholar 

  131. Matanoski GM (1991) Health effects of low-level radiation in shipyard workers. Final report. Report No. DOE DE-ACO2-79EV10095. U.S. Department of Energy, Washington, DC

    Google Scholar 

  132. Hurwitz S, Zuckerman SN (1937) Roentgen rays in the treatment of acute cervical adenitis. J Pediatr 10:772–780

    Article  Google Scholar 

  133. Schenck SG (1935) Roentgen therapy for acute cervical adenitis. Am J Dis Child 49:1472–1486

    Google Scholar 

  134. Calabrese E, Dhawan G (2014) Historical use of X-rays: treatment of inner ear infections and prevention of deafness. Hum Exp Toxicol 33:542–553

    Article  CAS  PubMed  Google Scholar 

  135. Warlick SR (1996) Military use of nasopharyngeal irradiation with radium during World War II. Otolaryngol Head Neck Surg 115:391–394

    CAS  PubMed  Google Scholar 

  136. Cuttler JM (2004) Low-dose irradiation therapy to cure gas gangrene infections. Int J Low Radiat 1:318–328

    Article  Google Scholar 

  137. Calabrese EJ, Dhawan G (2012) The role of X-rays in the treatment of gas gangrene: a historical assessment. Dose Response. doi:10.2203/dose-response.12-016

    Google Scholar 

  138. Kelly JF, Dowell DA (1941) Twelve-year review of x-ray therapy of gas gangrene. Radiology 37:421–439

    Article  Google Scholar 

  139. Calabrese EJ, Dhawan G (2013) How radiotherapy was historically used to treat pneumonia: could it be used today? Yale J Biol Med 86:555–570

    PubMed  PubMed Central  Google Scholar 

  140. Calabrese EJ (2013) The historical use of radiotherapy in the treatment of sinus infections. Dose Response 11:469–479

    Article  PubMed  Google Scholar 

  141. Osmond JD (1928) Roentgen therapy of acute infections of the antrum and frontal sinus. Am J Roentgenol Rad Ther 4(10):374–377

    Google Scholar 

  142. Trott KR (1994) Therapeutic effects of low radiation doses. Strahlenther Onkol 170:1–12

    CAS  PubMed  Google Scholar 

  143. Luckey TD (2005) Low dose irradiation for gingivitis (unpublished)

    Google Scholar 

  144. Calabrese E (2013) X-ray treatment of carbuncles and furuncles (boils): a historical assessment. Hum Exp Toxicol 32:817

    Article  PubMed  Google Scholar 

  145. Plew M, Simon SLR, Boreham DR et al (2010) A radiation-induced adaptive response prolongs the survival of prion-infected mice. Free Radic Biol Med 49:1417–1421

    Article  CAS  Google Scholar 

  146. Shen R, Hornback ND, Lu I et al (1989) Low dose total body irradiation; a potent antiviral agent in vivo. Int J Radiat Oncol Biol Phys 10:185

    Google Scholar 

  147. Mitchel REJ, Burchart P, Wyatt H (2007) Fractionated, low-dose-rate ionizing radiation exposure and chronic ulcerative dermatitis in normal and Trp53 heterozygous C57BL/6 mice. Radiat Res 168:716–724

    Article  CAS  PubMed  Google Scholar 

  148. Wolff S, Wiencke JK, Afzal V et al (1989) The adaptive response of human lymphocytes to very low dose ionizing radiation: a case of induced chromosomal repair with the induction of specific proteins. In: Baverstock KF, Stather JW (eds) Low dose radiation: biological basis of risk assessment. Taylor & Francis, London, pp 446–454

    Google Scholar 

  149. Shen RN, Hornback NB, Lu L et al (1989) Low dose total body irradiation: a potent anti-retroviral agent in vivo. Int J Radiat Oncol Biol Phys 16:165–170

    Article  CAS  PubMed  Google Scholar 

  150. Shen RN, Lu L, Kaiser HE et al (1997) Murine AIDS cured by low dosage total body irradiation. Adv Exp Med Biol 407:451–458

    Article  CAS  PubMed  Google Scholar 

  151. Del Regato J (1989) Trial of fractionated total-body irradiation in the treatment of patients with acquired immunodeficiency syndrome: a preliminary report. Am J Clin Oncol 12:365

    Article  PubMed  Google Scholar 

  152. Calabrese EJ (2013) Historical foundations of wound healing and its potential for acceleration. Dose-response considerations. Wound Repair Regen 21:180–193

    Article  PubMed  Google Scholar 

  153. http://www.jci.org/articles/view/67484

  154. Wojcik M, Zabek M, Rzeznik D et al (2002) Half-body irradiation (HBI) in palliative treatment of multiple cancer metastases—contemporary evaluation. Wspolczesna Onkologia 8:395–399

    Google Scholar 

  155. Doss M (2016) Changing the paradigm of cancer screening, prevention, and treatment. Dose Response 14(4). doi:10.1177/1559325816680539

  156. Little MP, Azizova TV, Bazyka D et al (2012) Systematic review and meta-analysis of circulatory disease from exposure to low-level ionizing radiation and estimates of potential population mortality risks. Environ Health Perspect 120:1503–1511

