Skip to main content

Population Biology and Ecology of Ectomycorrhizal Fungi

  • Chapter
  • First Online:

Part of the book series: Ecological Studies ((ECOLSTUD,volume 230))

Abstract

Studies on ectomycorrhizal fungi (EcMF) populations, their genetic diversity, dynamics and the ecological drivers of their structure have long struggled with characterisation of fungal infraspecific variability, until development of molecular tools. Population dynamics have enhanced understanding of basic biological features of EcMF at population level, such as mating systems, local dispersal patterns and relationships between soil mycelial colonisation and fructification. Investigating population structure and dynamics also allowed the transfer of ecological colonisation strategies derived from plant ecology to EcMF species, although local environmental drivers and individual variations can shape populations beyond such ecological strategies. Characterisation of genetic diversity of EcMF populations from contrasted habitats has then been used to explore the role of environmental drivers, for instance soil parameters, in shaping the genetic structure and adaptive responses of populations. Detection of genetic structure of populations also proved relevant to explore host specialisation versus generalism in the ectomycorrhizal symbiosis. Extended up to the breadth of species’ range, investigation through the prism of landscape genetics and demographic reconstruction helped deciphering ancient and modern environmental drivers of population diversity, indicating the value of EcMF for testing biogeographic hypotheses. Present development of high-throughput sequencing methods is now allowing to explore the evolutionary mechanisms and traits beyond EcMF population history and response to environmental variation.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Amend A, Keeley S, Garbelotto M (2009) Forest age correlates with fine-scale spatial structure of Matsutake mycorrhizas. Mycol Res 113:541–551

    Article  CAS  PubMed  Google Scholar 

  • Amend A, Garbelotto M, Fang Z et al (2010) Isolation by landscape in populations of a prized edible mushroom Tricholoma matsutake. Conserv Genet 11:795–802

    Article  Google Scholar 

  • Anderson JB, Kohn LM (1998) Genotyping, gene genealogies and genomics bring fungal population genetics above ground. Trends Ecol Evol 13:444–449

    Article  CAS  PubMed  Google Scholar 

  • Anderson JB, Chambers SM, Cairney JW (2001) Distribution and persistence of Australian Pisolithus species genets at native sclerophyll forest field sites. Mycol Res 105:971–976

    Article  CAS  Google Scholar 

  • Bagley SJ, Orlovich DA (2004) Genet size and distribution of Amanita muscaria in a suburban park, Dunedin, New Zealand. NZ J Bot 42:939–947

    Article  Google Scholar 

  • Bahram M, Harend H, Tedersoo L (2014) Network perspectives of ectomycorrhizal associations. Fungal Ecol 7:70–77

    Article  Google Scholar 

  • Beiler KJ, Durall DM, Simard SW et al (2010) Architecture of the wood-wide web: Rhizopogon spp. genets link multiple Douglas-fir cohorts. New Phytol 185:543–553

    Article  CAS  PubMed  Google Scholar 

  • Bergemann SE, Miller SL (2002) Size, distribution, and persistence of genets in local populations of the late-stage ectomycorrhizal basidiomycete, Russula brevipes. New Phytol 156:313–320

    Article  CAS  Google Scholar 

  • Bergemann SE, Douhan GW, Garbelotto M et al (2006) No evidence of population structure across three isolated subpopulations of Russula brevipes in an oak/pine woodland. New Phytol 170:177–184

    Article  PubMed  Google Scholar 

  • Bertault G, Rousset F, Fernandez D et al (2001) Population genetics and dynamics of the black truffle in a man-made truffle field. Heredity 86:451–458

    Article  CAS  PubMed  Google Scholar 

  • Bonello P, Bruns TD, Gardes M (1998) Genetic structure of a natural population of the ectomycorrhizal fungus Suillus pungens. New Phytol 138:533–542

    Article  CAS  Google Scholar 

  • Bourne EC, Mina D, Gonçalves SC et al (2014) Large and variable genome size unrelated to serpentine adaptation but supportive of cryptic sexuality in Cenococcum geophilum. Mycorrhiza 24:13–20

    Article  PubMed  Google Scholar 

  • Branco S, Gladieux P, Ellison CE et al (2015) Genetic isolation between two recently diverged populations of a symbiotic fungus. Mol Ecol 24:2747–2758

