Skip to main content

Altitudinal Gradients in Mycorrhizal Symbioses

The Current State of Knowledge on How Richness and Community Structure Change with Elevation

  • Chapter
  • First Online:

Part of the book series: Ecological Studies ((ECOLSTUD,volume 230))

Abstract

Mountains, due to their often steep gradients in abiotic and biotic factors, offer an ideal setting to improve our understanding of mechanisms that underlie species distribution and community assembly. The current knowledge on the effects of elevation on richness and community composition is almost entirely based on vascular plants and animals, where most studied groups display a monotonal decline in richness with increasing elevation, a mid-elevation peak, or some combinations of the two. Taxa with similar ecology share certain distributional patterns that often differ from patterns exhibited by other ecological groups. The handful of published studies on the distribution of mycorrhizal fungi along altitudinal gradients confirm both the above general patterns and the differences among functional groups: richness of arbuscular mycorrhizal fungi negatively correlates with altitude, while ectomycorrhizal fungal richness shows either a decrease with increasing elevation or a mid-elevation peak, the latter being particularly prominent in low latitudes. Although the above patterns are particularly pronounced when the gradients span different vegetation zones with correlated strong compositional shifts, some changes can still be detected in relatively short gradients within a vegetation type. Therefore, both climate and the composition of biotic communities, particularly that of potential hosts, appear to shape the distribution of mycorrhizal fungi. More studies are needed, particularly on understudied groups, such as orchid and ericoid mycorrhizal fungi, to attain a better understanding of factors shaping the distribution of mycorrhizal fungi along altitudinal gradients.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Acharya KP, Vetaas OR, Birks HJB (2011) Orchid species richness along Himalayan elevation gradients. J Biogeogr 38:1821–1833

    Article  Google Scholar 

  • Ah-Peng C, Wilding N, Kluge J, Descamps-Julien B, Bardat J, Chuah-Petiot M, Srasberg D, Hedderson TAJ (2012) Bryophyte diversity and range size distribution along two altitudinal gradients: continent vs. island. Acta Oecol 42:58–65

    Article  Google Scholar 

  • Aiba S, Kitayama K (1999) Structure, composition and species diversity in an altitude-substrate matrix of rain forest tree communities on mount Kinabalu, Borneo. Plant Ecol 140:139–157

    Article  Google Scholar 

  • Antonelli A (2015) Biodiversity: multiple origins of mountain life. Nature 524:300–301

    Article  CAS  PubMed  Google Scholar 

  • Bahram M, Põlme S, Kõljalg U, Zarre S, Tedersoo L (2012) Regional and local patterns of ectomycorrhizal fungal diversity and community structure along an altitudinal gradient in the Hyrcanian forests of Northern Iran. New Phytol 193:465–473

    Article  PubMed  Google Scholar 

  • Bahram M, Köljalg U, Courty PE et al (2013) The distance decay of similarity in communities of ectomycorrhizal fungi in different ecosystems and scales. J Ecol 101:1335–1344

    Article  Google Scholar 

  • Barry RG (2008) Mountain weather and climate. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Beaman JH, Beaman RS (1990) Diversity and distribution patterns in the flora of Mount Kinabalu. In: Baas P, Kalkman K, Geesink R (eds) The plant diversity of Malesia. Springer, Dordrecht, pp 147–160

    Chapter  Google Scholar 

  • Berbee ML, Taylor JW (2001) Fungal molecular evolution: gene trees and geologic time. In: McLaughlin DJ, McLaughlin EG, Lemke PA (eds) The mycota VII, part B, Systematics and evolution. Springer, Berlin, pp 229–245

    Google Scholar 

  • Bonfim JA, Vasconcellos RLF, Gumiere T et al (2016) Diversity of arbuscular mycorrhizal fungi in a Brazilian Atlantic forest toposequence. Microb Ecol 20:202–210

    Google Scholar 

  • Bonnardeaux Y, Brundrett M, Batty A, Dixon K, Koch J, Sivasithamparam K (2007) Diversity of mycorrhizal fungi of terrestrial orchids: compatibility webs, brief encounters, lasting relationships and alien invasions. Mycol Res 111:51–61

    Article  PubMed  Google Scholar 

  • Branco S, Gladieux P, Ellison C et al (2015) Genetic isolation between two recently diverged populations of a symbiotic fungus. Mol Ecol 24:2747–2758

    Article  CAS  PubMed  Google Scholar 

  • Brundrett MC (2009) Mycorrhizal associations and other means of nutrition of vascular plants: understanding the global diversity of host plants by resolving conflicting information and developing reliable means of diagnosis. Plant Soil 320:37–77