    Article  PubMed  PubMed Central  Google Scholar 

  157. Patel Z, Huff J, Saha J et al (2016) Evidence report. Risk of cardiovascular disease and other degenerative tissue effects from radiation exposure. In: Human research program, space radiation program element. NASA, Houston, TX. https://humanresearchroadmap.nasa.gov/Evidence/

    Google Scholar 

  158. Little MP, Tawn EJ, Tzoulaki I et al (2008) Systematic review of epidemiological associations between low and moderate doses of ionizing radiation and late cardiovascular effects, and their possible mechanisms. Radiat Res 169:99–109

    Article  CAS  PubMed  Google Scholar 

  159. Shao M (2014) Multiple low-dose radiation prevents type 2 diabetes- induced renal damage through attenuation of dyslipidemia and insulin resistance and subsequent renal inflammation and oxidative stress. PLoS One 9(3):e92574

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  160. Tsuruga M, Taki K, Ishii G et al (2007) Amelioration of type II diabetes in db/db mice by continuous low-dose-rate gamma irradiation. Radiat Res 167:592–599

    Article  CAS  PubMed  Google Scholar 

  161. Nomura T, Li X-H, Ogata H et al (2011) Suppressive effects of continuous low-dose-rate γ irradiation on diabetic nephropathy in type II diabetes mellitus model mice. Radiat Res 176:356–365

    Article  CAS  PubMed  Google Scholar 

  162. Shao M, Yu L, Zhang F et al (2015) Additive protection by LDR and FGF21 treatment against diabetic nephropathy in type 2 diabetes model. Am J Physiol Endocrinol Metab 309:E45–E54

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Xing X, Zhang C, Shao M et al (2012) Low-dose radiation activates Akt and Nrf2 in the kidney of diabetic mice: a potential mechanism to prevent diabetic nephropathy. Oxid Med Cell Longev. doi:10.1155/2012/291087

    PubMed  PubMed Central  Google Scholar 

  164. Cheng J, Li F, Cui J et al (2014) Optimal conditions of LDR to protect the kidney from diabetes: exposure to 12.5 mGy X-rays for 8 weeks efficiently protects the kidney from diabetes. Life Sci 103:49–58

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Zhang F, Lin X, Yu L et al (2016) Low-dose radiation prevents type I diabetes-induced cardiomyopathy via activation of AKT mediated anti-apoptotic and anti-oxidant effects. J Cell Mol Med 20:1352–1366

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Venneri L, Rossi F, Botto N et al (2009) Cancer risk from professional exposure in staff working in cardiac catheterization laboratory: insights from the National Research Council's Biological Effects of Ionizing Radiation VII Report. Am Heart J 157:118–124

    Article  PubMed  Google Scholar 

  167. Einstein AJ (2012) Effects of radiation exposure from cardiac imaging. how good are the data? J Am Coll Cardiol 59:553–565

    Article  PubMed  PubMed Central  Google Scholar 

  168. Eisenberg MJ, Afilalo J, Lawler PR et al (2011) Cancer risk related to low-dose ionizing radiation from cardiac imaging in patients after acute myocardial infarction. Can Med Assoc J 183:430–436

    Article  Google Scholar 

  169. Bailey M (2017) Trying to solve the Alzheimer’s puzzle. Kaiser Health News. USA Today, January 26. http://www.usatoday.com/story/news/2017/01/26/kaiser-trying-solve-alzheimers-puzzle/97112898/?linkId=33920188

  170. Ramachandran TS (2016) Alzheimer disease imaging. Medscape Drugs & Diseases. January. http://emedicine.medscape.com/article/336281-overview#a2

  171. Devasagayam TPA, Tilak JC, Boloor KK et al (2004) Free radicals and antioxidants in human health: current status and future prospects. JAPI 52:794–804

    CAS  PubMed  Google Scholar 

  172. Jeppesen DK, Bohr VA, Stevnsver T (2011) DNA repair deficiency in neurodegeneration. Prog Neurobiol 94:166–200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Ben Abdallah NM, Slomianka L, Lipp HP (2007) Reversible effect of X-irradiation on proliferation, neurogenesis, and cell death in the dentatgyrus of adult mice. Hippocampus 17:1230–1240

    Article  PubMed  Google Scholar 

  174. Barazzuol L, Jeggo PA (2016) In vivo sensitivity of the embryonic and adult neural stem cell compartments to low-dose radiation. J Radiat Res 57(Suppl 1):i2–i10. Advance Access published:(doi: 10.1093/jrr/rrw013, Supplement—ICRR highlights)

    Article  PubMed  PubMed Central  Google Scholar 

  175. Alzheimer A (1906) Uber einen eigenartigen schweren Erkrankung-sprozess der Hirninde. Neurologusches Centralblatt 23:1129–1136

    Google Scholar 

  176. Alzheimer’s Disease Facts and Figures (2011) Alzheimer’s Association: Alzheimer’s & Dementia 7(2)

    Google Scholar 

  177. Morley JE (2012) Hormesis and amyloid-beta protein. Physiology or pathology? J Alzheimers Dis 29:48

    Google Scholar 

  178. Tejada-Vera B (2013) Mortality from Alzheimer’s disease in the United States: data for 2000 and 2010. Centers for Disease Control and Prevention, National Center for Health Statistics