    Article  CAS  PubMed  Google Scholar 

  • Bruns TD, Bidartondo MI, Taylor DL (2002) Host specificity in ectomycorrhizal communities: what do the exceptions tell us? Integr Comp Biol 42:352–359

    Article  PubMed  Google Scholar 

  • Burchardt KM, Rivera Y, Baldwin T et al (2011) Analysis of genet size and local gene flow in the ectomycorrhizal basidiomycete Suillus spraguei (synonym S. pictus). Mycologia 103:722–730

    Article  CAS  Google Scholar 

  • Cao Y, Zhang Y, Yu Z et al (2013) Structure, gene flow, and recombination among geographic populations of a Russula virescens ally from Southwestern China. PLoS One 8:e73174

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Carriconde F, Gryta H, Jargeat P et al (2008a) High sexual reproduction and limited contemporary dispersal in the ectomycorrhizal fungus Tricholoma scalpturatum: new insights from population genetics and spatial autocorrelation analysis. Mol Ecol 17:4433–4445

    Article  CAS  PubMed  Google Scholar 

  • Carriconde F, Gardes M, Jargeat P et al (2008b) Population evidence of cryptic species and geographical structure in the cosmopolitan ectomycorrhizal fungus, Tricholoma scalpturatum. Microb Ecol 56:513–524

    Article  PubMed  Google Scholar 

  • Chapela IH, Garbelotto M (2004) Phylogeography and evolution in matsutake and close allies inferred by analyses of ITS sequences and AFLPs. Mycologia 96:730–741

    Article  CAS  PubMed  Google Scholar 

  • Colpaert J, Vandenkoornhuyse P, Adriaensen K et al (2000) Genetic variation and heavy metal tolerance in the ectomycorrhizal basidiomycete Suillus luteus. New Phytol 147:367–379

    Article  CAS  Google Scholar 

  • Colpaert J, Muller LAH, Lambaerts M et al (2004) Evolutionary adaptation to Zn toxicity in populations of Suilloid fungi. New Phytol 162:549–559

    Article  CAS  Google Scholar 

  • Colpaert JV, Wevers JH, Krznaric E et al (2011) How metal-tolerant ecotypes of ectomycorrhizal fungi protect plants from heavy metal pollution. Ann For Sci 68:17–24

    Article  Google Scholar 

  • Cushman SA, McKelvey KS, Hayden J et al (2006) Gene flow in complex landscapes: testing multiple hypotheses with causal modeling. Am Nat 168:486–499

    Article  PubMed  Google Scholar 

  • Dahlberg A, Stenlid J (1990) Population structure and dynamics in Suillus bovinus as indicated by spatial distribution of fungal clones. New Phytol 115:487–493

    Article  Google Scholar 

  • Dahlberg A, Stenlid J (1994) Size, distribution and biomass of genets in populations of Suillus bovinus (L.: Fr.) Roussel revealed by somatic incompatibility. New Phytol 128:225–234

    Article  Google Scholar 

  • Dettman JR, Jacobson DJ, Taylor JW (2003) A multilocus genealogical approach to phylogenetic species recognition in the model eukaryotes Neurospora. Evolution 57:2703–2720

    Article  PubMed  Google Scholar 

  • Douglas AE (1998) Host benefit and the evolution of specialization in symbiosis. Heredity 81:599–603

    Article  Google Scholar 

  • Douhan GW, Martin DP, Rizzo DM (2007) Using the putative asexual fungus Cenococcum geophilum as a model to test how species concepts influence recombination analyses using sequence data from multiple loci. Curr Genet 52:191–201

    Article  CAS  PubMed  Google Scholar 

  • Douhan GW, Vincenot L, Gryta H, Selosse MA (2011) Population genetics of ectomycorrhizal fungi: from current knowledge to emerging directions. Fungal Biol 115:569–597

    Article  PubMed  Google Scholar 

  • Dunham SM, Kretzer AM, Pfrender ME (2003) Characterization of Pacific golden chanterelle (Cantharellus formosus) genet size using co-dominant microsatellite markers. Mol Ecol 12:1607–1618

    Article  CAS  PubMed  Google Scholar 

  • Dunham SM, O’Dell T, Molina R (2006) Spatial analysis of within-population microsatellite variability reveals restricted gene flow in the Pacific golden chanterelle (Cantharellus formosus). Mycologia 98:250–259