    Article  CAS  Google Scholar 

  • Cardelús CL, Colwell RK, Watkins JE (2006) Vascular epiphyte distribution patterns: explaining the mid-elevation richness peak. J Ecol 94:144–156

    Article  Google Scholar 

  • Chagnon P-L, Bradley RL, Maherali H, Klironomos JN (2013) A trait-based framework to understand life history of mycorrhizal fungi. Trends Plant Sci 18:484–491

    Article  CAS  PubMed  Google Scholar 

  • Coince A, Cordier T, Lengellé J et al (2014) Leaf and root-associated fungal assemblages do not follow similar elevational diversity patterns. PLoS One 9(6):e100668

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Colwell RK, Lees DC (2000) The mid-domain effect: geometric constraints on the geography of species richness. Trends Ecol Evol 15:70–76

    Article  CAS  PubMed  Google Scholar 

  • Colwell RK, Rahbek C, Gotelli NJ (2004) The mid-domain effect and species richness patterns: what we have learned so far? Am Nat 163:E1–E23

    Article  PubMed  Google Scholar 

  • Coughlan AP, Dalpé Y, Lapoint L, Piché Y (2000) Soil pH-induced changes in root colonization, diversity, and reproduction of symbiotic arbuscular mycorrhizal fungi from healthy and declining maple forests. Can J For Res 30:1543–1554

    Article  Google Scholar 

  • Davey ML, Heegaard E, Halvorsen K et al (2013) Amplicon-pyrosequencing-based detection of compositional shifts in bryophyte-associated fungal communities along an elevation gradient. Mol Ecol 22:368–383

    Article  CAS  PubMed  Google Scholar 

  • Davison J, Öpik M, Daniell TJ, Moora M, Zobel M (2011) Arbuscular mycorrhizal fungal communities in plant roots are not random assemblages. FEMS Microbiol Ecol 78:103–115

    Article  CAS  PubMed  Google Scholar 

  • Davison J, Moora M, Öpik M et al (2015) Global assessment of arbuscular mycorrhizal fungus diversity reveals very low endemism. Science 349:970–973

    Article  CAS  PubMed  Google Scholar 

  • Dearnaley JDW, Martos F, Selosse M-A (2013) Orchid mycorrhizas: molecular ecology, physiology, evolution and conservation aspects. Springer, Berlin

    Google Scholar 

  • Devi LS, Khaund P, Nongkhlaw FMW, Joshi SR (2012) Diversity of culturable soil micro-fungi along altitudinal gradients of Eastern Himalayas. Mycobiology 40:151–158

    Article  PubMed  PubMed Central  Google Scholar 

  • Fisher MA, Fulé PZ (2004) Chamges in forest vegetation and arbuscular mycorrhizae along a steep elevation gradient in Arizona. For Ecol Manag 200:293–311

    Article  Google Scholar 

  • Foster P (2001) The potential negative impacts of global climate change on tropical montane cloud forests. Earth-Sci Rev 55:73–106

    Article  Google Scholar 

  • Gai JP, Tian H, Yang FY, Christie P, Li XL, Klironomos JN (2012) Arbuscular mycorrhizal fungal diversity along a Tibetan elevation gradient. Pedobiologia 55:145–151

    Article  Google Scholar 

  • Geml J (2011) Coalescent analyses reveal contrasting patterns of inter-continental gene flow in arctic-alpine and boreal-temperate fungi. In: Fontaneto D (ed) Biogeography of microscopic organisms—is everything everywhere? Cambridge University Press, Cambridge, pp 177–190

    Chapter  Google Scholar 

  • Geml J, Tulloss RE, Laursen GA, Sazanova NA, Taylor DL (2008) Evidence for strong inter- and intracontinental phylogeographic structure in Amanita muscaria, a wind-dispersed ectomycorrhizal basidiomycete. Mol Phyl Evol 48:694–701

    Article  CAS  Google Scholar 

  • Geml J, Timling I, Robinson CH et al (2012) An arctic community of symbiotic fungi assembled by long-distance dispersers: phylogenetic diversity of ectomycorrhizal basidiomycetes in Svalbard based on soil and sporocarp DNA. J Biogeogr 39:74–88

    Article  Google Scholar 

  • Geml J, Pastor N, Fernandez L et al (2014) Large-scale fungal diversity assessment in the Andean Yungas forests reveals strong community turnover among forest types along an altitudinal gradient. Mol Ecol 23:2452–2472