    Google Scholar 

  179. Kanherkar RR, Bhatia-Dey N, Csoka AB (2014) Epigenetics across the human lifespan. Front Cell Dev Biol. Published September 9 doi:10.3389/fcell.2014.00049

  180. Hardy J, Selkoe DJ (2002) The amyloid hypothesis of Alzheimer’s disease: progress and problems on the road to therapeutics. Science 297:353–356

    Article  CAS  PubMed  Google Scholar 

  181. Griñán-Ferré C, Sarroca S, Ivanova A et al (2016) Epigenetic mechanisms underlying cognitive impairment and Alzheimer disease hallmarks in 5XFAD mice. Aging 8(4):664–684. PMID: 27013617

    Article  PubMed  PubMed Central  Google Scholar 

  182. Chang J, Rimando A, Pallas M et al (2012) Low-dose pterostilbene, but not resveratrol, is a potent neuromodulator in aging and Alzheimer’s disease. Neurobiol Aging 33:2062–2071

    Article  CAS  PubMed  Google Scholar 

  183. Wilson GD, Marples B (2016) A new use for an old testament: radiation therapy and Alzheimer’s disease. Radiat Res 185:443–448

    Article  CAS  PubMed  Google Scholar 

  184. Murray ME, Lowe VJ, Graff-Radford NR et al (2015) Clinicopathologic and 11C-Pittsburg compound B implications of Thal amyloid phase across the Alzheimer’s disease spectrum. Brain 138:1370–1381

    Article  PubMed  PubMed Central  Google Scholar 

  185. Salomone S, Carci F, Leggio GM et al (2011) New pharmacological strategies for treatment of Alzheimer’s disease: focus on disease-modifying drugs. Br J Clin Pharmacol 73:504–517

    Article  PubMed Central  CAS  Google Scholar 

  186. Schenk D, Barbour R, Dunn W et al (1999) Immunization with amyloid-beta attenuates Alzheimer-disease-like pathology in the PDAPP mouse. Nature 400:173–177

    Article  CAS  PubMed  Google Scholar 

  187. Wei LC, Ding Y-X, Liu Y-H et al (2012) Low-dose radiation stimulates Wnt/β-catenin signaling in neural stem cell proliferation of the mouse hippocampus in vitro and in vivo. Curr Alzheimer Res 9:278–289

    Article  CAS  PubMed  Google Scholar 

  188. Marsh JC, Gielda BT, Herskovic AM et al (2010) Cognitive sparing during the administration of whole brain radiotherapy and prophylactic cranial irradiation: current concepts and approaches. J Oncol 2010:198–208

    Article  Google Scholar 

  189. Calabrese EJ (2008) Neuroscience and hormesis: overview and general findings. Crit Rev Toxicol 38:249–252

    Article  CAS  PubMed  Google Scholar 

  190. Neben-Wittich MA, Foote RL, Kalra S (2007) External beam radiation therapy for tracheobronchial amyloidosis. Chest 132:262–267

    Article  PubMed  Google Scholar 

  191. McGee MC, Marples B, Michael DB et al (2012) Significant reduction in beta-amyloid plaque burden following fractionated radiotherapy schedule in a murine model: implications for novel treatment of Alzheimer’s disease. Patent Application No: EP 26138449A1. https://www.youtube.com/watch?v=2jXXASUFMOM

  192. Bistolfi F (2008) Localized amyloidosis and Alzheimer’s disease: the rationale for weekly long-term low dose amyloid-based fractionated radiotherapy. Neuroradiol J 21:683–692

    Article  CAS  PubMed  Google Scholar 

  193. Kipnis J, Avidan H, Markovich Y et al (2004) Low-dose γ-irradiation promotes survival of injured neurons in the central nervous system via homeostasis-driven proliferation of T cells. Eur J Neurosci 19:1191–1198

    Article  PubMed  Google Scholar 

  194. Fike JR, Rola R, Limoli CL (2007) Radiation response of neural precursor cells. Neurosurg Clin N Am 18:115–127

    Article  PubMed  Google Scholar 

  195. Mao L (2013) Hormesis in aging and neurodegeneration: a prodigy awaiting dissection. Int J Mol Sci 14:13109.

    Google Scholar 

  196. Otani H (2004) Reactive oxygen species as mediators of signal transduction in ischemic preconditioning. Antioxid Redox Signal 6:449–469

    Article  CAS  PubMed  Google Scholar 

  197. Wang G (2013) Hormesis, cell death, and regenerative medicine for neurodegenerative diseases. Dose Response 11:238–254

    CAS  PubMed  Google Scholar 

  198. Gogel S, Gubernator M, Minger SI (2011) Progress and prospects: stem cells and neurological diseases. Gene Ther 18:1–6

    Article  CAS  PubMed  Google Scholar 

  199. Savitz SI, Chopp M, Deans R et al (2011) Stem cell therapy as an emerging paradigm for stroke (STEPS) II. Stroke 42:825–829