    Article  CAS  PubMed  Google Scholar 

  • Dunham SM, Mujic AB, Spatafora JW et al (2013) Within-population genetic structure differs between two sympatric sister-species of ectomycorrhizal fungi, Rhizopogon vinicolor and R vesiculosus. Mycologia 105:814–826

    Article  PubMed  Google Scholar 

  • El Karkouri K, Selosse MA, Mousain D (2005) Molecular markers detecting an ectomycorrhizal Suillus collinitus strain on Pinus halepensis roots suggest successful inoculation and persistence in Mediterranean nursery and plantation. FEMS Microbiol Ecol 55:146–158

    Article  CAS  Google Scholar 

  • Feng B, Zhao Q, Xu J et al (2016) Drainage isolation and climate change-driven population expansion shape the genetic structures of Tuber indicum complex. Sci Rep 6:21811

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fiore-Donno AM, Martin F (2001) Populations of ectomycorrhizal Laccaria amethystina and Xerocomus spp. show contrasting colonization patterns in a mixed forest. New Phytol 152:533–542

    Article  CAS  Google Scholar 

  • Fisher MC, Henk DA, Briggs CJ et al (2012) Emerging fungal threats to animal, plant and ecosystem health. Nature 484:186–194

    Article  CAS  PubMed  Google Scholar 

  • Fries N, Mueller GM (1984) Incompatibility systems, cultural features and species circumscriptions in the ectomycorrhizal genus Laccaria (Agaricales). Mycologia 76:633–642

    Article  Google Scholar 

  • Galante TE, Horton TR, Swanney DP (2011) 95% of basidiospores fall within 1 m of the cap: a field- and modeling-based study. Mycologia 103:1175–1183

    Article  PubMed  Google Scholar 

  • García-Cunchillos I, Sánchez S, Barriuso JJ et al (2014) Population genetics of the westernmost distribution of the glaciations-surviving black truffle Tuber melanosporum. Mycorrhiza 24:S89–S100

    Article  PubMed  Google Scholar 

  • Garnica S, Spahn P, Oertel B et al (2011) Tracking the evolutionary history of Cortinarius species in section Calochroi, with transoceanic disjunct distributions. BMC Evol Biol 11:213

    Article  PubMed  PubMed Central  Google Scholar 

  • Geml J, Laursen GA, O'Neill K et al (2006) Beringian origins and cryptic speciation events in the fly agaric (Amanita muscaria). Mol Ecol 15:225–239

    Article  CAS  PubMed  Google Scholar 

  • Geml J, Tulloss RE, Laursen GA et al (2010) Phylogeographic analyses of a boreal-temperate ectomycorrhizal basidiomycete, Amanita muscaria, suggest forest refugia in Alaska during the last glacial maximum. In: Habel JC, Assmann T (eds) Relict species. Springer, Berlin

    Google Scholar 

  • Gherbi H, Delaruelle C, Selosse MA et al (1999) High genetic diversity in a population of the ectomycorrhizal basidiomycete Laccaria amethystina in a 150-year-old beech forest. Mol Ecol 8:2003–2013

    Article  CAS  PubMed  Google Scholar 

  • Gonçalves SC, Portugal A, Gonçalves MT et al (2007) Genetic diversity and differential in vitro responses to Ni in Cenococcum geophilum isolates from serpentine soils in Portugal. Mycorrhiza 17:677–686

    Article  PubMed  CAS  Google Scholar 

  • Gonçalves SC, Martins-Loução MA et al (2009) Evidence of adaptive tolerance to nickel in isolates of Cenococcum geophilum from serpentine soils. Mycorrhiza 19:221–230

    Article  PubMed  CAS  Google Scholar 

  • Grime JP (1977) Evidence for the existence of three primary strategies in plants and its relevance to ecological and evolutionary theory. Am Nat 111:1169–1194

    Article  Google Scholar 

  • Grubisha LC, Bergemann SE, Bruns TD (2007) Host islands within the California Northern Channel Islands create fine-scale genetic structure in two sympatric species of the symbiotic ectomycorrhizal fungus Rhizopogon. Mol Ecol 16:1811–1822

    Article  PubMed  Google Scholar 

  • Grubisha LC, Levsen N, Olson MS et al (2012) Intercontinental divergence in the Populus-associated ectomycorrhizal fungus, Tricholoma populinum. New Phytol 194:548–560