    Article  CAS  PubMed  Google Scholar 

  • Geml J, Morgado LN, Semenova TA, Welker JM, Walker MD, Smets E (2015) Long-term warming alters richness and composition of taxonomic and functional groups of arctic fungi. FEMS Microbiol Ecol. doi:10.1093/femsec/fiv095

    PubMed  Google Scholar 

  • Geml J, Morgado LN, Semenova-Nelsen TA, Schilthuizen M (2017) Changes in richness and community composition of ectomycorrhizal fungi among altitudinal vegetation types on Mt. Kinabalu in Borneo. New Phytol. doi:10.1111/nph.14566

  • Giriraj A, Irfan-Ullah M, Ramesh BR, Karunakaran PV, Jentsch A, Murthy MSR (2008) Mapping the potential distribution of Rhododendron arboretum Sm. ssp. nilagiricum (Zenker) Tagg (Ericaceae), an endemic plant using ecological niche modelling. Curr Sci 94:1605–1612

    Google Scholar 

  • Gómez-Hernández M, Williams-Linera G, Guevara R, Lodge DJ (2012) Patterns of macromycete community assemblage along an altitudinal gradient: options for fungal gradient and metacommunity analyses. Biodivers Conserv 21:2247–2268

    Article  Google Scholar 

  • Gorzelak MA, Hambleton S, Massicotte HB (2012) Community structure of ericoid mycorrhizas and root-associated fungi of Vaccinium membranaceum across an elevation gradient in the Canadian Rocky Mountains. Fungal Ecol 5:36–45

    Article  Google Scholar 

  • Gosling P, Mead A, Proctor M, Hammond JP, Bending GD (2013) Contrasting arbuscular mycorrhizal communities colonizing different host plants show a similar response to a soil phosphorus concentration gradient. New Phytol 198:546–556

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Grytnes JA, Beaman JH (2006) Elevational species richness patterns for vascular plants on Mount Kinabalu. J Biogeogr 33:1838–1849

    Article  Google Scholar 

  • Grytnes JA, Vetaas OR (2002) Species richness and altitude: a comparison between simulation models and interpolated plant species richness along the Himalayan altitudinal gradient, Nepal. Am Nat 159:294–304

    Article  PubMed  Google Scholar 

  • Grytnes JA, Heegaard E, Ihlen PG (2006) Species richness of vascular plants, bryophytes, and lichens along an altitudinal gradient in western Norway. Acta Oecol 29:241–246

    Article  Google Scholar 

  • Grytnes JA, Beaman JH, Romdal TS, Rahbek C (2008) The mid-domain effect matters: simulation analyses of range-size distribution data from Mount Kinabalu, Borneo. J Biogeogr 35:2138–2147

    Article  Google Scholar 

  • Guo Q, Kelt DA, Sun Z et al (2013) Global variation in elevational diversity. Sci Rep 3:3007

    Article  PubMed  Google Scholar 

  • Horn K, Franke T, Unterseher M, Schnittler M, Beenken L (2013) Morphological and molecular analyses of fungal endophytes of achlorophyllous gametophytes of Diphasiastrum alpinum (Lycopodiaceae). Am J Bot 100:2158–2174

    Article  PubMed  Google Scholar 

  • Illyés Z, Ouanphanivanh N, Rudnóy S, Orczán Á, Bratek Z (2010) The most recent results on orchid mycorrhizal fungi in Hungary. Acta Biol Hung 61:68–76

    Article  PubMed  Google Scholar 

  • Jarvis SG, Woodward S, Taylor AFS (2015) Strong altitudinal partitioning in the distributions of ectomycorrhizal fungi along a short (300 m) elevation gradient. New Phytol 206:1145–1155

    Article  CAS  PubMed  Google Scholar 

  • Kartzinel TR, Trapnell DW, Shefferson RP (2013) Highly diverse and spatially heterogeneous mycorrhizal symbiosis in a rare epiphyte is unrelated to broad biogeographic or environmental factors. Mol Ecol 22:6048–6059

    Article  CAS  PubMed  Google Scholar 

  • Kernaghan G, Harper KA (2001) Community structure of ectomycorrhizal fungi across an alpine/subalpine ecotone. Ecography 24:181–188

    Article  Google Scholar 

  • Kreft H, Köster N, Küper W, Nieder J, Barthlott W (2004) Diversity and biogeography of vascular epiphytes in Western Amazonia, Yasuní, Ecuador. J Biogeogr 31:1463–1476

    Article  Google Scholar 

  • Küper W, Kreft H, Nieder J, Köster N, Barthlott W (2004) Large-scale diversity patterns of vascular epiphytes in Neotropical montane rain forets. J Biogeogr 31:1477–1487

    Article  Google Scholar 

  • LePage BA (2003) A new species of Tsuga (Pinaceae) from the middle Eocene of Axel Heiberg Island, Canada, and an assessment of the evolution and biogeographical history of the genus. Bot J Linn Soc 141:257–296

    Article  Google Scholar 

  • Liew TS, Schilthuizen M, Lakim MB (2010) The determinants of land snail diversity along a tropical elevational gradient: insularity, geometry and niches. J Biogeogr 37:1071–1078

    Article  Google Scholar 

  • Lomolino MV (2001) Elevation gradients of species-density: historical and prospective views. Glob Ecol Biogeogr 10:3–13

    Article  Google Scholar 

  • Lugo MA, Ferrero M, Menoyo E, Estévez MC, Siñeriz F, Anton A (2008) Arbuscular mycorrhizal fungi and rhizospheric bacteria diversity along an altitudinal gradient in South American Puna grassland. Microb Ecol 55:705–713

    Article  CAS  PubMed  Google Scholar 

  • Lugo MA, Negritto MA, Jofré M, Anton A, Galetto L (2012) Colonization of native Andean grasses by arbuscular mycorrhizal fungi in Puna: a matter of altitude, host photosynthetic pathway and host life cycles. FEMS Microbiol Ecol 81:455–466

    Article  CAS  PubMed  Google Scholar 

  • Luteyn JL (1989) Speciation and diversity of Ericaceae in neotropical montane vegetation. In: Holm-Nielsen LB, Nielsen IC, Balslev H (eds) Tropical forests: botanical dynamics, speciation and diversity. Academic, London, pp 297–310

    Chapter  Google Scholar 

  • Luteyn JL (2002) Diversity, adaptation, and endemism in neotropical Ericaceae: biogeographical patterns in the Vaccinieae. Bot Rev 68:55–87

    Article  Google Scholar 

  • McCain CM (2004) The mid-domain effect applied to elevational gradients: species richness of small mammals in Costa Rica. J Biogeogr 31:19–31

    Article  Google Scholar 

  • McCain CM (2009) Global analysis of bird elevational diversity. Glob Ecol Biogeogr 19:346–360

    Article  Google Scholar 

  • McCain CM, Grytnes JA (2010) Elevational gradients in species richness. In: Encyclopedia of life sciences (ELS). Wiley, Chichester. doi:10.1002/9780470015902.a0022548

    Google Scholar 

  • McCormick MK, Whigham DF, O’Neill J (2004) Mycorrhizal diversity in photosynthetic terrestrial orchids. New Phytol 163:425–438

    Article  Google Scholar 

  • Meier CL, Rapp J, Bowers RM, Silman M, Fierer N (2010) Fungal growth on a common wood substrate across a tropical elevation gradient: temperature sensitivity, community composition, and potential for above-ground decomposition. Soil Biol Biochem 42:1083–1090

    Article  CAS  Google Scholar 

  • Merckx VSFT, Hendriks KP, Beentjes KK et al (2015) Evolution of endemism on a young tropical mountain. Nature 524:347–350

    Article  CAS  PubMed  Google Scholar 

  • Miyamoto Y, Nakano T, Hattori M, Nara K (2014) The mid-domain effect in ectomycorrhizal fungi: range overlap along an elevation gradient on Mount Fuji, Japan. ISME J 8:1739–1746

    Article  PubMed  PubMed Central  Google Scholar 

  • Miyamoto Y, Sakai A, Hattori M, Nara K (2015) Strong effect of climate on ectomycorrhizal fungal composition: evidence from range overlap between two mountains. ISME J 9:1870–1879

    Article  PubMed  PubMed Central  Google Scholar 

  • Molina R, Massicotte H, Trappe JM (1992) Specificity phenomena in mycorrhizal symbioses: community-ecological consequences and practical implications. In: Routledge AMF (ed) Mycorrhizal functioning: an integrative plant–fungal process. Chapman & Hall, New York, pp 357–423

    Google Scholar 

  • Mueller GM, Halling RE, Carranza J, Mata M, Schmit JP (2006) Saprotrophic and ectomycorrhizal macrofungi of Costa Rican oak forests. Ecol Stud 185:55–68

    Article  Google Scholar 

  • Nouhra E, Urcelay C, Longo S, Fontenla S (2012) Differential hypogeous sporocarp production from Nothofagus dombeyi and N. pumilio forests in southern Argentina. Mycologia 104:45–52

    Article  PubMed  Google Scholar 

  • Ojeda F, Arroyo J, Marañón T (1998) The phytogeography of European and Mediterranean heath species (Ericoideae, Ericaceae): a quantitative analysis. J Biogeogr 25:165–178

    Article  Google Scholar 

  • Öpik M, Davison J (2016) Uniting species- and community-oriented approaches to understand arbuscular mycorrhizal fungal diversity. Fungal Ecol. doi:10.1016/j.funeco.2016.07.005

    Google Scholar 

  • Pacheco S, Malizia LR, Cayuela L (2010) Effects of climate change on subtropical forests of South America. Trop Conserv Sci 3:423–437

    Article  Google Scholar 

  • Parris BS, Beaman RS, Beaman JH (1992) The plants of Mount Kinabalu. 1. Ferns and fern allies. Kew, Royal Botanic Gardens

    Google Scholar 

  • Peay KG, Schubert MG, Nguyen NH, Bruns TD (2012) Measuring ectomycorrhizal fungal dispersal: macroecological patterns driven by microscopic propagules. Mol Ecol 16:4122–4136

    Article  Google Scholar 

  • Porter WM, Robson AD, Abbott LK (1987) Field survey of the distribution of vesicular-arbuscular mycorrhizal fungi in relation to soil pH. J Appl Ecol 24:659–662

    Article  Google Scholar 

  • Rahbek C (2005) The role of spatial scale and the perception of large-scale species-richness patterns. Ecol Lett 8:224–239

    Article  Google Scholar 

  • Rasmussen HN, Rasmussen FN (2009) Orchid mycorrhiza: implications of a mycophagous life style. Oikos 118:334–345

    Article  Google Scholar 

  • Rinaldi AC, Comandini O, Kuyper TW (2008) Ectomycorrhizal fungal diversity: separating me wheat from the chaff. Fungal Divers 33:1–45

    Google Scholar 

  • Rincón A, Santamaría-Pérez B, Rabasa SG, Coince A, Marçais B, Buée M (2015) Compartmentalized and contrasted response of ectomycorrhizal and soil fungal communities of Scots pine forests along elevation gradients in France and Spain. Environ Microbiol 17:3009–3024

    Article  PubMed  Google Scholar 

  • Rosenzweig ML (1995) Species diversity in space and time. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Ruotsalainen AL, Väre H, Oksanen J, Tuomi J (2004) Root fungus colonization along an altitudinal gradient in North Norway. Arct Antarct Alp Res 36:239–243

    Article  Google Scholar 

  • Sanders NJ (2002) Elevational gradients in ant species richness: area, geometry, and Rapoport’s rule. Ecography 25:25–32

    Article  Google Scholar 

  • Selosse M-A, Weiß M, Jany J-L, Tillier A (2002) Communities and populations of sebacinoid basidiomycetes associated with the achlorophyllous orchid Neottia nidus-avis (L.) L.C.M. Rich. and neighbouring tree ectomycorrhizae. Mol Ecol 11:1831–1844

    Article  CAS  PubMed  Google Scholar 

  • Selosse M-A, Setaro S, Glatard F, Richard F, Urcelay C, Weiß M (2007) Sebacinales are common mycorrhizal associates of Ericaceae. New Phytol 174:864–878

    Article  CAS  PubMed  Google Scholar 

  • Shearer CA, Zelski SE, Raja HA, Schmit JP, Miller AN, Janovec JP (2015) Distributional patterns of freshwater ascomycetes communities along an Andes to Amazon elevational gradient in Peru. Biodivers Conserv 24:1877–1897

    Article  Google Scholar 

  • Spehn EM, Rudmann-Maurer K, Körner C (2012) Mountain biodiversity. Plant Ecol Divers 4:301–302

    Article  Google Scholar 

  • Stevens GC (1992) The elevational gradient in elevational range: an extension of Rapoport’s latitudinal rule to altitude. Am Nat 140:893–911

    Article  CAS  PubMed  Google Scholar 

  • Still CJ, Foster PN, Schneider SH (1999) Simulating the effects of climate change on tropical montane cloud forests. Nature 398:608–610

    Article  CAS  Google Scholar 

  • Suárez JP, Weiß M, Abele A, Garnica S, Oberwinkler F, Kottke I (2006) Diverse tulasnelloid fungi form mycorrhizas with epiphytic orchids in an Andean cloud forest. Mycol Res 110:1257–1270

    Article  PubMed  CAS  Google Scholar 

  • Suárez JP, Weiß M, Abele A, Oberwinkler F, Kottke I (2008) Members of Sebacinales subgroup B form mycorrhizae with epiphytic orchids in a neotropical mountain rain forest. Mycol Prog 7:75

    Article  Google Scholar 

  • Sýkorová Z, Ineichen K, Wiemkin A, Redecker D (2007) The cultivation bias: different communities of arbuscular mycorrhizal fungi detected in roots from the field, from bait plants transplanted to the field, and from a greenhouse trap experiment. Mycorrhiza 18:1–14

    Article  PubMed  CAS  Google Scholar 

  • Taylor DL, Bruns TD (1999) Population, habitat and genetic correlates of mycorrhizal specialization in the ‘cheating’ orchids Corallorhiza maculata and C. mertensiana. Mol Ecol 8:1719–1732

    Article  Google Scholar 

  • Taylor DL, Bruns TD, Hodges SA (2004) Evidence for mycorrhizal races in a cheating orchid. Proc R Soc Lond B 271:35–43

    Article  Google Scholar 

  • Tedersoo L, Smith ME (2013) Lineages of ectomycorrhizal fungi revisited: foraging strategies and novel lineages revealed by sequences from belowground. Fungal Biol Rev 27:83–99

    Article  Google Scholar 

  • Tedersoo L, May TW, Smith ME (2010) Ectomycorrhizal lifestyle in fungi: global diversity, distribution, and evolution of phylogenetic lineages. Mycorrhiza 20:217–263

    Article  PubMed  Google Scholar 

  • Tedersoo L, Bahram M, Toots M et al (2012) Towards global patterns in the diversity and community structure of ectomycorrhizal fungi. Mol Ecol 21:4160–4170

    Article  PubMed  Google Scholar 

  • Tedersoo L, Bahram M, Põlme S et al (2014) Global diversity and geography of soil fungi. Science 346:1256688

    Article  PubMed  CAS  Google Scholar 

  • Vályi K, Mardhiah U, Rillig MC, Hempel S (2016) Community assembly and coexistence in communities of arbuscular mycorrhizal fungi. ISME J. doi:10.1038/ismej.2016.46

    PubMed  PubMed Central  Google Scholar 

  • Van der Heijden MGA, Martin FM, Selosse M-A, Sanders IR (2015) Mycorrhizal ecology and evolution: the past, the present, and the future. New Phytol 205:1406–1423

    Article  PubMed  CAS  Google Scholar 

  • Villarreal-Ruiz L, Anderson IC, Alexander IJ (2004) Interaction between an isolate from the Hymenoscyphus ericae aggregate and roots of Pinus and Vaccinium. New Phytol 164:183–192

    Article  CAS  Google Scholar 

  • Walker MD, Walker DA, Auerbach NA (1994) Plant communities of a tussock tundra landscape in the brooks range foothills, Alaska. J Veg Sci 5:843–866

    Article  Google Scholar 

  • Walker JF, Aldrich-Wolfe L, Riffel A et al (2011) Diverse Helotiales associated with the roots of three species of Arctic Ericaceae provide no evidence for host specificity. New Phytol 191:515–527

    Article  PubMed  Google Scholar 

  • Waterman RJ, Bidartondo MI (2008) Deception above, deception below: linking pollination and mycorrhizal biology of orchids. J Exp Bot 59:1085–1096

    Article  CAS  PubMed  Google Scholar 

  • Whitmore TC (1984) Tropical rain forests of the Far East. Oxford University Press, Oxford

    Google Scholar 

  • Wicaksono CY, Aguirre Gutierrez J, Nouhra ER et al (2016) Contracting montane cloud forests: a case study of the Andean alder (Alnus acuminata) and associated fungi in the Yungas. Biotropica. doi:10.1111/btp.12394

    Google Scholar 

  • Wood JJ, Beaman RS, Beaman JH (1993) The plants of Mount Kinabalu. 2. Orchids. Kew, Royal Botanic Gardens

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to József Geml .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Geml, J. (2017). Altitudinal Gradients in Mycorrhizal Symbioses. In: Tedersoo, L. (eds) Biogeography of Mycorrhizal Symbiosis. Ecological Studies, vol 230. Springer, Cham. https://doi.org/10.1007/978-3-319-56363-3_5

Download citation

Publish with us

Policies and ethics