    Article  PubMed  Google Scholar 

  200. Ransohoff RM (2016) How neuro-inflammation leads to neurodegeneration. Science 353:777–783

    Article  CAS  PubMed  Google Scholar 

  201. Ramanan S, kooshki M, Zhao M et al (2009) The PPAARalpha agonist fenofibrate preserves hippocampal neurogenesis and inhibits microglial activation after whole-brain irradiation. Int J Radiat Oncol Biol Phys 75:870–877

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  202. Begun N, Wang B, Mori M et al (2012) Does ionizing radiation influence Alzheimer’s? J Radiat Res 53:815–822. (doi: 10.1093/jrr/rrs036 Advance Access Publication 7 Aug 2012)

    Article  CAS  Google Scholar 

  203. Doss M (2014) Low-dose radiation adaptation protection to control neurodegeneration diseases. Dose Response 12:277–287

    PubMed  Google Scholar 

  204. Frenkel M, L Ari S, Engebretson J et al (2011) Activism among exceptional patients with cancer. Support Care Cancer 19:1125–1132

    Article  PubMed  Google Scholar 

  205. Cuttler J (2015–2016) Cuttler & Associates, Toronto, Canada

    Google Scholar 

  206. Cuttler JM, Moore ER, Hosfeld VD et al (2016) Treatment of Alzheimer disease with CT scans—a case report. Dose Response, April–June 2016 14: 1559325816640073, first published on April 5 2016 doi:10.1177/1559325816640073

    Google Scholar 

  207. Cuttler JM, Moore ER, Hosfeld VD et al (2016) Treatment of Alzheimer disease with CT scans—a case report. Can Nucl Soc 37:31–39

    Google Scholar 

  208. Martinez A, Marples B, Wilson G et al (2013) Radiation therapy for treating Alzheimer’s disease. Patent Publication. 2013. No. EP2613849 A1, Application No. EP20110824177. http://www.google.com/patients/EP2613849A1?cl=en

  209. Lewis P (2016) SARI, October 28

    Google Scholar 

  210. Doss M (2016) Low-dose radiation to treat Alzheimer’s disease—A case report by Jerry Cuttler. XLNT Foundation. http://www.x-lnt.org/single-post/2016/04/22/Lowdose-Radiation-to-treat-Alzheimers-Disease-A-Case-Report-by-Jerry-Cuttler

  211. Foray N (2016) Victor Despeignes, the forgotten pioneer of radiation oncology. Int J Radiat Oncol Biol Phys. doi:10.1016/ijrobp.2016.07.019

    Google Scholar 

  212. Murphy J (1920) The effect of physical agents on the resistance of mice to cancer. Proc Natl Acad Sci 6:717–722

    Article  Google Scholar 

  213. Coutard H (1937) The results and methods of treatment of cancer by radiation. Ann Surg 106:584–598

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  214. Bauer G (2007) Low dose radiation and intercellular induction of apoptosis: potential implications for the control of oncogenesis. Int J Radiat Biol 83:873–888

    Article  CAS  PubMed  Google Scholar 

  215. Cotter TG (2009) Apoptosis and cancer: the genesis of a research field. Nat Rev Cancer 9:501–507

    Article  CAS  PubMed  Google Scholar 

  216. Schöllnberger H, Mitchel RE, Azzam EI et al (2001) Explanation of protective effects of low doses of gamma-radiation with a mechanistic radiobiological model. Int J Radiat Biol 78:1159–1173

    Article  CAS  Google Scholar 

  217. Scott BR, Walker DM, Tesfaigzi Y et al (2003) Mechanistic basis for nonlinear dose-response relationships for low-dose radiation-induced stochastic effects. Nonlinear Biol Toxicol Med 1:93–122

    Article  Google Scholar 

  218. Schöllnberger H, Stewart RD, Mitchel RE (2005) Low-LET-induced radioprotective mechanisms within a stochastic two-stage cancer model. Dose Response 3:508–518

    Article  CAS  Google Scholar 

  219. Schöllnberger H, RD S, Mitchel RE et al (2004) An examination of radiation hormesis mechanisms using a multistage carcinogenesis model. Nonlinear Biol Toxicol Med 2:317–352

    Article  CAS  Google Scholar 

  220. Azzam EI, de Toledo SM, Raaphorst GP et al (1996) Low-dose ionizing radiation decreases the frequency of neoplastic transformation to a level below the spontaneous rate in C3H 10T1/2 cells. Radiat Res 146:369–373

    Article  CAS  PubMed  Google Scholar 

  221. Redpath JL, Liang D, Taylor TH et al (2001) The shape of the dose-response curve for radiation-induced neoplastic transformation in vitro: evidence for an adaptive response against neoplastic transformation at low doses of low-LET radiation. Radiat Res 156:700–707

    Article  CAS  PubMed  Google Scholar 

  222. Hooker AM, Bhat M, Day TK et al (2004) The linear no-threshold model does not hold for low-dose ionizing radiation. Radiat Res 162:447–452