    Article  PubMed  Google Scholar 

  • Gryta H, Debaud JC, Effose A et al (1997) Fine-scale structure of populations of the ectomycorrhizal fungus Hebeloma cylindrosporum in coastal sand dune forest ecosystems. Mol Ecol 6:353–364

    Article  Google Scholar 

  • Gryta H, Debaud JC, Marmeisse R (2000) Population dynamics of the symbiotic mushroom Hebeloma cylindrosporum: mycelial persistence and inbreeding. Heredity 84:294–302

    Article  CAS  PubMed  Google Scholar 

  • Gryta H, Carriconde F, Charcosset JY et al (2006) Population dynamics of the ectomycorrhizal fungal species Tricholoma populinum and Tricholoma scalpturatum associated with black poplar underdiffering environmental conditions. Environ Microbiol 8:773–786

    Article  CAS  PubMed  Google Scholar 

  • Guérin-Laguette A, Cummings N, Hesom-Williams N et al (2013) Mycorrhiza analyses in New Zealand truffières reveal frequent but variable persistence of Tuber melanosporum in co-existence with other truffle species. Mycorrhiza 23:87–98

    Article  PubMed  Google Scholar 

  • Guidot A, Debaud JC, Marmeisse R (2001) Correspondence between genet diversity and spatial distribution of above- and below-ground populations of the ectomycorrhizal fungus Hebeloma cylindrosporum. Mol Ecol 10:1121–1131

    Article  CAS  PubMed  Google Scholar 

  • Guidot A, Gryta H, Gourbière F et al (2002) Forest habitat characteristics affect balance between sexual reproduction and clonal propagation of the ectomycorrhizal mushroom Hebeloma cylindrosporum. Oikos 99:25–36

    Article  Google Scholar 

  • Guidot A, Debaud JC, Effosse A et al (2003) Below-ground distribution and persistence of an ectomycorrhizal fungus. New Phytol 161:539–547

    Article  CAS  Google Scholar 

  • Halme P, Kotiaho JS (2012) The importance of timing and number of surveys in fungal biodiversity research. Biodivers Conserv 21:205–219

    Article  Google Scholar 

  • Hirose D, Kikuchi J, Kanzaki N et al (2004) Genet distribution of sporocarps and ectomycorrhizas of Suillus pictus in a Japanese white pine plantation. New Phytol 164:527–541

    Article  Google Scholar 

  • Hitchcock CJ, Chambers SM, Cairney JWG (2011) Genetic population structure of the ectomycorrhizal fungus Pisolithus microcarpus suggests high gene flow in South-Eastern Australia. Mycorrhiza 21:131–137

    Article  PubMed  Google Scholar 

  • Hoeksema JD, Thompson JN (2007) Geographic structure in a widespread plant–mycorrhizal interaction: pines and false truffles. J Evol Biol 20:1148–1163

    Article  CAS  PubMed  Google Scholar 

  • Hortal S, Pera J, Parladé J (2009) Field persistence of the edible ectomycorrhizal fungus Lactarius deliciosus: effects of inoculation strain, initial colonization level, and site characteristics. Mycorrhiza 19:167–177

    Article  PubMed  Google Scholar 

  • Hortal S, Trocha LK, Murat C et al (2012) Beech roots are simultaneously colonized by multiple genets of the ectomycorrhizal fungus Laccaria amethystina clustered in two genetic groups. Mol Ecol 21:2116–2129

    Article  CAS  PubMed  Google Scholar 

  • Horton TR, Bruns TD (2001) The molecular revolution in ectomycorrhizal ecology: peeking into the black-box. Mol Ecol 10:1855–1871

    Article  CAS  PubMed  Google Scholar 

  • Huai WX, Guo LD, He W (2003) Genetic diversity of an ectomycorrhizal fungus Tricholoma terreum in a Larix principis-rupprechtii stand assessed using random amplified polymorphic DNA. Mycorrhiza 13:265–270

    Article  PubMed  Google Scholar 

  • Jacobson KM, Miller OK, Turner BJ (1993) Randomly amplified polymorphic DNA markers are superior to somatic incompatibility tests for discriminating genotypes in natural populations of the ectomycorrhizal fungus Suillus granulatus. Proc Natl Acad Sci USA 90:9159–9163

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jany JL, Garbaye J, Martin F (2002) Cenococcum geophilum populations show a high degree of genetic diversity in beech forests. New Phytol 154:651–659

    Article  CAS  Google Scholar 

  • Jargeat P, Chaumeton JP, Navaud O et al (2013) The Paxillus involutus (Boletales, Paxillaceae) complex in Europe: genetic diversity and morphological description of the new species Paxillus cuprinus, typification of P. involutus s.s., and synthesis of species boundaries. Fungal Biol 118:12–31

    Article  PubMed  CAS  Google Scholar 

  • Johnson CN (1996) Interactions between mammals and ectomycorrhizal fungi. Trends Ecol Evol 11:503–507

    Article  CAS  PubMed  Google Scholar 

  • Johnson D, Martin F, Cairney JWG et al (2012) The importance of individuals: intraspecific diversity of mycorrhizal plants and fungi in ecosystems. New Phytol 194:614–628

    Article  PubMed  Google Scholar 

  • Jourand P, Ducousso M, Loulergue-Majorel C et al (2010) Ultramafic soils from New Caledonia structure Pisolithus albus in ecotype. FEMS Microbiol Ecol 72:238–249

    Article  CAS  PubMed  Google Scholar 

  • Kretzer AM, Dunham S, Molina R et al (2005) Patterns of vegetative growth and gene flow in Rhizopogon vinicolor and R. vesiculosus (Boletales, Basidiomycota). Mol Ecol 14:2259–2268

    Article  CAS  PubMed  Google Scholar 

  • Lee HY, Koo CD (2016) Genet variation of ectomycorrhizal Suillus granulatus fruiting bodies in Pinus strobus stand. Mycobiology 44:7–13

    Article  PubMed  PubMed Central  Google Scholar 

  • Lian C, Narimatsu M, Nara K et al (2006) Tricholoma matsutake in a natural Pinus densiflora forest: correspondence between above- and below-ground genets, association with multiple host trees and alteration of existing ectomycorrhizal communities. New Phytol 171:825–836

    Article  PubMed  Google Scholar 

  • Liang Y, Guo LD, Ma KP (2004) Genetic structure of a population of the ectomycorrhizal fungus Russula vinosa in subtropical woodlands in Southwest China. Mycorrhiza 14:235–240

    Article  CAS  PubMed  Google Scholar 

  • Lilleskov EA, Bruns TD (2005) Spore dispersal of a resupinate ectomycorrhizal fungus, Tomentella sublilacina, via soil food webs. Mycologia 97:762–769

    Article  PubMed  Google Scholar 

  • LoBuglio KF (1999) Cenococcum. In: Cairney JWG, Chambers SM (eds) Ectomycorrhizal fungi key genera in profile. Springer, Berlin

    Google Scholar 

  • LoBuglio KF, Taylor JW (2002) Recombination and genetic differentiation in the mycorrhizal fungus Cenococcum geophilum Fr. Mycologia 94:772–780

    PubMed  Google Scholar 

  • Lomolino MV, Riddle BR, Whittaker RJ et al (2010) Biogeography, 4th edn. Sinauer Associates, Sunderland

    Google Scholar 

  • Manel S, Schwartz MK, Luikart G et al (2003) Landscape genetics: combining landscape ecology and population genetics. Trends Ecol Evol 18:189–197

    Article  Google Scholar 

  • Mello A, Murat C, Vizzini A et al (2005) Tuber magnatum Pico, a species of limited geographical distribution: its genetic diversity inside and outside a truffle ground. Environ Microbiol 7:55–65

    Article  CAS  PubMed  Google Scholar 

  • Molinier V, Murat C, Baltensweiler A et al (2016) Fine-scale genetic structure of natural Tuber aestivum sites in southern Germany. Mycorrhiza 26:895–907

    Article  PubMed  Google Scholar 

  • Moore D, Gange AC, Gange EG et al (2008) Ecology of saprotrophic basidiomycetes. Fruit bodies: their production and development in relation to environment. Br Mycol Soc Symp Ser 28:79–103

    Google Scholar 

  • Morkkynen T, Weissenberg KV, Pappine A (1997) Estimation of dispersal gradients of S- and P-type basidiospores of Heterobasidion Annosum. Eur J For Pathol 27:291–300

    Article  Google Scholar 

  • Moyersoen B, Beever RE, Martin F (2003) Genetic diversity of Pisolithus in New Zealand indicates multiple long-distance dispersal from Australia. New Phytol 160:569–579

    Article  Google Scholar 

  • Muller LAH, Lambaerts M, Vangronsveld J et al (2004) AFLP-based assessment of the effects of environmental heavy metal pollution on the genetic structure of pioneer populations of Suillus luteus. New Phytol 164:297–303

    Article  CAS  Google Scholar 

  • Muller LAH, Vangronsveld J, Colpaert JV (2007) Genetic structure of Suillus luteus populations in heavy metal polluted and nonpolluted habitats. Mol Ecol 16:4728–4737

    Article  CAS  PubMed  Google Scholar 

  • Murat C, Díez J, Luis P et al (2004) Polymorphism at the ribosomal DNA ITS and its relation to postglacial re-colonization routes of the Perigord truffle Tuber melanosporum. New Phytol 164:401–411

    Article  CAS  Google Scholar 

  • Murat C, Rubini A, Riccioni C et al (2013) Fine-scale spatial genetic structure of the black truffle (Tuber melanosporum) investigated with neutral microsatellites and functional mating type genes. New Phytol 199:176–187

    Article  CAS  PubMed  Google Scholar 

  • Murata H, Ohta A, Yamada A et al (2005) Genetic mosaics in the massive persisting rhizosphere colony “shiro” of the ectomycorrhizal basidiomycete Tricholoma matsutake. Mycorrhiza 15:505–512

    Article  CAS  PubMed  Google Scholar 

  • Okuda Y, Shimomura N, Funato C et al (2013) Genetic variation among natural isolates of the ectomycorrhizal hypogenous fungus, Rhizopogon roseolus from Japanese pine forests inferred using AFLP markers. Mycoscience 54:13–18

    Article  Google Scholar 

  • Panaccione DG, Sheets NL, Miller SP et al (2001) Diversity of Cenococcum geophilum isolates from serpentine and non-serpentine soils. Mycologia 93:645–652

    Article  CAS  Google Scholar 

  • Paolocci F, Rubini A, Riccioni C et al (2006) Reevaluation of the life cycle of Tuber magnatum. Appl Environ Microbiol 72:2390–2393

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Payen T, Murat C, Gigant A et al (2015) A survey of genome-wide single nucleotide polymorphisms through genome resequencing in the Périgord black truffle (Tuber melanosporum Vittad.) Mol Ecol Resour 15:1243–1255

    Article  CAS  PubMed  Google Scholar 

  • Peakall R, Ruibal M, Lindenmayer DB (2003) Spatial autocorrelation analysis offers new insights into gene flow in the Australian bush rat, Rattus fuscipes. Evolution 57:1182–1195

    Article  PubMed  Google Scholar 

  • Pringle A, Vellinga EC (2006) Last chance to know? Using literature to explore the biogeography and invasion biology of the death cap mushroom Amanita phalloides (Vaill. ex Fr.:Fr.) Link. Biol Invasions 8:1131–1144

    Article  Google Scholar 

  • Pringle A, Adams RI, Cross HB et al (2009) The ectomycorrhizal fungus Amanita phalloides was introduced and is expanding its range on the west coast of North America. Mol Ecol 18:817–833

    Article  CAS  PubMed  Google Scholar 

  • Redecker D, Szaro TM, Bowman RJ et al (2001) Small genets of Lactarius xanthogalactus, Russula cremoricolor and Amanita francheti in late-stage ectomycorrhizal successions. Mol Ecol 10:1025–1034

    Article  CAS  PubMed  Google Scholar 

  • Riccioni C, Belfiori B, Rubini A et al (2008) Tuber melanosporum outcrosses: analysis of the genetic diversity within and among its natural populations under this new scenario. New Phytol 180:466–478

    Article  CAS  PubMed  Google Scholar 

  • Rivera Y, Burchhardt KM, Kretzer AM (2014) Little to no genetic structure in the ectomycorrhizal basidiomycete Suillus spraguei (Syn. S. pictus) across parts of the northeastern USA. Mycorrhiza 24:227–232

    Article  CAS  PubMed  Google Scholar 

  • Riviere R, Natarajan K, Dreyfus B (2006) Spatial distribution of ectomycorrhizal Basidiomycete Russula subsect. Foetentinae populations in a primary dipterocarp rainforest. Mycorrhiza 16:143–148

    Article  PubMed  Google Scholar 

  • Rochet J, Moreau PA, Manzi S et al (2011) Comparative phylogenies and host specialization in the alder ectomycorrhizal fungi Alnicola, Alpova and Lactarius (Basidiomycota) in Europe. BMC Evol Biol 11:40

    Article  PubMed  PubMed Central  Google Scholar 

  • Roets F, Wingfield MJ, Wingfield BD et al (2011) Mites are the most common vectors of the fungus Gondwanamyces proteae in Protea infructescences. Fungal Biol 115:343–350

    Article  PubMed  Google Scholar 

  • Roy M, Dubois MP, Proffit M et al (2008) Evidence from population genetics that the ectomycorrhizal basidiomycete Laccaria amethystina is an actual multihost symbiont. Mol Ecol 17:2825–2838

    Article  CAS  PubMed  Google Scholar 

  • Rubini A, Paolocci F, Riccioni C et al (2005) Genetic and phylogeographic structures of the symbiotic fungus Tuber magnatum. Appl Environ Microbiol 71:6584–6589

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rubini A, Belfiori B, Riccioni C et al (2011) Tuber melanosporum: mating type distribution in a natural plantation and dynamics of strains of different mating types on the roots of nursery-inoculated host plants. New Phytol 189:723–735

    Article  PubMed  Google Scholar 

  • Sawyer NA, Chambers SM, Cairney JW (1999) Molecular investigation of genet distribution and genetic variation of Cortinarius rotundisporus in eastern Australian sclerophyll forests. New Phytol 142:561–568

    Article  CAS  Google Scholar 

  • Sawyer NA, Chambers SM, Cairney JW (2001) Distribution and persistence of Amanita muscaria genotypes in Australian Pinus radiata plantations. Mycol Res 105:966–970

    Article  CAS  Google Scholar 

  • Sawyer NA, Chambers SM, Cairney JW (2003) Distribution of Amanita spp. genotypes under eastern Australian sclerophyll vegetation. Mycol Res 107:1157–1162

    Article  CAS  PubMed  Google Scholar 

  • Selosse MA (2003) Founder effect in a young Leccinum duriusculum (Schultzer) Singer population. Mycorrhiza 13:146–149

    Article  Google Scholar 

  • Selosse MA, Martin F, Le Tacon F (1998) Survival of an introduced ectomycorrhizal Laccaria bicolor strain in a European forest plantation monitored by mitochondrial ribosomal DNA analysis. New Phytol 140:753–761

    Article  CAS  Google Scholar 

  • Selosse MA, Martin F, Bouchard D et al (1999) Structure and dynamics of experimentally introduced and naturally occurring Laccaria sp. discrete genotypes in a Douglas fir plantation. Appl Environ Microbiol 65:2006–2014

    CAS  PubMed  PubMed Central  Google Scholar 

  • Selosse MA, Martin F, Le Tacon F (2001) Intraspecific variation in fruiting phenology in an ectomycorrhizal Laccaria population under Douglas fir. Mycol Res 105:524–531

    Article  Google Scholar 

  • Selosse MA, Richard F, He X et al (2006) Mycorrhizal networks: les liaisons dangereuses. Trends Ecol Evol 11:621–628

    Article  Google Scholar 

  • Sheedy EM, Van de Wouw AP, Howlett BJ et al (2015) Population genetic structure of the ectomycorrhizal fungus Laccaria sp. A resembles that of its host tree Nothofagus cunninghamii. Fungal Ecol 13:23–32

    Article  Google Scholar 

  • Smith SE, Read DJ (2008) Mycorrhizal symbiosis, 3rd edn. Academic, Cambridge

    Google Scholar 

  • Smith ME, Douhan GW, Fremier AK et al (2009) Are true multihost fungi the exception or the rule? Dominant ectomycorrhizal fungi on Pinus sabiniana differ from those on co-occurring Quercus species. New Phytol 182:295–299

    Article  PubMed  Google Scholar 

  • Taschen E, Rousset F, Sauve M et al (2016) How the truffle got its mate: insights from genetic structure in spontaneous and managed Mediterranean populations of Tuber melanosporum. Mol Ecol 25:5611–5627

    Article  CAS  PubMed  Google Scholar 

  • Taylor JW, Turner E, Townsend JP et al (2006) Eukaryotic microbes, species recognition and the geographic limits of species: examples from the kingdom Fungi. Philos Trans R Soc B 361:1947–1963

    Article  Google Scholar 

  • Tedersoo L, Suvi T, Jairus T et al (2008) Forest microsite effects on community composition of ectomycorrhizal fungi on seedlings of Picea abies and Betula pendula. Environ Microbiol 10:1189–1201

    Article  CAS  PubMed  Google Scholar 

  • Todd NK, Rayner ADM (1980) Fungal individualism. Sci Prog 66:331–354

    Google Scholar 

  • Urban A, Puschenreiter M, Strauss J et al (2008) Diversity and structure of ectomycorrhizal and co-associated fungal communities in a serpentine soil. Mycorrhiza 18:339–354

    Article  PubMed  Google Scholar 

  • Vellinga EC, Wolfe BE, Pringle A (2009) Global patterns of ectomycorrhizal introductions. New Phytol 181:960–973

    Article  PubMed  Google Scholar 

  • Vincenot L, Nara K, Sthultz C et al (2012) Extensive gene flow over Europe and possible speciation over Eurasia in the ectomycorrhizal basidiomycete Laccaria amethystina complex. Mol Ecol 21:281–289

    Article  CAS  PubMed  Google Scholar 

  • Wadud MA, Lian CL, Nara K et al (2008) Below ground genet differences of an ectomycorrhizal fungus Laccaria laccata infecting Salix stands in primary successional stage. J Agrofor Environ 2:1–6

    Google Scholar 

  • Wadud MA, Nara K, Lian C et al (2014) Genet dynamics and ecological functions of the pioneer ectomycorrhizal fungi Laccaria amethystina and Laccaria laccata in a volcanic desert on Mount Fuji. Mycorrhiza 24:551–563

    Article  PubMed  Google Scholar 

  • Webster J, Weber RWS (2007) Introduction to fungi, 3rd edn. Cambridge University Press, New York

    Book  Google Scholar 

  • Wedén C, Danell E, Camacho FJ et al (2004) The population of the hypogeous fungus Tuber aestivum syn. T. uncinatum on the island of Gotland. Mycorrhiza 14:19–23

    Article  PubMed  Google Scholar 

  • Wu B, Nara K, Hogetsu T (2005) Genetic structure of Cenococcum geophilum populations in primary successional volcanic deserts on Mount Fuji as revealed by microsatellite markers. New Phytol 165:285–293

    Article  CAS  PubMed  Google Scholar 

  • Xu J, Sha T, Li YC, Zhao ZW, Yang ZL (2008) Recombination and genetic differentiation among natural populations of the ectomycorrhizal mushroom Tricholoma matsutake from southwestern China. Mol Ecol 17:1238–1247

    Article  PubMed  Google Scholar 

  • Zampieri E, Balestrini R, Kohler A et al (2011) The Perigord black truffle responds to cold temperature with an extensive reprogramming of its transcriptional activity. Fungal Genet Biol 48:585–591

    Article  CAS  PubMed  Google Scholar 

  • Zeller KA, McGarigal K, Whiteley AR (2012) Estimating landscape resistance to movement: a review. Landsc Ecol 27:777–797

    Article  Google Scholar 

  • Zeng DF, Chen B (2015) Genetic variability and bottleneck detection of four Tricholoma matsutake populations from northeastern and southwestern China. Environ Microbiol 17:2870–2881

    Article  PubMed  Google Scholar 

  • Zhou Z, Miwa M, Hogetsu T (1999) Analysis of genetic structure of a Suillus grevillei population in sa Larix kaempferi stand by polymorphism of inter-simple sequence repeat (ISSR). New Phytol 144:55–63

    Article  CAS  Google Scholar 

  • Zhou Z, Miwa M, Matsuda Y et al (2001) Spatial distribution of the subterranean mycelia and ectomycorrhizae of Suillus grevillei genets. J Plant Res 114:179–185

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lucie Vincenot .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Vincenot, L., Selosse, MA. (2017). Population Biology and Ecology of Ectomycorrhizal Fungi. In: Tedersoo, L. (eds) Biogeography of Mycorrhizal Symbiosis. Ecological Studies, vol 230. Springer, Cham. https://doi.org/10.1007/978-3-319-56363-3_2

Download citation

Publish with us

Policies and ethics