    Article  CAS  PubMed  Google Scholar 

  223. Sykes PJ, Day TK, Swinburne SJ et al (2006) In vivo mutagenic effect of very low dose radiation. Dose Response 4:309–316

    CAS  PubMed  PubMed Central  Google Scholar 

  224. Elmore E, Lao XY, Kapadia R et al (2008) Low doses of very low-dose-rate low-LET radiation suppress radiation- induced neoplastic transformation in vitro. Radiat Res 169:311–318

    Article  CAS  PubMed  Google Scholar 

  225. Hoption Cann SA, van Netten JP, van Netten C et al (2002) Spontaneous regression: a hidden treasure buried in time. Med Hypotheses 58:115–119

    Article  CAS  PubMed  Google Scholar 

  226. Richardson MA, Ramirez T, Russell NC et al (1999) Coley toxins immunotherapy: a retrospective review. Altern Ther Health Med 5:42–47

    CAS  PubMed  Google Scholar 

  227. Ina Y, Sakai K (2005) Further study of prolongation of life span associated with immunological modification by chronic low-dose-rate irradiation in MRL-lpr/lpr mice: effects of Whole-life irradiation. Radiat Res 163:418–423

    Article  CAS  PubMed  Google Scholar 

  228. Cui J, Yang G, Pan Z et al (2017) Hormetic response to low-dose radiation: focus on the immune system and its clinical implications. Int J Mol Sci 18:280–291

    Article  PubMed Central  Google Scholar 

  229. Fu HQ, Li XY, Chen YB (1997) Studies on the mechanism of the suppressive effect of low dose radiation on cancer metastasis. J Radiat Res Radiat Prot 15:41–43

    Google Scholar 

  230. Nowosielska EM, Cheda A, Wrembel-Wargocka J et al (2010) Immunological mechanism of the low-dose radiation-induced suppression of cancer metastases in a mouse model. Dose Response 8:209–226

    Article  CAS  Google Scholar 

  231. Cheda A, Wrembel-Wargocka J, Lisiak E et al (2004) Single low doses of X-rays inhibit the development of experimental tumor metastases and trigger the activities of NK cells in mice. Radiat Res 161:335–341

    Article  CAS  PubMed  Google Scholar 

  232. Kumar C, Shetake N, Desai S et al (2016) Relevance of radiobiological concepts in radionuclide therapy of cancer. Int J Radiat Biol 92:173–186

    Article  CAS  PubMed  Google Scholar 

  233. Quispe-Tintaya W, Chandra D, Johangir A et al (2014) Nontoxic radioactive Listeria is a highly effective therapy against metastatic pancreatic cancer. www.pnas.org/cgi/doi/10.1073/pnas.121128.7110

  234. Mole RH (1953) Whole body irradiated; radiobiology in medicine. Br J Radiol 26:234–241

    Article  CAS  PubMed  Google Scholar 

  235. Nagasawa H, Little JB (1992) Induction of sister chromatid exchanges by extremely low-doses of alpha-particles. Cancer Res 52:6394–6396

    CAS  PubMed  Google Scholar 

  236. Kaminski JM, Shinohara E, Summers JB et al (2005) The controversial abscopal effect. Cancer Treat Rev 31:159–172

    Article  CAS  PubMed  Google Scholar 

  237. Boreham DR, Dolling J-A, Somers C et al (2006) The adaptive response and protection against heritable mutations and fetal malformation. Dose Response 4:317–326

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  238. Boreham DR, Dolling J-A, Maves S et al (2000) Dose rate effects for apoptosis and micronucleus formation in gamma-irradiated human lymphocytes. Radiat Res 153:579–586

    Article  CAS  PubMed  Google Scholar 

  239. Boreham DR, Dolling J-A, Broome J et al (2000) Cellular adaptive response to single tracks of low-LET radiation and the effect on non-irradiated neighboring cells. Radiat Res 153:230–231

    Article  Google Scholar 

  240. Yang G, Wei L, Jiang H et al (2016) Low-dose radiation may be a novel approach to enhance the effectiveness of cancer therapeutics. Int J Cancer 139:2157–2168

    Article  CAS  PubMed  Google Scholar 

  241. Prasanna A, Ahmed MM, Mohiuddin M et al (2014) Exploiting sensitization windows of opportunity in hyper- and hypo-fractionated radiation therapy. J Thor Dis 6:287–302

    Google Scholar 

  242. Konoeda K (1990) Therapeutic efficacy of pre-operative radiotherapy on breast carcinoma in special reference to its abscopal effect on metastatic lymph nodes. Nihon Gar Chiryo Gakkai Shi 25:1204–1214

    CAS  Google Scholar 

  243. Stang K, Silva S, Block AM et al (2016) The integration of radiation therapy and immunotherapy in melanoma management. J Radiat Oncol 5:131–142

    Article  CAS  Google Scholar 

  244. Welsh J (2014) Vital signs. Disappearing act. Discoverymagazine.com, March, pp 24–26

  245. Ohba K, Omagari K, Nakamura T et al (1998) Abscopal regression of hepatocellular carcinoma after radiotherapy for bone metastasis. Gut 43:575–577

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  246. Calabrese EJ, Baldwin LA (2000) Radiation hormesis: origins, history, scientific foundations. Hum Exp Toxicol 19:2–97

    Article  CAS  PubMed  Google Scholar 

  247. Nascarella MA, Stanek EJ, Hoffmann GR et al (2009) Quantification of hormesis in anticancer-agent dose-response. Dose Response 7:160–171

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  248. Goldstein I, Madar S, Rotter V (2012) Cancer research, a field on the verge of a paradigm shift? Trends Mol Med 18:299–303

    Article  PubMed  Google Scholar 

  249. Faguet GB (2005) The war on cancer: an anatomy of failure, a blueprint for the future. Springer, Dordrecht

    Google Scholar 

  250. Scott BR, Di Palma J (2006) Sparsely ionizing diagnostic and natural background radiations are likely preventing cancer and other genomic-instability-associated diseases. Dose Response 5:230–255

    PubMed  PubMed Central  Google Scholar 

  251. Pollycove M, Feinendegen LE (2000) Low level radiation improvement of health and therapy of cancer. In: Harmonization of radiation, Human life and the ecosystem IRPA-10. Abstr Proc 10th Int Cong of IRPA, Hiroshima, Japan, p 290

    Google Scholar 

  252. Feinendegen LE (2005) Evidence for beneficial low level radiation effects and radiation hormesis. Br J Radiol 78:3–7

    Article  CAS  PubMed  Google Scholar 

  253. Feinendegen LE, Pollycove M, Neumann RD (2013) Hormesis by low dose radiation effects: low-dose cancer risk modeling must recognize up-regulation of protection. In: Baum RP (ed) Therapeutic nuclear medicine. Springer, New York, pp 789–805. http://radiationeffects.org/wp-content/uploads/2014/08/Feinendegen-2013-Hormesis-in-Therapeutic-Nuclear-MedicinePDFxR.pdf

    Google Scholar 

  254. Cuttler JM, Pollycove M (2003) Can cancer be treated with low doses of radiation? J Am Phys Surg 8:108–111

    Google Scholar 

  255. Cuttler J (2006) Low-dose irradiation for controlling prostate cancer. Int J Low Radiat 2:45–59

    Article  Google Scholar 

  256. Pollycove M (2007) Radiobiological basis of low-dose irradiation in prevention and therapy of cancer. Dose Response 5:26–38. (http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2477707/)

  257. Park SH, Lee Y, Jeong K et al (1999) Different induction of adaptive response to ionizing radiation in normal and neoplastic cells. Cell Biol Toxicol 15:111–119

    Article  CAS  PubMed  Google Scholar 

  258. Gridley DS, Williams JR, Slater JM (2005) Low-dose/low-dose-rate radiation: a feasible strategy to improve cancer radiotherapy? Review Article. Electronically published

    Google Scholar 

  259. Feinendegen LE, Pollycove M, Neumann RD (2010) Low-dose cancer risk modeling must recognize up-regulation of protection. Dose Response 8:227–252

    Article  CAS  Google Scholar 

  260. Mitchel REJ (2010) The dose window for radiation-induced protective adaptive responses. Dose Response 8:192–208

    Article  CAS  Google Scholar 

  261. Anderson RE, Tokuda S, Williams WL et al (1982) Radiation-induced augmentation of the response of A/J mice to SaI tumor cells. Am J Pathol 108:24–37

    CAS  PubMed  PubMed Central  Google Scholar 

  262. Hosoi Y, Sakamoto K (1993) Suppressive effect of low dose total body irradiation on lung metastasis: dose dependency and effective period. Radiother Oncol 26:177–179

    Article  CAS  PubMed  Google Scholar 

  263. Hosoi Y, Ishii K, Yamada S et al (1997) Effect of combination treatment of 15 cGy total body irradiation and OK-432 on spontaneous lung metastasis and mitogenic response of splenocytes in mice. Radiat Oncol Investig 5:283–288

    Article  CAS  PubMed  Google Scholar 

  264. Ina Y, Tanooka H, Yamada T et al (2005) Suppression of thymic lymphoma induction by life-long low-dose-rate irradiation accompanied by immune activation in C57BL/6 mice. Radiat Res 163:153–158

    Article  CAS  PubMed  Google Scholar 

  265. Ishii K, Hosoi Y, Yamada S et al (1996) Decreased incidence of thymic lymphoma in AKR mice as a result of chronic, fractionated low-dose total-body X-irradiation. Radiat Res 146:582–585

    Article  CAS  PubMed  Google Scholar 

  266. Lacoste-Collin L, Jozan S, Cances-Lauwers V et al (2007) Effect of continuous irradiation with a very low dose of gamma rays on lifespan and the immune system in SJL mice prone to B-cell lymphoma. Radiat Res 168:725–732

    Article  CAS  PubMed  Google Scholar 

  267. Murphy JB, Morton JJ (1915) The effect of roentgen rays on the rate of growth of spontaneous tumors in mice. J Exp Med 22:800–803

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  268. Mitchel RE, Jackson J, Morrison DP et al (2003) Low doses of radiation increased the latency of spontaneous lymphomas and spinal osteo-sarcomas in cancer-prone, radiation-sensitive Trp 53 heterozygous mice. Radiat Res 159:320–327

    Article  CAS  PubMed  Google Scholar 

  269. Blankenbecler R (2010) Low-dose pretreatment for radiation therapy. Dose Response 10:534–542

    Google Scholar 

  270. Williams JA, Williams JR, Yuan X et al (1998) Protracted exposure radio-sensitization of human malignant glioma. Radiat Oncol Investig 6:255–263

    Article  CAS  PubMed  Google Scholar 

  271. Mittal D, Gubin MM, Schreiber RD et al (2014) New insights into cancer immune-editing and its three component phases-elimination, equilibrium and escape. Curr Opin Immunol 27:16–25. doi:10.1016/j.coi.2014.01.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  272. Sanders CL (2010) Potential prevention of oral cancer by low dose ionizing radiation. Radiation Science Today, Indian Society for Radiation Biology, Issue 10, pp 6–7

    Google Scholar 

  273. Nambi KSV, Soman SD (1987) Environmental radiation and cancer in India. Health Phys 52:653–657

    Article  CAS  PubMed  Google Scholar 

  274. Sanders CL (2008) Prevention of cigarette smoke induced lung cancer by low LET ionizing radiation. Nucl Eng Technol 40:539–550

    Article  CAS  Google Scholar 

  275. Farooque A, Mathur R, Verma A et al (2011) Low-dose radiation therapy of cancer: roles of immune enhancement. Expert Rev Anticancer Ther 11:791–802

    Article  CAS  PubMed  Google Scholar 

  276. Scott JG, Berglund A, Schell MJ et al (2016) A genomic-based model for adjusting radiotherapy dose (GARD): a retrospective, cohort-based study (www.thelancet.com/oncology). doi:10.1016/$1470-2045(16)30648-9

  277. Kim RK, Kim MJ, Seong KM et al (2015) Beneficial effects of low dose radiation in response to the oncogenic KRAS induced cellular transformation. Sci Rep 5:15809. doi:10.1038/srep15809

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  278. Guirado D, Aranda M, Ortiz M et al (2012) Low-dose radiation-radiosensitivity in multicellular tumor spheroids. Br J Radiol 85:1398–1406

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  279. Joiner MC, Marples B, Lambin P et al (2001) Low-dose hypersensitivity: current status and possible mechanisms. Int J Radiat Oncol Biol Phys 49:379–389

    Article  CAS  PubMed  Google Scholar 

  280. Thomas C, Fertilo B, Foray N (2007) Very low-dose hyper-sensitivity: impact for radiotherapy of micrometastases. Cancer Radiother 11:260–265 (original article in French)

    Google Scholar 

  281. Nguyen DM, Parekh PR, Chang ET et al (2015) Contribution of dual oxidase 2 (DUOX2) to hyper-radiosensitivity in human gastric cancer cells. Radiat Res 184:151–160

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  282. Adams R (2016) Can radiation from CT scans alleviate symptoms of Alzheimer’s disease. Forbes Magazine, July 1

    Google Scholar 

  283. Satti J (2009) The emerging low-dose therapy for advanced cancers. Dose Response 7:1–13

    Article  Google Scholar 

  284. Khang YC, Jiang G, Gao H et al (2014) Influence of ionizing radiation on ovarian carcinoma SKOV-3 xenographs in nude mice under hypoxic conditions. Asian Pac J Cancer Prev 15:2353–2358

    Article  Google Scholar 

  285. Lehrer S, Green S, Rosenzweig KE (2016) Reduced ovarian cancer incidence in women exposed to low dose ionizing background radiation or radiation to the ovaries after treatment for breast cancer or rectosigmoid cancer. Asian Pac J Cancer Prev 17:2979–2982

    PubMed  PubMed Central  Google Scholar 

  286. Cuttler JM, Pollycove M, Welsh JS (2000) Application of low doses of radiation for curing cancer. Can Nucl Soc Bull 21:45–50. http://radiationhormesis.com/RadiationHormesis/Application_of_Low_Doses_of_Radiation_for_Curing_Cancer.pdf

    Google Scholar 

  287. Hattori S (1998) The research on the health effects of low-level radiation in Japan. In: Proceedings of 11th Pacific Basin Nuclear Conference, Banff, Canada, May 3–7

    Google Scholar 

  288. Pollycove M (2000) Low dose radiation immunotherapy of cancer. In: 8th Proceedings of lCONE-8, International Conference on Nuclear Engineering, Baltimore, MD, lCONE-8789

    Google Scholar 

  289. Sakamoto K (2004) Radiobiological basis for cancer therapy by total or half-body irradiation. Nonlinear Biol Toxicol Med 2:293–316

    Article  Google Scholar 

  290. Sakamoto K (1999) Reported in public meetings held in Canada, November 8–11

    Google Scholar 

  291. Cuttler JM, Garzon P, Mitchel REJ et al (2016) Adjuvant therapy for resected exocrine pancreatic cancer by half-body low-dose irradiation. J Cancer Clin Trials 1(2):105. doi:10.4172/jcct.1000105

    Google Scholar 

  292. Tang FR, Loke WK (2015) Molecular mechanisms of low dose ionizing radiation-induced hormesis, adaptive responses, radioresistance, bystander effects, and genomic instability. Int J Radiat Biol 91:13–27

    Article  CAS  PubMed  Google Scholar 

  293. Holder DL (1965) Total body irradiation in multiple myeloma. Radiology 84:83–86

    Article  Google Scholar 

  294. Bauser EJ (2000) Reported at lCONE-8, Health effects of low level radiation, Panel Session, Baltimore, MD, April 5

    Google Scholar 

  295. Yu H-S, Liu Z-M, Yu X-Y et al (2013) Low-dose radiation induces anti-tumor effects and erythrocyte hormesis. Asian Pac J Cancer Prev 14:4121–4126

    Article  PubMed  Google Scholar 

  296. Sakamoto K, Myogin M, Hosoi Y et al (1997) Fundamental and clinical studies on cancer control with total or upper half body irradiation. J Jpn Soc Ther Radiol Oncol 9:161–175

    Google Scholar 

  297. Sakamoto K, Miyamoto M, Watabe M (1987) The effect of low-dose total body irradiation on tumor control. Jpn J Cancer Chemother 14(Part II):1545–1549

    CAS  Google Scholar 

  298. Sakamoto K, Miyamoto M, Watabe M et al (1987) Fundamental studies of low dose total body irradiation on tumor control. Jpn J Cancer Clin 33:1633–1638

    CAS  Google Scholar 

  299. Miyamoto M, Sakamoto K (1987) Anti-tumor effect of total body irradiation of low doses on WHT/Ht mice. Jpn J Cancer Clin 33:1211–1220

    CAS  Google Scholar 

  300. Chaffey JT, Rosenthal DS, Moloney WD et al (1976) Total body irradiation as treatment for lymphosarcoma. lnt J Radiat Oncol Biol Phys 1:399–405

    Article  CAS  Google Scholar 

  301. Interview with Sadao Hattori (1997) “Low-dose Radiation for Cancer Suppression and Revitalization,” 21st Century Science & Technology, Summer

    Google Scholar 

  302. Hattori S (1997) State of research and perspective on adaptive response to low doses of ionizing radiation in Japan. In: Low doses of ionizing radiation: biological effects and regulatory control, IAEA-TECDOC-976, IAEA-CN-67/126, pp 402–405

    Google Scholar 

  303. Takai Y (1990) Direct anti-tumor effect of low dose total (or Half) body irradiation and changes of the functional subset of peripheral blood lymphocytes in non-Hodgkin’s lymphoma patients AFTER TBI (HBI). Jpn Soc Ther Radiol Oncol 3:9–18

    Google Scholar 

  304. Takai Y (1992) Anti-tumor effect of low dose total (or half) body irradiation and changes of the functional subset of peripheral blood lymphocytes in non-Hodgkin’s lymphoma patients after TBI (HBI). Jpn J Cancer Clin 38:1305–1311

    Google Scholar 

  305. Boss M-K, Bristow R, Dewhirst MK (2014) Linking the history of radiation biology to the hallmarks of cancer. Radiat Res 181:561–577

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  306. Choi NC, Timothy AR, SD Kaufman SD et al (1979) Low dose fractionated whole body irradiation in the treatment of advanced non-Hodgkin’s lymphoma. Cancer 43:1636–1642

    Article  CAS  PubMed  Google Scholar 

  307. Richaud PM, Soubeyran P, Eghbali H et al (1998) Place of low-dose total body irradiation in the treatment of localized follicular non-Hodgkins lymphoma: results of a pilot study. lnt J Radiat Oncol Biol Phys 40:387–390

    Article  CAS  Google Scholar 

  308. Mishra KP, Ahmed M, Hill RP (2008) Low-dose radiation effects on human health with implications to radioprotection and cancer radiotherapy. Int J Radiat Biol 84:441–444

    Article  CAS  PubMed  Google Scholar 

  309. Safwat A (2000) The role of low-dose total body irradiation in treatment of non-Hodgkins lymphoma: a new look at an old method. Radiother Oncol 56:1–8

    Article  CAS  PubMed  Google Scholar 

  310. Personal communication from K. Sakamoto to Jerry Cuttler (2012)

    Google Scholar 

  311. Cuttler JM (2016) Urgent change needed to radiation protection policy. Health Phys 110:267–270

    Article  CAS  PubMed  Google Scholar 

  312. Personal communication from K. Sakamoto to Jerry Cuttler (2000)

    Google Scholar 

  313. Biello D (2009) Spent nuclear fuel: a trash heap deadly for 250,000 years or a renewable energy source? Sci Am, January 28

    Google Scholar 

  314. Gutierrez J (2012) Personal Communication. www.nighthawkminerals.com, Pritchett, CO

  315. Personal communication from Jay Gutierrez (2014)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Sanders, C.L. (2017). Benefits in Disease Prevention, Control, and Cure. In: Radiobiology and Radiation Hormesis . Springer, Cham. https://doi.org/10.1007/978-3-319-56372-5_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-56372-5_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-56371-8

  • Online ISBN: 978-3-319-56372-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics