Skip to main content

Evolution of Ectomycorrhizal Symbiosis in Plants

  • Chapter
  • First Online:
Biogeography of Mycorrhizal Symbiosis

Part of the book series: Ecological Studies ((ECOLSTUD,volume 230))

Abstract

Knowledge about the mycorrhizal root traits of plants is critical for understanding ecosystem processes from landscape to global scale. In spite of >130 years of research, information about the mycorrhizal status of plants is scant for multiple taxonomic groups and geographic regions. By critically evaluating published information about mycorrhizal associations from the plant perspective and integrating this information with plant phylogeny, we assigned altogether 335 ectomycorrhizal (EcM) plant genera (ca. 8500 species) into 30 monophyletic lineages. Considering low representation of EcM habit in Gnaphalieae, Myrtoideae, Goodeniaceae and Acacia s.str., we estimate that approx. 6000–7000 plant species from 250 to 300 genera are able to establish EcM symbiosis. We nominated further 22 plant genera (comprising 76 species) that may potentially exhibit EcM habit based on their close phylogenetic proximity to these known EcM groups. EcM plants thus constitute 1.7–2.4% of all accepted higher plant (Embryophyta) species. EcM habit has evolved and persisted two times in various groups of gymnosperms and 28 times in angiosperms over a vast time interval since the Early Jurassic. In addition to these multiple gains, we also recovered several potential losses of EcM habit in Fagales, two groups of Fabales, two groups of Asterales and Myrtoideae that could be attributed to shifts to association with nitrogen-fixing bacteria, shrubby or herbaceous life form or wetland habitat. There is still much confusion about the mycorrhizal status in multiple families where conflicting reports exist and incorrect assignments have rooted themselves deeply in the literature. We also discuss the reasons for conflicting reports and point to further research needs in critical taxa to improve our overall understanding about the evolution of ectomycorrhizal symbiosis in plants.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alexander IJ (1989) Systematics and ecology of ectomycorrhizal legumes. Monogr Syst Bot Mo Bot Gard 29:607–624

    Google Scholar 

  • Alexander IJ, Högberg P (1986) Ectomycorrhizal tropical angiospermous trees. New Phytol 102:541–549

    Article  Google Scholar 

  • Allen MF, Egerton-Warburton L, Allen EB, Karen O (1999a) Mycorrhizae of Adenostoma fasciculatum: a combination of unusual ecto- and endo-forms. Mycorrhiza 8:225–228

    Article  Google Scholar 

  • Allen MF, Trappe JM, Horton TR (1999b) NATS truffle and truffle-like fungi 8: Rhizopogon mengei sp. nov.(Boletaceae, Basidiomycota). Mycotaxon 70:149–152

    Google Scholar 

  • Alvarez-Manjarrez J, Garibay-Orijel R (2015) Diversity of ectomycorrhizal fungi from a Mexican tropical dry forest. In: Gerhring C (ed) ICOM 8 Paper and poster abstracts. ICOM8, Flagstaff, p 8

    Google Scholar 

  • Andrade ACS, Queiroz MH, Hermes RAL, Oliveira VL (2000) Mycorrhizal status of some plants of the Araucaria forest and the Atlantic rainforest in Santa Catarina, Brazil. Mycorrhiza 10:131–136

    Article  Google Scholar 

  • Antonelli A (2009) Have giant lobelias evolved several times independently? Life form shifts and historical biogeography of the cosmopolitan and highly diverse subfamily Lobelioideae (Campanulaceae). BMC Biol 7:1

    Article  CAS  Google Scholar 

  • Asai T (1934) Über das Vorkommen und die Bedeutung der Wurzelpilze in den Landpflanzen. Jpn J Bot 7:107–150

    Google Scholar 

  • Ashford AE, Allaway WG (1982) A sheathing mycorrhiza on Pisonia grandis (Nyctaginaceae) with development of transfer cells rather than a Hartig net. New Phytol 90:511–519

    Article  Google Scholar 

  • Ashton DH (1975) The root and shoot development of Eucalyptus regnans. Aust J Bot 23:867–887

    Article  Google Scholar 

  • Aubriot X, Soulebeau A, Haevermans T, Schatz GE, Cruaud C, Lowry PP (2016) Molecular phylogenetics of Sarcolaenaceae (Malvales), Madagascar’s largest endemic plant family. Bot J Linn Soc 182:729–743

    Article  Google Scholar 

  • Averill C, Turner BL, Finzi AC (2014) Mycorrhiza-mediated competition between plants and decomposers drives soil carbon storage. Nature 505:543–545

    Article  CAS  PubMed  Google Scholar 

  • Bai S, Bai Y, Fang L, Liu Y (2003) Mycorrhiza of Cenococcum geophilum (Fr.) formed on Ostryopsis daidiana and mycorrhizal affection on the growth of Ostryopsis davidiana. Sci Silvae Sin 40:194–196

    Google Scholar 

  • Baikalova AS, Onipchenko VG (1988) Mikosimbiotrofizm alpiiskikh rastenii Teberdinskogo zapovednika. In: Onipchenko VG, Petelin DA (eds) Opyt issledovaniya rastitelnykh soobshchestv v zapovednikakh. CNIL Glavokhoty RSFSR, Moscow, pp 93–107

    Google Scholar 

  • Bandala VM, Montoya L, Villegas R (2011) Tremelloscypha gelatinosa (Sebacinales) occurring in Gymnopodium forests in the tropical deciduous vegetation from southern Mexico. Mycotaxon 118:147–157

    Article  Google Scholar 

  • Bayer RJ, Cross EW (2002) A reassessment of tribal affinities of the enigmatic genera Printzia and Isoetopsis (Asteraceae), based on three chloroplast sequences. Aust J Bot 50:677–686

    Article  CAS  Google Scholar 

  • Bayer RJ, Greber DG, Bagnall NH (2002) Phylogeny of Australian Gnaphalieae (Asteraceae) based on chloroplast and nuclear sequences, the trnL intron, trnL/trnF intergenic spacer, matK, and ETS. Syst Bot 27:801–814

    Google Scholar 

  • Baylis GTS (1962) Rhizophagus: the catholic symbiont. Aust J Sci 25:195–200

    Google Scholar 

  • Bechem EET, Alexander IJ (2012) Mycorrhiza status of Gnetum spp. in Cameroon: evaluating diversity with a view to ameliorating domestication efforts. Mycorrhiza 22:99–108

    Article  PubMed  Google Scholar 

  • Bechem E, Chuyong G, Fon B (2014) A survey of mycorrhizal colonization in the 50-ha Korup Forest dynamic plot in Cameroon. African J Plant Sci 5:1403–1415

    Article  Google Scholar 

  • Bell T, Yasmeen G (2010) Mycorrhizal associations in the Fabaceae: are they really needed? Australian Flora Foundation, Willoughby

    Google Scholar 

  • Bellgard SE (1991) Mycorrhizal associations of plant species in Hawkesbury sandstone vegetation. Aust J Bot 39:357–364

    Article  Google Scholar 

  • Benson DR, Vanden Heuvel BD, Potter D (2004) Actinorhizal symbioses: diversity and biogeography. In: Gillings M, Holmes A (eds) Plant microbiology. BIOS Scientific, Oxford, pp 99–129

    Google Scholar 

  • Bergh NG, Linder HP (2009) Cape diversification and repeated out-of-southern-Africa dispersal in paper daisies (Asteraceae–Gnaphalieae). Mol Phyl Evol 51:5–18

    Article  Google Scholar 

  • Bidartondo MI (2005) The evolutionary ecology of mycoheterotrophy. New Phytol 167:335–352

    Article  PubMed  Google Scholar 

  • Bidartondo MI, Duckett JG (2010) Conservative ecological and evolutionary patterns in liverwort-fungal symbioses. Proc R Soc Lond B 277:485–492

    Article  Google Scholar 

  • Bledsoe C, Klein P, Bliss LC (1990) A survey of mycorrhizal plants on Truelove Lowland, Devon Island, NWT, Canada. Can J Bot 68:1848–1856

    Article  Google Scholar 

  • Bonito G, Smith ME, Nowak M, Healy RA, Guevara G, Cazares E et al (2013) Historical biogeography and diversification of truffles in the Tuberaceae and their newly identified Southern Hemisphere sister lineage. PLoS One 8:e52765

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Botnen S, Vik U, Carlsen T, Eidesen PB, Davey ML, Kauserud H (2014) Low host specificity of root-associated fungi at an Arctic site. Mol Ecol 23:975–985

    Article  PubMed  Google Scholar 

  • Boursnell JG (1950) The symbiotic seed-borne fungus in the Cistaceae: I. Distribution and function of the fungus in the seedling and in the tissues of the mature plant. Ann Bot 14:217–243

    Article  Google Scholar 

  • Bratek Z, Jakucs E, Bóka K, Szedlay G (1996) Mycorrhizae between black locust (Robinia pseudoacacia) and Terfezia terfezioides. Mycorrhiza 6:271–274

    Article  Google Scholar 

  • Breitwieser I, Ward JM (2003) Phylogenetic relationships and character evolution in New Zealand and selected Australian Gnaphalieae (Compositae) inferred from morphological and anatomical data. Bot J Linn Soc 141:183–203

    Article  Google Scholar 

  • Brundrett MC (2004) Diversity and classification of mycorrhizal associations. Biol Rev 79:473–495

    Article  PubMed  Google Scholar 

  • Brundrett MC (2009) Mycorrhizal associations and other means of nutrition of vascular plants: understanding global diversity of host plants by resolving conflicting information and developing reliable means of diagnosis. Plant Soil 320:37–77

    Article  CAS  Google Scholar 

  • Brundrett MC, Abbott LK (1991) Roots of jarrah forest plants. I. Mycorrhizal associations of shrubs and herbaceous plants. Aust J Bot 39:445–457

    Article  Google Scholar 

  • Brundrett MC, Murase G, Kendrick B (1990) Comparative anatomy of roots and mycorrhizae of common Ontario trees. Can J Bot 68:551–578

    Article  Google Scholar 

  • Bruneau A, Forest F, Herendeen PS, Klitgaard BB, Lewis GP (2001) Phylogenetic relationships of the Caesalpinioideae (Leguminosae) as inferred from chloroplast trnL intron sequences. Syst Bot 26:487–514

    Google Scholar 

  • Bruneau A, Mercure M, Lewis GP, Herendeen PS (2008) Phylogenetic patterns and diversification in the caesalpinioid legumes. Botany 86:697–718

    Article  CAS  Google Scholar 

  • Buscardo E, Rodriguez-Echeverria S, Barrico L, Garcia MA, Freitas H, Martin MP, de Angelis P, Muller LAH (2012) Is the potential for the formation of common mycelial networks influenced by fire frequency. Soil Biol Biochem 46:136–144

    Article  CAS  Google Scholar 

  • Buyck B (2008) The edible mushrooms of Madagascar: an evolving enigma. Econ Bot 62:509–520

    Article  Google Scholar 

  • Buyck B, Duhem B, Eyssartier F, Ducousso B (2012) Podoserpula miranda sp. nov. (Amylocorticiales, Basidiomycota) from New Caledonia. Crypt Mykol 33:453–461

    Article  Google Scholar 

  • Cameron DD, Johnson I, Read DJ, Leake JR (2008) Giving and receiving: measuring the carbon cost of mycorrhizas in the green orchid, Goodyera repens. New Phytol 180:176–184

    Article  CAS  PubMed  Google Scholar 

  • Castellano MA, Trappe JM (1985) Mycorrhizal associations of five species of Monotropoideae in Oregon. Mycologia 77:499–502

    Article  Google Scholar 

  • Cazares E, Smith JE (1996) Occurrence of vesicular-arbuscular mycorrhizae in Pseudotsuga menziesii and Tsuga heterophylla seedlings grown in Oregon coast range soils. Mycorrhiza 6:65–67

    Google Scholar 

  • Cázares E, Trappe JM, Jumpponen A (2005) Mycorrhiza-plant colonization patterns on a subalpine glacier forefront as a model system of primary succession. Mycorrhiza 15:405–416

    Article  PubMed  Google Scholar 

  • Chalermpongse A (1987) Mycorrhizal survey of dry-deciduous and semievergreen dipterocarp forest ecosystems in Thailand. In: Kostermans AJCH (ed) Proceedings of the third round table conference on dipterocarps. UNESCO Regional Office for Science and Technology, Jakarta, pp 81–103

    Google Scholar 

  • Chen YL, Brundrett MC, Dell B (2000) Effects of ectomycorrhizas and vesicular-arbuscular mycorrhizas, alone or in competition, on root colonization and growth on Eucalyptus globulus and E. urophylla. New Phytol 146:545–556

    Article  Google Scholar 

  • Chen J-H, Sun H, Wen J, Yang Y-P (2010) Molecular phylogeny of Salix L. (Salicaceae) inferred from three chloroplast datasets and its systematic implications. Taxon 59:29–37

    Google Scholar 

  • Chevalier G, Mousain D, Couteaudier Y (1975) Associations ectomycorrhiziennes entre Tubéracées et Cistacées. Ann Phytopathol 7:355–356

    Google Scholar 

  • Chilvers GA, Pryor LD (1965) The structure of eucalypt mycorrhizas. Aust J Bot 13:245–259

    Google Scholar 

  • Chin SW, Shaw J, Haberle R, Wen J, Potter D (2014) Diversification of almonds, peaches, plums and cherries—molecular systematics and biogeographic history of Prunus (Rosaceae). Mol Phyl Evol 76:34–48

    Article  Google Scholar 

  • Christoph H (1921) Untersuchungen über die mykotrophen Verhältnisse der “Ericales” und die Keimung von Pirolaceen. Beih Bot Centrabl 38:115–158

    Google Scholar 

  • Clemmensen KE, Hansen AH (1998) Mykorrhizasymbioser i fire gronlandske plantesamfund i relation tU forskellige jordbundsfaktorer. Arktisk Biologisk Feltkursus, Qeqertarsuaq. University of Copenhagen, Copenhagen

    Google Scholar 

  • Collinson ME (1992) The early fossil history of Salicaceae: a brief review. Proc R Soc Edinb B 98:155–167

    Google Scholar 

  • Comandini O, Contu M, Rinaldi AC (2006) An overview of Cistus ectomycorrhizal fungi. Mycorrhiza 16:381–395

    Article  CAS  PubMed  Google Scholar 

  • Cooper WS (1922) The broad-schlerophyll vegetation of California. Carnegie Inst Publ 319:1–124

    Google Scholar 

  • Cooper KM (1976) A field survey of mycorrhizas in New Zealand ferns. N Z J Bot 14:169–181

    Article  Google Scholar 

  • Corrales A, Arnold AE, Ferrer A, Turner BL, Dalling JW (2016) Variation in ectomycorrhizal fungal communities associated with Oreomunnea mexicana (Juglandaceae) in a Neotropical montane forest. Mycorrhiza 26:1–17

    Article  PubMed  Google Scholar 

  • Costantin J, Magrou J (1926) Contribution à l’étude des racines des plantes alpines et de leurs mycorhizes. Comp Rend Acad Sci Paris 181(182):26–29

    Google Scholar 

  • Cripps CL, Eddington LH (2005) Distribution of mycorrhizal types among Alpine vascular plant families on the Beartooth plateau, Rocky Mountains, USA, in reference to large-scale patterns in arctic-alpine habitats. Arct Antarct Alp Res 37:177–188

    Article  Google Scholar 

  • Crisp MD, Cook LG (2003) Molecular evidence for definition of genera in the Oxylobium group (Fabaceae: Mirbelieae). Syst Bot 28:705–713

    Google Scholar 

  • Crisp MD, Cook LG (2011) Cenozoic extinctions account for the low diversity of extant gymnosperms compared with angiosperms. New Phytol 192:997–1009

    Article  CAS  PubMed  Google Scholar 

  • Cuenoud P, Savolainen V, Chatrou LW, Powell M, Grayer RJ, Chase MW (2002) Molecular phylogenetics of Caryophyllales based on nuclear 18S rDNA and plastid RBCL, ATPB and MATK DNA sequences. Am J Bot 89:132–144

    Article  CAS  PubMed  Google Scholar 

  • Daft MJ, Clelland DM, Gardner IC (1985) Symbiosis with endomycorrhizas and nitrogen-fixing organisms. Proc R Soc Edinb B 85:283–298

    Google Scholar 

  • Daubenmire RF (1941) Some ecologic features of the subterranean organs of alpine plants. Ecology 22:370–378

    Article  Google Scholar 

  • Davis CC, Webb CO, Wurdack KJ, Jaramillo CA, Donoghue MJ (2005) Explosive radiation of Malpighiales supports a mid-Cretaceous origin of modern tropical rain forests. Am Nat 165:E36–E65

    Article  PubMed  Google Scholar 

  • Dayanandan S, Ashton PS, Williams SM, Primack RB (1999) Phylogeny of the tropical tree family Dipterocarpaceae based on nucleotide sequences of the chloroplast rbcL gene. Am J Bot 86:1182–1190

    Article  CAS  PubMed  Google Scholar 

  • de Alwis DP, Abeynayake K (1980) A survey of mycorrhizae in some forest trees of Sri Lanka. In: Mikola P (ed) Tropical mycorrhiza research. Clarendon Press, Oxford, pp 146–153

    Google Scholar 

  • de Campos MC, Pearse SJ, Oliveira RS, Lambers H (2013) Viminaria juncea does not vary its shoot phosphorus concentration and only marginally decreases its mycorrhizal colonization and cluster-root dry weight under a wide range of phosphorus supplies. Ann Bot 111:801–809

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • de la Estrella M, Forest F, Wieringa JJ, Fougere-Danezan M, Bruneau A (2017) Insights on the evolutionary origin of Detarioideae, a clade of ecologically dominant tropical African trees. New Phytol. doi:10.1111/nph.14523

  • de Voogd CNA (1933) Cultuurproeven met Shorea platyclados v. Sl in Redjang en Lebong Tectona 26:703–713

    Google Scholar 

  • Dearnaley JDW, Martos F, Selosse M-A (2012) Orchid mycorrhizas: molecular ecology, physiology, evolution and conservation aspects. Mycotaxon 9:207–230

    Google Scholar 

  • Diedhiou A, Selosse M-A, Galiana A, Diabate M, Dreyfus B, Ba A, de Faria S, Bena G (2010) Multi-host ectomycorrhizal fungi are predominant in a Guinean tropical rainforest and shared between canopy trees and seedlings. Environ Microbiol 12:2219–2232

    CAS  PubMed  Google Scholar 

  • Doak KD (1927) Mycorrhiza bearing species in the vicinity of Lafayette, Indiana. Proc Indiana Acad Sci 37:427–440

    Google Scholar 

  • Dominik T (1956) Mycotrophy of poplars in their natural associations in Poland. Roczn Nauk Lesn 14:247–266

    Google Scholar 

  • Dominik T, Nespiak A, Pachlewski R (1954) Badanie mykotrofizmu roslinnosci zespolow na skalkach wapiennych w Tatrach. Acta Soc Bot Pol 23:471–485

    Article  Google Scholar 

  • Douglas NA, Manos PS (2007) Molecular phylogeny of Nyctaginaceae: taxonomy, biogeography, and characters associated with a radiation of the xerophytic genera in North America. Am J Bot 94:856–872

    Article  PubMed  Google Scholar 

  • Douglas N, Spellenberg R (2010) A new tribal classification of Nyctaginaceae. Taxon 59:905–910

    Google Scholar 

  • Ducousso M, Bena G, Bourgeois C, Buyck B, Eyssartier G, Vincelette M, Rabavohitra R, Randrihasipara L, Dreyfus B, Prin Y (2004) The last common ancestor of Sarcolaenaceae and Asian dipterocarp trees was ectomycorrhizal before the India-Madagascar separation, about 88 million years ago. Mol Ecol 13:231–236

    Article  CAS  PubMed  Google Scholar 

  • Ducousso M, Ramanankierana H, Duponnois R, Rabevohitra R, Randrihasipara L, Vincelette M, Dreyfus B, Prin Y (2008) Mycorrhizal status of native trees and shrubs from eastern Madagascar littoral forests with specific emphasis on one new ectomycorrhizal family, the Asteropeiaceae. New Phytol 178:233–238

    Article  PubMed  Google Scholar 

  • Ducousso M, Thoen D (1991) Les types mycorhiziens des Acacieae. In: Riedacker A, Dreyer E, Pafadnam C, Joly H, Bary G (eds) Physiologie des Arbres et Arbustes en zones arides et semi-arides. Paris, John Libbey Eurotext, pp 175–182

    Google Scholar 

  • Dufrenoy J (1917) The endotrophic mycorrhiza of Ericaceae. New Phytol 16:222–228

    Article  Google Scholar 

  • Duhoux E, Rinaudo G, Diem HG, Auguy F, Fernandez D, Bogusz D, Franche C, Dommergues Y, Huguenin B (2001) Angiosperm Gymnostoma trees produce root nodules colonized by arbuscular mycorrhizal fungi related to Glomus. New Phytol 149:115–125

    Article  Google Scholar 

  • Egerton-Warburton L, Allen MF (2001) Endo-and ectomycorrhizas in Quercus agrifolia nee. (Fagaceae): patterns of root colonization and effects on seedling growth. Mycorrhiza 11:283–290

    Article  CAS  PubMed  Google Scholar 

  • Escudero M, Hipp AL, Waterway MJ, Valente LM (2012) Diversification rates and chromosome evolution in the most diverse angiosperm genus of the temperate zone (Carex, Cyperaceae). Mol Phyl Evol 63:650–655

    Article  Google Scholar 

  • Fassi B (1957) Ectomycorrhizes chez le Gnetum africanum Welw. Due a Scleroderma sp. Bull Soc Mycol Fr 73:280–286

    Google Scholar 

  • Fassi B, Fontana A (1962) Micorrize ectotrofiche di Brachystegia laurentii e di alcune altre Caesalpiniaceae minori del Congo. Allionia 8:121–131

    Google Scholar 

  • Fisher JB, Sweeney S, Brzostek ER, Evans TP, Johnson DJ, Myers JA, Bourg NA, Wolf AT, Howe RW, Phillips RP (2016) Tree-mycorrhizal associations detected remotely from canopy spectral properties. Glob Change Biol 22:2596–2607

    Article  Google Scholar 

  • Fontana A (1963) Micorrize ectotrofiche in una ciperacea: Kobresia bellardii Degl. G Bot Ital 70:639–641

    Google Scholar 

  • Fontana A, Giovannetti G (1978) Simbiosi micorrizica fra Cistus incanus L. spp. incanus e Tuber melanosporum Vitt. Allionia 23:5–11

    Google Scholar 

  • Frank B (1885) Ueber die auf Wurzelsymbiose beruhende Ernährung gewiser Bäume durch unterirdishe Pilze. Ber Deut Bot Ges 3:128–145

    Google Scholar 

  • Frank B (1887) Ueber neue Mycorhiza-Formen. Ber Deut Bot Ges 5:395–409

    Google Scholar 

  • Frank B (1888) Ueber die physiologische Bedeutung der Mycorhiza. Ber Deut Bot Ges 6:248–269

    Google Scholar 

  • Fraser L (1931) An investigation of Lobelia gibbosa and Lobelia dentata I. Mycorrhiza, latex system and general biology. Proc Linn Soc NSW 56:497–525

    Google Scholar 

  • Frioni L, Minasian H, Volfovicz R (1999) Arbuscular mycorrhizae and ectomycorrhizae in native tree legumes in Uruguay. For Ecol Manag 115:41–47

    Article  Google Scholar 

  • Gao Q, Yang ZL (2010) Ectomycorrhizal fungi associated with two species of Kobresia in an alpine meadow in the Western Himalaya. Mycorrhiza 20:281–287

    Article  PubMed  Google Scholar 

  • Ge Z-W, Smith ME, Zhang Q-Y, Yang ZL (2012) Two species of Asian endemic genus Keteleeria form ectomycorrhizas with diverse fungal symbionts in southwestern China. Mycorrhiza 22:403–408

    Article  PubMed  Google Scholar 

  • Gervais GYF, Bruneau A (2002) Phylogenetic analysis of a polyphyletic African genus of Caesalpinioideae (Leguminosae): Monopetalanthus harms. Plant Syst Evol 235:19–34

    Article  Google Scholar 

  • Grand LF (1971) Tuberculate and Cenococcum mycorrhizae of Photinia (Rosaceae). Mycologia 63:1210–1212

    Article  Google Scholar 

  • Gunasekara N 2004 Phylogenetic and molecular dating analyses of the tropical tree family Dipterocarpaceae based on chloroplast matK nucleotide sequence data. Thesis. Concordia University, Montreal

    Google Scholar 

  • Gustafsson MH, Backlund A, Bremer B (1996) Phylogeny of the Asterales Sensu Lato based on rbcL sequences with particular reference to the Goodeniaceae. Plant Syst Evol 199:217–242

    Article  Google Scholar 

  • Guzmán B, Vargas P (2009) Historical biogeography and character evolution of Cistaceae (Malvales) based on analysis of plastid rbcL and trnL-trnF sequences. Org Div Evol 9:83–99

    Article  Google Scholar 

  • Harley JL, Harley EL (1987) A check-list of mycorrhiza in the British flora. New Phytol 105(Suppl):1–102

    Article  Google Scholar 

  • Haselwandter K, Read DJ (1980) Fungal associations of roots of dominant and subdominant plants in high-alpine vegetation systems with special reference to mycorrhiza. Oecologia 45:57–62

    Article  CAS  PubMed  Google Scholar 

  • Haug I, Lempe J, Homeier J, Weib M, Setaro S, Oberwinkler F, Kottke I (2004) Graffenrieda emarginata (Melastomataceae) forms mycorrhizas with Glomeromycota and with a member of the Hymenoscyphus ericae aggregate in the organic soil of a neotropical mountain rain forest. Can J Bot 82:340–356

    Article  Google Scholar 

  • Haug I, Weber R, Oberwinkler F, Tschen J (1991) Tuberculate mycorrhizas of Castanopsis borneensis king and Engelhardtia roxburghiana wall. New Phytol 117:25–35

    Article  Google Scholar 

  • Haug I, Weber R, Oberwinkler F, Tschen J (1994) The mycorrhizal status of Taiwanese trees and the description of some ectomycorrhizal types. Trees 8:237–253

    Article  Google Scholar 

  • Haug I, Weiß M, Homeier J, Oberwinkler F, Kottke I (2005) Russulaceae and Thelephoraceae form ectomycorrhizas with members of the Nyctaginaceae (Caryophyllales) in the tropical mountain rain forest of southern Ecuador. New Phytol 165:923–936

    Article  CAS  PubMed  Google Scholar 

  • Hayward J, Hynson NA (2014) New evidence of ectomycorrhizal fungi in the Hawaiian Islands associated with the endemic host Pisonia sandwicensis (Nyctaginaceae). Fungal Ecol 12:62–69

    Article  Google Scholar 

  • Henkel TW (2003) Monodominance in the ectomycorrhizal Dicymbe corymbosa (Caesalpiniaceae) from Guyana. J Trop Ecol 19:417–437

    Article  Google Scholar 

  • Henkel TW, Aime MC, Miller SL (2000) Systematics of pleurotoid Russulaceae from Guyana and Japan, with notes on their ectomycorrhizal status. Mycologia 92:1119–1132

    Article  Google Scholar 

  • Henkel TW, Terborgh J, Vilgalys R (2002) Ectomycorrhizal fungi and their leguminous hosts in the Pakaraima mountains of Guyana. Mycol Res 106:515–531

    Article  Google Scholar 

  • Hesselman H (1900) Mykorrhizabildningar. Bih Kongl Sv Vet-Akad Handl 26:3–50

    Google Scholar 

  • Hileman LC, Vasey MC, Parker TV (2001) Phylogeny and biogeography of the Arbutoideae (Ericaceae): implications for the Madrean-Tethyan hypothesis. Syst Bot 26:131–143

    Google Scholar 

  • Högberg P (1982) Mycorrhizal associations in some woodland forest trees and shrubs in Tanzania. New Phytol 92:407–415

    Article  Google Scholar 

  • Högberg P, Piearce GD (1986) Mycorrhizas in Zambian trees in relation to host taxonomy, vegetation type and successional patterns. J Ecol 74:775–785

    Article  Google Scholar 

  • Hong LT (1979) A note on dipterocarp mycorrhizal fungi. Malay For 42:280–283

    Google Scholar 

  • Horn JW, Wurdack KJ, Dorr LJ (2016) Phylogeny and diversification of Malvales. In: Stogran J (ed) Proceedings in Botany 2016: celebrating our history, Conserving our future. Savannah, p 157

    Google Scholar 

  • Horton TR, Bruns TD, Parker VT (1999) Ectomycorrhizal fungi associated with Arctostaphylos contribute to Pseudotsuga menziesii establishment. Can J Bot 77:93–102

    Google Scholar 

  • Hu YS, Wang FH (1984) Anatomical studies of Cathaya (Pinaceae). Am J Bot 71:727–735

    Article  Google Scholar 

  • Hynson NA, Bidartondo MI, Read DJ (2015) Are there geographic mosaics of mycorrhizal specificity and partial mycoheterotrophy? A case study in Moneses uniflora (Ericaceae). New Phytol 208:1003–1007

    Article  PubMed  Google Scholar 

  • Hynson NA, Mambelli SA, Amend AS, Dawson TE (2012) Measuring carbon gains from fungal networks in understory plants from the tribe Pyroleae (Ericaceae):a field manipulation and stable isotope approach. Oecologia 169:307–317

    Article  PubMed  Google Scholar 

  • Jabaily RS, Shepherd KA, Gardner AG, Gustafsson MH, Howarth DG, Motley TJ (2014) Historical biogeography of the predominantly Australian plant family Goodeniaceae. J Biogeogr 41:2057–2067

    Article  Google Scholar 

  • Janos DP (1980) Mycorrhizae and tropical succession. Biotropica 12:56–64

    Article  Google Scholar 

  • Jenik J, Mensah KOA (1967) Root system of tropical trees. 1. Ectotrophic mycorrhizae of Afzelia africana Sm. Preslia 39:59–65

    Google Scholar 

  • Jessen K (1914) Rosaceae. Meddel Gronl 37:1–126

    Google Scholar 

  • Jourand P, Carriconde F, Ducousso M, Majorel C, Hannibal L, Prin Y, Lebrun M (2014) Abundance, distribution and function of Pisolithus albus and other ectomycorrhizal fungi of ultramafic soils in New Caledonia. In: Ba AM, McGuire KL, Diedhiou A (eds) Ectomycorrhizal symbioses in tropical and neotropical forests. CRC Press, Boca Raton, FL, pp 100–125

    Chapter  Google Scholar 

  • Kamienski FM (1882) Les organes végétatifs du Monotropa hypopithys L. Mem Soc Nat Sci Nat Math Cherbourg 24:5–40

    Google Scholar 

  • Katenin AE (1972) Mikoriza rastenii severo-vostoka evropeiskoi chasti USSR. Moscow, Izd Akd Nauk USSR

    Google Scholar 

  • Kennedy PG, Izzo AD, Bruns TD (2003) There is high potential for the formation of common mycorrhizal networks between understorey and canopy trees in a mixed evergreen forest. J Ecol 91:1071–1080

    Article  Google Scholar 

  • Khan AG (1993) Occurrence and importance of mycorrhizae in aquatic trees. Mycorrhiza 3:31–38

    Article  Google Scholar 

  • Klecka A, Vukolov V (1935) Srovnavaci stutlie o mykorrhize drevin. Sb Cesk Akad Zemed 10:443–457

    Google Scholar 

  • Koele N, Dickie IA, Oleksyn J, Richardson SJ, Reich PB (2012) No globally consistent effect of ectomycorrhizal status on foliar traits. New Phytol 196:845–852

    Article  PubMed  Google Scholar 

  • Kohn LM, Stasovski E (1990) The mycorrhizal status of plants at Alexandra fiord, Ellesmere island, Canada, a high arctic site. Mycologia 82:23–35

    Article  Google Scholar 

  • Kope HH, Warcup JH (1986) Synthesized ectomycorrhizal associations of some Australian herbs and shrubs. New Phytol 104:591–599

    Article  Google Scholar 

  • Koske RE (1988) Vesicular-arbuscular mycorrhizae of some Hawaiian dune plants. Pac Sci 42:214–226

    Google Scholar 

  • Kovacs GM, Szigetvari C (2002) Mycorrhizae and other root-associated fungal structures of the plants of a sandy grassland on the great Hungarian plain. Phyton 42:211–224

    Google Scholar 

  • Kramar U (1901) Studie über die mykorrhiza von Pirola rotundifolia L. Bull Int Acad Sci Prague 6:9–15

    Google Scholar 

  • Kreisel H (1970) El papel de los hongos en la veetacion forestal de Cuba. Bol Soc Mex Mic 4:39–43

    Google Scholar 

  • Kron KA, Luteyn JL (2005) Origins and biogeographic patterns in Ericaceae: new insights from recent phylogenetic analyses. Biol Skr 55:479–500

    Google Scholar 

  • Kühdorf K, Münzenberger B, Begerow D, Gomez-Laurito J, Hüttl RF (2015) Leotia cf. lubrica forms arbutoid mycorrhiza with Comarostaphylis arbutoides (Ericaceae). Mycorrhiza 25:109–120

    Article  PubMed  CAS  Google Scholar 

  • Ladiges PY, Kellermann J, Nelson G, Humphries CJ, Udovicic F (2005) Historical biogeography of Australian Rhamnaceae, tribe Pomaderreae. J Biogeogr 32:1909–1919

    Article  Google Scholar 

  • Lam N, Wilson PG, Heslewood MM, Quinn CJ (2002) A phylogenetic analysis of the Chamelaucium alliance (Myrtaceae). Aust Syst Bot 15:535–543

    Article  Google Scholar 

  • Lamont BB, Ralph CS, Christensen PES (1985) Mycophagous marsupials as dispersal agents for ectomycorrhizal fungi on Eucalyptus calophylla and Gastrolobium bilobum. New Phytol 101:651–656

    Article  Google Scholar 

  • Langkamp PJ, Dalling MJ (1982) Nutrient cycling in a stand of Acacia holosericea II. Phosphorus and endomycorrhizal associations. Aust J Bot 30:87–106

    Article  CAS  Google Scholar 

  • Largent DL, Sugihara N, Wishner C (1980) Occurrence of mycorrhizae on ericaceous and pyrolaceous plants in northern California. Can J Bot 58:2274–2279

    Article  Google Scholar 

  • Larson-Johnson K (2015) Phylogenetic investigation of the complex evolutionary history of dispersal mode and diversification rates across living and fossil Fagales. New Phytol 209:418–435

    Article  PubMed  CAS  Google Scholar 

  • Lavin M, Herendeen PS, Wojciechowski MF (2005) Evolutionary rates analysis of Leguminosae implicates a rapid diversification of lineages during the Tertiary. Syst Biol 54:530–549

    Article  Google Scholar 

  • Lee SS (1988) Do mycorrhizas play a role in the growth and development of Parashorea densiflora Sloot and Sym. Proc IFS Symp Sci Asia 87:14–17

    Google Scholar 

  • LePage BA (2003) The evolution, biogeography and palaeoecology of the Pinaceae based on fossil and extant representatives. Acta Hortic 615:29–52

    Article  Google Scholar 

  • Lesica P, Antibus RK (1986) Mycorrhizal status of hemiparasitic vascular plants in Montana, USA. Trans Br Mycol Soc 86:341–343

    Article  Google Scholar 

  • Leslie AB, Beaulieu JM, Rai HS, Crane PR, Donoghue MJ, Mathews S (2012) Hemisphere-scale differences in conifer evolutionary dynamics. Proc Natl Acad Sci U S A 109:16217–16221

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li A-R, Guan K-Y (2008) Arbuscular mycorrhizal fungi may serve as another nutrient strategy for some hemiparasitic species of Pedicularis (Orobanchaceae). Mycorrhiza 18:429–436

    Article  CAS  PubMed  Google Scholar 

  • Lin G, McCormack ML, Ma C, Guo D (2017) Similar below‐ground carbon cycling dynamics but contrasting modes of nitrogen cycling between arbuscular mycorrhizal and ectomycorrhizal forests. New Phytol 213:1440–1451

    Article  CAS  PubMed  Google Scholar 

  • Lodge DJ (1989) The influence of soil moisture and flooding on formation of VA-endo- and ectomycorrhizae in Populus and Salix. Plant Soil 117:243–253

    Article  Google Scholar 

  • Lodge DJ (1996) Microorganisms. In: Reagan DP, Waide RB (eds) The food web of a tropical forest. Chicago University Press, Chicago, IL, pp 53–108

    Google Scholar 

  • Lohman ML (1926) Occurrence of mycorrhiza in Iowa forest plants. Univ Iowa Studies Nat Hist 11:33–58

    Google Scholar 

  • Longway LJ (2015) Comparing ectomycorrhizal communities of understory giant chinquapin (Chrysolepis chrysophylla) and overstory Pinaceae trees in a mixed conifer forest in Central Oregon. MSc Thesis. Oregon State University, Eugene

    Google Scholar 

  • LPWG (2017) A new subfamily classification of the Leguminosae based on a taxonomically comprehensive phylogeny. Taxon 66:44–77

    Article  Google Scholar 

  • Lu Y, Ran J-H, Guo D-M, Yang Z-Y, Wang X-Q (2014) Phylogeny and divergence times of gymnosperms inferred from single-copy nuclear genes. PLoS One 9:e107679

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Maeda M (1954) The meaning of mycorrhiza in regard to systematic botany. Kumamoto J Sci B 3:57–84

    Google Scholar 

  • Maherali H, Oberle B, Stevens PF, Cornwell WK, McGlinn DJ (2016) Mutualism persistence and abandonment during the evolution of the mycorrhizal symbiosis. Am Nat 188:E113–E125

    Article  PubMed  Google Scholar 

  • Malloch D, Malloch B (1982) The mycorrhizal status of boreal plants: additional species from northeastern Ontario. Can J Bot 60:1035–1040

    Article  Google Scholar 

  • Malloch D, Thorn RG (1985) The occurrence of ectomycorrhizae in some species of Cistaceae in North America. Can J Bot 63:872–875

    Google Scholar 

  • Mangin L (1910) Introduction à l’étude des mycorrhizes des arbres forestières. Nouv Arch Mus Hist Nat Paris 5:213

    Google Scholar 

  • Massicotte HB, Melville LH, Peterson RL, Luoma DL (1998) Anatomical aspects of field ectomycorrhizas on Polygonum viviparum (Polygonaceae) and Kobresia bellardii (Cyperaceae). Mycorrhiza 7:287–292

    Article  Google Scholar 

  • Massicotte HB, Melville LH, Tackaberry LE, Peterson RL (2008) A comparative study of mycorrhizas in several genera of Pyroleae (Ericaceae) from western Canada. Botany 86:610–622

    Article  Google Scholar 

  • Massicotte HB, Peterson RL, Melville LH, Tackaberry LE (2010) Hudsonia ericoides and Hudsonia tomentosa: anatomy of mycorrhizas of two members in the Cistaceae from Eastern Canada. Botany 88:607–616

    Article  Google Scholar 

  • Masui K (1926) A study of the ectotrophic mycorrhiza of Alnus. Mem Coll Sci, Kyoto Imp Univ 10:190–209

    Google Scholar 

  • Matsuda Y, Yamada A (2003) Mycorrhizal morphology of Monotropastrum humile collected from six different forests in central Japan. Mycologia 95:993–997

    Article  PubMed  Google Scholar 

  • McDonald KR, Pennell J, Frank JL, Southworth D (2010) Ectomycorrhizas of Cercocarpus ledifolius (Rosaceae). Am J Bot 97:1867–1872

    Article  PubMed  Google Scholar 

  • McDougall WB (1914) On the mycorhizas of forest trees. Am J Bot 1:51–78

    Article  Google Scholar 

  • McDougall WB (1928) Mycorhizas from North Carolina and Eastern Tennessee. Bot Gaz 15:141–148

    Google Scholar 

  • McDougall WB, Jacobs MC (1927) Tree mycorhizas from the central Rocky Mountain region. Bot Gaz 14:258–266

    Google Scholar 

  • McGee PA (1986) Mycorrhizal associations of plant species in a semiarid community. Aust J Bot 34:585–593

    Article  Google Scholar 

  • McGee PA (1988) Growth response to and morphology of mycorrhizas of Thysanotus (Anthericaceae: Monocotyledonae). New Phytol 109:459–463

    Article  Google Scholar 

  • Meers TL, Bell TL, Enright NJ, Kasel S (2010) Do generalisations of global trade-offs in plant design apply to an Australian sclerophyllous flora? Aust J Bot 58:257–270

    Google Scholar 

  • Merckx V (2013) Mycoheterotrophy: the biology of plants living on fungi. Springer, Berlin

    Book  Google Scholar 

  • Meyer U (1991) Feinwurzelsysteme und Mykorrhizatypen als Anpassungsmechanismen in Zentralamazonischen Überschwemmungswäldern -Igapó und Vàrzea. PhD Thesis. Universität Hohenheim, Hohenheim

    Google Scholar 

  • Michelsen A, Schmidt IK, Jonasson S, Quarmby C, Sleep D (1996) Leaf 15N abundance of subarctic plants provides field evidence that ericoid, ectomycorrhizal and non-and arbuscular mycorrhizal species access different sources of soil nitrogen. Oecologia 105:53–63

    Article  PubMed  Google Scholar 

  • Mikeladze RM (1960) K poznaniju alpiiskih kovrov Jugo-Ossetii. Probl Bot 5:170–181

    Google Scholar 

  • Miller OK (1982) Mycorrhizae, mycorrhizal fungi and fungal biomass in subalpine tundra at eagle summit, Alaska. Holarct Ecol 5:125–134

    Google Scholar 

  • Miller OK, Laursen GA (1978) Ecto-and endomycorrhizae of arctic plants at barrow, Alaska. Ecol Stud 29:229–237

    Article  Google Scholar 

  • Miller JT, Murphy DJ, Ho SY, Cantrill DJ, Seigler D (2013) Comparative dating of Acacia: combining fossils and multiple phylogenies to infer ages of clades with poor fossil records. Aust J Bot 61:436–445

    Article  Google Scholar 

  • Miller JT, Seigler D (2012) Evolutionary and taxonomic relationships of Acacia sl (Leguminosae: Mimosoideae). Aust Syst Bot 25:217–224

    Article  Google Scholar 

  • Morrison TM (1956) Mycorrhiza of silver beech. N Z J For 7:47–60

    Google Scholar 

  • Morton CM, Dayanandan S, Dissanayake D (1999) Phylogeny and biosystematics of Pseudomonotes (Dipterocarpaceae) based on molecular and morphological data. Plant Syst Evol 216:197–205

    Article  Google Scholar 

  • Moyersoen B (1993) Ectomicorrizas i micorrizas vesiculo-arbusculares en Caatinga Amazonica del Sur de Venezuela. Sci Guaianae 3:1–82

    Google Scholar 

  • Moyersoen B (2006) Pakaraimea dipterocarpacea is ectomycorrhizal, indicating an ancient Gondwanaland origin for the ectomycorrhizal habit in Dipterocarpaceae. New Phytol 170:873–883

    Article  CAS  Google Scholar 

  • Murphy DJ, Miller JT, Bayer RJ, Ladiges PY (2003) Molecular phylogeny of Acacia subgenus Phyllodineae (Mimosoideae: Leguminosae) based on DNA sequences of the internal transcribed spacer region. Aust Syst Bot 16:19–26

    Article  CAS  Google Scholar 

  • Nespiak A (1953) Badanie mykotrofizmu roslinnosci alpejeskiej ponad granica kosodrzewiny w granitowych Tatrach. Acta Soc Bot Pol 22:97–125

    Article  Google Scholar 

  • Newbery DM, Alexander IJ, Thomas DW, Gartlan JS (1988) Ectomycorrhizal rainforest legumes and soil phosphorus in Korup National Park, Cameroon. New Phytol 109:433–450

    Article  Google Scholar 

  • Nicolas A (2009) Understanding Evolutionary Relationships in the Angiosperm Order Apiales Based on Analyses of Organellar Dna Sequences and Nuclear Gene Duplications. Thesis. Virginia Commonwealth University, Richmond

    Google Scholar 

  • Noack F (1889) Ueber mykorhizenbildende Pilze. Bot Zeit 24:391–404

    Google Scholar 

  • Noelle W (1910) Studien zur vergleichenden Anatomie und Morphologie der Koniferenwurzeln mit Rücksicht auf die Systematik. Bot Zeit 68:169–266

    Google Scholar 

  • Noor S (1981) Mycorrhizas of tropical forest trees. Report on International Foundation for Science Grant No. 173

    Google Scholar 

  • Nyffeler R, Bayer C, Alverson WS, Yen A, Whitlock BA, Chase MW, Baum DA (2005) Phylogenetic analysis of the Malvadendrina clade (Malvaceae sl) based on plastid DNA sequences. Org Div Evol 5:109–123

    Article  Google Scholar 

  • O’Brien MM, Quinn CJ, Wilson PG (2000) Molecular systematics of the Leptospermum suballiance (Myrtaceae). Aust J Bot 48:621–628

    Article  Google Scholar 

  • Onguene NA (2000) Diversity and dynamics of mycorrhizal associations in tropical rain forests with different disturbance regimes in South Cameroon, Tropenbos Cameroon series 3. University of Wageningen, Wageningen

    Google Scholar 

  • Onipchenko VG, Zobel M (2000) Mycorrhiza, vegetative mobility and responses to disturbance of alpine plants in the Northwestern Caucasus. Fol Geobot 35:1–10

    Article  Google Scholar 

  • Onstein RE, Carter RJ, Xing Y, Richardson JE, Linder HP (2015) Do Mediterranean‐type ecosystems have a common history?—insights from the buckthorn family (Rhamnaceae). Evolution 69:756–771

    Article  PubMed  Google Scholar 

  • Orchard S, Hilton S, Bending GD, Dickie IA, Standish RJ, Gleeson DB, Jeffery RP, Powell JR, Walker C, Bass D, Monk J (2017) Fine endophytes (Glomus tenue) are related to Mucoromycotina, not Glomeromycota. New Phytol 213:481–486

    Article  PubMed  Google Scholar 

  • Osmundson TW, Halling RE, Den Bakker HC (2007) Morphological and molecular evidence supporting an arbutoid mycorrhizal relationship in the Costa Rican páramo. Mycorrhiza 17:217–222

    Article  CAS  PubMed  Google Scholar 

  • Peay KG, Russo SE, McGuire KL, Lim Z, Chan JP, Tan S, Davies SJ (2015) Lack of host specificity leads to independent assortment of dipterocarps and ectomycorrhizal fungi across a soil fertility gradient. Ecol Lett 18:807–816

    Article  PubMed  Google Scholar 

  • Pennington HG, Bidartondo MI, Barsoum N (2011) A few exotic mycorrhizal fungi dominate eucalypts planted in England. Fungal Ecol 4:299–302

    Article  Google Scholar 

  • Perrier N, Amir H, Colin F (2006) Occurrence of mycorrhizal symbioses in the metal-rich lateritic soils of the Koniambo Massif, New Caledonia. Mycorrhiza 16:449–458

    Article  PubMed  Google Scholar 

  • Peterson RL, Ashford AE, Allaway WG (1985) Vesicular-arbuscular mycorrhizal associations of vascular plants on heron Island, a great barrier reef coral cay. Aust J Bot 33:669–676

    Article  Google Scholar 

  • Peyronel B (1922) Nuovi casi di rapprti micorizici tra basidomiceti e fanerogame arboree. Bull Soc Bot Ital 1:7–14

    Google Scholar 

  • Peyronel B (1930) Simbiosi micorrizica tra piante alpine e Basidiomiceti. Nuov Giorn Bot Ital 37:655–663

    Article  Google Scholar 

  • Peyronel B, Fassi B (1960) Nuovi casi di simbiosi ectomicorrizica in Leguminose della famiglia delle Cesalpiniacee. Atti Acad Sci Torino 94:36–38

    Google Scholar 

  • Phillips RP, Brzostek E, Midgley MG (2013) The mycorrhizal-associated nutrient economy: a new framework for predicting carbon–nutrient couplings in temperate forests. New Phytol 199:41–51

    Article  CAS  PubMed  Google Scholar 

  • Põlme S, Bahram M, Yamanaka T, Nara K, Dai YC, Grebenc T, Kraigher H, Toivonen M, Wang P-H, Matsuda Y, Naadel T, Kennedy PG, Kõljalg U, Tedersoo L (2013) Biogeography of ectomycorrhizal fungi associated with alders (Alnus spp.) in relation to biotic and abiotic variables at the global scale. New Phytol 198:1239–1249

    Article  PubMed  CAS  Google Scholar 

  • Potter D, Eriksson T, Evans RC, Oh S, Smedmark JEE, Morgan DR, Kerr M, Robertson KR, Arsenault M, Dickinson TA, Campbell CS (2007) Phylogeny and classification of Rosaceae. Plant Syst Evol 266:5–43

    Article  Google Scholar 

  • Pressel S, Bidartondo MI, Ligrone RO, Duckett JG (2010) Fungal symbioses in bryophytes: new insights in the twenty first century. Phytotaxa 9:238–253

    Article  Google Scholar 

  • Prin Y, Ducousso M, Tassin J, Béna G, Jourand P, Dumontet V, Moulin L, Contesto C, Ambrosi JP, Chaintreuil C, Dreyfus B (2012) Ectotrophic mycorrhizal symbioses are dominant in natural ultramafic forest ecosystems of New Caledonia. In: Hafidi M, Duponnois R (eds) The mycorrhizal symbiosis in Mediterranean environment: importance in ecosystem stability and in soil rehabilitation strategies. Nova Science Publishers, New York, NY, pp 26–48

    Google Scholar 

  • Proctor MC (1960) Tuberaria guttata (L.) Fourreau. J Ecol 48:243–253

    Article  Google Scholar 

  • Pryor LD (1956) Chlorosis and lack of vigor in seedlings of renantherous species of Eucalyptus caused by lack of mycorrhiza. Linn Soc NSW Proc 81:91–96

    Google Scholar 

  • Ramos G, de Lima HC, Prenner G, de Queiroz LP, Zartman CE, Cardoso D (2016) Molecular systematics of the Amazonian genus Aldina, a phylogenetically enigmatic ectomycorrhizal lineage of papilionoid legumes. Mol Phyl Evol 97:11–18

    Article  Google Scholar 

  • Read DJ, Haselwandter K (1981) Observations on the mycorrhizal status of some alpine plant communities. New Phytol 88:341–352

    Article  Google Scholar 

  • Reddell P, Bowen GD, Robson AD (1986) Nodulation of Casuarinaceae in relation to host species and soil properties. Aust J Bot 34:435–444

    Article  Google Scholar 

  • Reddell P, Hopkins MS, Graham AW (1996) Functional association between apogeotropic aerial roots, mycorrhizas and paper-barked stems in a lowland tropical rainforest in North Queensland. J Trop Ecol 12:763–777

    Article  Google Scholar 

  • Reddell P, Milnes AR (1992) Mycorrhizas and other specialized nutrient-acquisition strategies: their occurrence in woodland plants from Kakadu and their role in rehabilitation of waste rock dumps at a local uranium mine. Aust J Bot 40:223–242

    Article  CAS  Google Scholar 

  • Redhead JF (1974) Aspects of the biology of mycorrhizal associations occurring on tree species in Nigeria. Thesis. University of Ibadan, Ibadaen

    Google Scholar 

  • Reinsvold RT, Reeves B (1986) The mycorrhizae of Juniperus osteosperma: identity of the vesicular-arbuscular mycorrhizal symbiont, and resynthesis of VA mycorrhizae. Mycologia 78:108–113

    Article  Google Scholar 

  • Reiter N, Lawrie A, Walsh N (2013) The mycorrhizal associations of Borya mirabilis, an endangered Australian native plant. Muelleria 31:81–88

    Google Scholar 

  • Richards AE, Shapcott A, Playford J, Morrison B, Critchley C, Schmidt S (2003) Physiological profiles of restricted endemic plants and their widespread congenors in the North Queensland wet tropics, Australia. Biol Conserv 111:41–52

    Article  Google Scholar 

  • Richardson JE, Whitlock BA, Meerow A, Madriñán S (2015) The age of chocolate: a biogeographic history of Theobroma and Malvaceae. Front Ecol Evol 3:120

    Article  Google Scholar 

  • Rivière T (2004) Biodiversity, molecular ecology and phylogeography of tropical ectomycorrhizal symbiosis. PhD thesis. Université de Montpellier II, Montpellier

    Google Scholar 

  • Riviere T, Diabaté M, Ducousso M, Prin Y, Dreyfus B, Buyck B, Eyssartier G, Verbeken A, Descheres P, Ba A (2001) Diversity of ectomycorrhizal fungi associated with some native trees in Southern Guinea. In: Abstracts of the ICOM3 conference, Adelaide, Australia

    Google Scholar 

  • Rose SL (1980) Mycorrhizal associations of some actinomycete nodulated nitrogen-fixing plants. Can J Bot 58:1449–1454

    Article  Google Scholar 

  • Ruotsalainen AL, Väre H, Oksanen J, Tuomi J (2004) Root fungus colonization along an altitudinal gradient in North Norway. Arct Antarct Alp Res 36:239–243

    Article  Google Scholar 

  • Samuel G (1926) Note on the distribution of mycorrhiza. Trans R Soc S Aust 50:245–246

    Google Scholar 

  • Santoso E (1988) The effect of mycorrhizas on the stem diameter and dry weight of dipterocarp seedlings. Buletin Penelitian Hutan 504:11–21

    Google Scholar 

  • Sarauw GF (1903) Sur les mycorrhizes des arbres forestiers. Rev Mycol 25:157–172

    Google Scholar 

  • Schlicht A (1889) Beitrag zur Kenntniss der Verbreitung und Bedeutung der Mycorhizen. Landw Jahrb 18:478–506

    Google Scholar 

  • Schmidt-Lebuhn AN, Bruhl JJ, Telford IR, Wilson PG (2015) Phylogenetic relationships of Coronidium, Xerochrysum and several neglected Australian species of “Helichrysum” (Asteraceae: Gnaphalieae). Taxon 64:96–109

    Article  Google Scholar 

  • Schrire BD, Lavin M, Lewis GP (2005) Global distribution patterns of the Leguminosae: insights from recent phylogenies. Biol Skr 55:375–422

    Google Scholar 

  • Schuster TM, Setaro SD, Kron KA (2013) Age estimates for the buckwheat family Polygonaceae based on sequence data calibrated by fossils and with a focus on the amphi-pacific Muehlenbeckia. PLoS One 8:e61261

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schwery O, Onstein RE, Bouchenak‐Khelladi Y, Xing Y, Carter RJ, Linder HP (2015) As old as the mountains: the radiations of the Ericaceae. New Phytol 207:355–367

    Article  PubMed  Google Scholar 

  • Sharma SK, Sharma GD, Mishra RR (1986) Status of mycorrhizae in sub-tropical forest ecosystem of Meghalaya. Acta Bot Ind 14:87–92

    CAS  Google Scholar 

  • Singh KG (1966) Ectotrophic mycorrhiza in equatorial rain forests. Malay For 29:13–18

    Google Scholar 

  • Sirisena UM (2010) Systematic studies on Thysanotus (Asparagales: Laxmanniaceae). Thesis. University of Adelaide, Adelaide

    Google Scholar 

  • Smissen RD, Breitwieser I, Ward JM (2004) Phylogenetic implications of trans-specific chloroplast DNA sequence polymorphism in New Zealand Gnaphalieae (Asteraceae). Plant Syst Evol 249:37–53

    Article  CAS  Google Scholar 

  • Smith ME, Henkel TW, Aime MC, Fremier AK, Vilgalys R (2011) Ectomycorrhizal fungal diversity and community structure on three co-occurring leguminous canopy tree species in a Neotropical rainforest. New Phytol 192:699–712

    Article  PubMed  Google Scholar 

  • Smith ME, Henkel TW, Uehling JK, Fremmier AK, Clarke HD, Vilgalys R (2013) The ectomycorrhizal fungal community in a neotropical forest dominated by the endemic dipterocarp Pakaraimaea dipterocarpacea. PLoS One 8:e55160

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Smith SE, Read DJ (2008) Mycorrhizal Symbiosis, 3rd edn. Academic Press, London

    Google Scholar 

  • Soudzilovskaia N, van der Heijden MGA, Cornelissen JHC, Makarov MI, Onipchenko VG, Maslov MN, Akhmetzanova AA, van Bodegom PM (2015) Quantitative assessment of the differential impacts of arbuscular and ectomycorrhiza on soil carbon cycling. New Phytol 208:280–293

    Article  CAS  PubMed  Google Scholar 

  • St. John TV (1980) A survey of mycorrhizal infection in an amazonian rain forest. Acta Amaz 10:527–533

    Article  Google Scholar 

  • Stahl E (1900) Der Sinn der Mycorhizenbildung. Jahrb Wiss Bot 34:539–668

    Google Scholar 

  • Starr JR, Harris SA, Simpson DA (2004) Phylogeny of the unispicate taxa in Cyperaceae tribe Cariceae I: generic relationships and evolutionary scenarios. Syst Bot 29:528–544

    Article  Google Scholar 

  • Stutz RC (1972) Survey of mycorrhizal plants. In: Bliss LC (ed) Devon Island IPB project: high arctic ecosystem. Project report 1970 and 1971. University of Alberta, Edmonton, pp 214–216

    Google Scholar 

  • Suvi T, Tedersoo L, Abarenkov K, Gerlach J, Beaver K, Kõljalg U (2010) Mycorrhizal symbionts of Pisonia grandis and P. sechellarum in Seychelles: identification of mycorrhizal fungi and description of new Tomentella species. Mycologia 102:522–533

    Article  PubMed  Google Scholar 

  • Swaty RL, Deckert RJ, Whitham TG, Gehring CA (2004) Ectomycorrhizal abundance and community structure shifts with drought: predictions from tree rings. Ecology 85:1072–1084

    Article  Google Scholar 

  • Tanaka-Oda A, Kenzo T, Inoue Y, Yano M, Koba K, Ichie T (2015) Variation in leaf and soil δ15N in diverse tree species in a lowland dipterocarp rainforest, Malaysia. Trees 30:509–522

    Article  CAS  Google Scholar 

  • Tandy PA (1975) Studies on sporocarpic Endogonaceae in Australia. Thesis. University of Adelaide, Adelaide

    Google Scholar 

  • Tank DC, Eastman JM, Pennell MW, Soltis PS, Soltis DE, Hinchliff CE, Brown JW, Sessa EB, Harmon LJ (2015) Nested radiations and the pulse of angiosperm diversification: increased diversification rates often follow whole genome duplications. New Phytol 207:454–467

    Article  PubMed  Google Scholar 

  • Tedersoo L, Bahram M, Jairus T, Bechem E, Chinoya S, Mpumba R, Leal M, Randrianjohany E, Razafimandimbison S, Sadam A, Naadel T, Kõljalg U (2011) Spatial structure and the effects of host and soil environments on communities of ectomycorrhizal fungi in wooded savannas and rain forests of continental Africa and Madagascar. Mol Ecol 20:3071–3080

    Article  PubMed  Google Scholar 

  • Tedersoo L, Bahram M, Põlme S, Kõljalg U, Yorou NS, Wijesundera R, Villarreal-Ruiz L, Vasco-Palacios A, Quang Thu P, Suija A, Smith ME, Sharp C, Saluveer E, Saitta A, Ratkowsky D, Pritsch K, Riit T, Põldmaa K, Piepenbring M, Phosri C, Peterson M, Parts K, Pärtel K, Otsing E, Nouhra E, Njouonkou AL, Nilsson RH, Morgado LN, Mayor J, May TW, Kohout P, Hosaka K, Hiiesalu I, Henkel TW, Harend H, Guo L, Greslebin A, Grelet G, Geml J, Gates G, Dunstan W, Dunk C, Drenkhan R, Dearnaley J, De Kesel A, Dang T, Chen X, Buegger F, Brearley FQ, Bonito G, Anslan S, Abell S, Abarenkov K (2014) Global diversity and geography of soil fungi. Science 346:1078

    Article  CAS  Google Scholar 

  • Tedersoo L, Bahram M, Toots M, Diédhiou AG, Henkel TW, Kjøller R, Morris MH, Nara K, Nouhra E, Peay KG, Põlme S, Ryberg M, Smith ME, Kõljalg U (2012) Towards global patterns in the diversity and community structure of ectomycorrhizal fungi. Mol Ecol 21:4160–4170

    Article  PubMed  Google Scholar 

  • Tedersoo L, Jairus T, Horton BM, Abarenkov K, Suvi T, Saar I, Kõljalg U (2008) Strong host preference of ectomycorrhizal fungi in a Tasmanian wet sclerophyll forest as revealed by DNA barcoding and taxon-specific primers. New Phytol 180:479–490

    Article  CAS  PubMed  Google Scholar 

  • Tedersoo L, May TW, Smith ME (2010a) Ectomycorrhizal lifestyle in fungi: global diversity, distribution, and evolution of phylogenetic lineages. Mycorrhiza 20:217–263

    Article  PubMed  Google Scholar 

  • Tedersoo L, Mett M, Ishida TA, Bahram M (2013) Phylogenetic relationships among host plants explain differences in fungal species richness and community composition in ectomycorrhizal symbiosis. New Phytol 199:822–831

    Article  PubMed  Google Scholar 

  • Tedersoo L, Pellet P, Kõljalg U, Selosse M-A (2007a) Parallel evolutionary paths to mycoheterotrophy in understorey Ericaceae and Orchidaceae: ecological evidence for mixotrophy in Pyroleae. Oecologia 151:206–217

    Article  PubMed  Google Scholar 

  • Tedersoo L, Põlme S (2012) Infrageneric variation in partner specificity: multiple ectomycorrhizal symbionts associate with Gnetum gnemon (Gnetophyta) in Papua New Guinea. Mycorrhiza 22:663–668

    Article  PubMed  Google Scholar 

  • Tedersoo L, Sadam A, Zambrano M, Valencia R, Bahram M (2010b) Low diversity and high host preference of ectomycorrhizal fungi in Western Amazonia, a neotropical biodiversity hotspot. ISME J 4:465–471

    Article  PubMed  Google Scholar 

  • Tedersoo L, Smith ME (2013) Lineages of ectomycorrhizal fungi revisited: foraging strategies and novel lineages revealed by sequences from belowground. Fung Biol Rev 27:83–99

    Article  Google Scholar 

  • Tedersoo L, Suvi T, Beaver K, Kõljalg U (2007b) Ectomycorrhizal fungi of the Seychelles: diversity patterns and host shifts from the native Vateriopsis seychellarum (Dipterocarpaceae) and Intsia bijuga (Caesalpiniaceae) to the introduced Eucalyptus robusta (Myrtaceae), but not Pinus caribaea (Pinaceae). New Phytol 175:321–333

    Article  CAS  PubMed  Google Scholar 

  • Teste FP, Kardol P, Turner BL, Warldle DA, Zemunik G, Renton M (2017) Laliberte E. Plant-soil feedback and the maintenance of diversity in Mediterranean-climate shrublands Science 355:173–176

    CAS  PubMed  Google Scholar 

  • Thomas WD Jr (1943) Mycorrhizae associated with some Colorado flora. Phytopathology 33:144–149

    Google Scholar 

  • Thomazini LI (1974) Mycorrhiza in plants of the ‘Cerrado’. Plant Soil 41:707–711

    Article  Google Scholar 

  • Thornhill AH, Ho SY, Külheim C, Crisp MD (2015) Interpreting the modern distribution of Myrtaceae using a dated molecular phylogeny. Mol Phyl Evol 93:29–43

    Article  Google Scholar 

  • Tian C, He X, Zhong Y, Chen J (2003) Effect of inoculation with ecto-and arbuscular mycorrhizae and Rhizobium on the growth and nitrogen fixation by black locust, Robinia pseudoacacia. New For 25:125–131

    Article  Google Scholar 

  • Titus JH, Tsuyuzaki S (2002) Arbuscular mycorrhizal distribution in relation to microsites on recent volcanic substrates of Mt. Koma, Hokkaido, Japan. Mycorrhiza 12:271–275

    Article  PubMed  Google Scholar 

  • Toon A, Cook LG, Crisp MD (2014) Evolutionary consequences of shifts to bird-pollination in the Australian pea-flowered legumes (Mirbelieae and Bossiaeeae). BMC Evol Biol 14:1

    Article  Google Scholar 

  • Trappe JM (1962) Fungus associates of ectotrophic mycorrhizae. Bot Rev 28:538–606

    Article  Google Scholar 

  • Trappe JM (1964) Mycorrhizal hosts and distribution of Cenococcum graniforme. Lloydia 27:100–106

    Google Scholar 

  • Treu R, Laursen GA, Stephenson SL, Landolt JC, Densmore R (1996) Mycorrhizae from Denali national park and preserve, Alaska. Mycorrhiza 6:21–29

    Article  Google Scholar 

  • Tsuyuzaki S, Hase A, Niinuma H (2005) Distribution of different mycorrhizal classes on mount Koma, northern Japan. Mycorrhiza 15:93–100

    Article  PubMed  Google Scholar 

  • Van der Heijden EW (2001) Differential benefits of arbuscular mycorrhizal and ectomycorrhizal infection of Salix repens. Mycorrhiza 10:185–193

    Article  Google Scholar 

  • van Roosendael J, Thorenaar A (1924) De natuurlijke verjonging van Ngerawan (Hopea mengarawan Miq.) in zuid Sumatra. Tectona 16:519–567

    Google Scholar 

  • Väre H, Vestberg M, Eurola S (1992) Mycorrhiza and root-associated fungi in Spitsbergen. Mycorrhiza 1:93–104

    Article  Google Scholar 

  • Väre H, Vestberg M, Ohtonen R (1997) Shifts in mycorrhiza and microbial activity along an oroarctic altitudinal gradient in northern Fennoscandia. Arct Alp Res 29:93–104

    Article  Google Scholar 

  • Verbeken A, Walleyn R (1999) Is Pterygellus mycorrhizal with a euphorbia? Mycologist 13:37

    Article  Google Scholar 

  • Vorontsova MS, Hoffmann P, Maurin O, Chase MW (2007) Molecular phylogenetics of tribe Poranthereae (Phyllanthaceae; Euphorbiaceae Sensu Lato). Am J Bot 94:2026–2040

    Article  PubMed  Google Scholar 

  • Wang B, Qiu Y-L (2006) Phylogenetic distribution and evolution of mycorrhizas in land plants. Mycorrhiza 16:299–363

    Article  CAS  PubMed  Google Scholar 

  • Warcup JH (1980) Ectomycorrhizal associations of Australian indigenous plants. New Phytol 85:531–535

    Article  Google Scholar 

  • Warcup JH (1985) Rhizanthella gardneri (Orchidaceae), its Rhizoctonia endophyte and close association with Melaleuca uncinata (Myrtaceae) in western Australia. New Phytol 99:273–280

    Article  Google Scholar 

  • Warcup JH (1988) Mycorrhizal associations and seedling development in Australian Lobelioideae (Campanulaceae). Aust J Bot 36:461–472

    Article  Google Scholar 

  • Warcup JH (1990) The mycorrhizal associations of Australian Inuleae (Asteraceae). Muelleria 7:179–187

    Google Scholar 

  • Warcup JH, McGee PA (1983) The mycorrhizal associations of some Australian Asteraceae. New Phytol 95:667–672

    Article  Google Scholar 

  • Watson GW, von der Heide-Spravka KG, Howe VK (1990) Ecological significance of endo−/ectomycorrhizae in the oak sub-genus Erythrobalanus. Arboricult J 14:107–116

    Article  Google Scholar 

  • Werner GDA, Cornwell WK, Sprent JI, Kattge J, Kiers ET (2014) A single evolutionary innovation drives the deep evolution of symbiotic N2-fixation in angiosperms. Nature Comm 5:4087

    Article  CAS  Google Scholar 

  • Werner GDA, Kiers ET (2015) Order of arrival structures arbuscular mycorrhizal colonization of plants. New Phytol 205:1515–1524

    Article  CAS  PubMed  Google Scholar 

  • Wikström N, Savolainen V, Chase MW (2001) Evolution of the angiosperms: calibrating the family tree. Proc R Soc Lond B 268:2211–2220

    Article  Google Scholar 

  • Williams SE (1979) Vesicular-arbuscular mycorrhizae associated with actinomycete-nodulated shrubs, Cercocarpus montanus Raf. and Purshia tridentata (Pursh) DC. Bot Gaz 140:S115–S119

    Article  Google Scholar 

  • Wilson PG, O’Brien MM, Heslewood MM, Quinn CJ (2005) Relationships within Myrtaceae Sensu Lato based on a matK phylogeny. Plant Syst Evol 251:3–19

    Article  Google Scholar 

  • Won H, Renner SS (2006) Dating dispersal and radiation in the gymnosperm Gnetum (Gnetales)—clock calibration when outgroup relationships are uncertain. Syst Biol 55:610–622

    Article  PubMed  Google Scholar 

  • Wurdack KJ, Hoffmann P, Samuel R, de Bruijn A, van der Bank M, Chase MW (2004) Molecular phylogenetic analysis of Phyllanthaceae (Phyllanthoideae pro parte, Euphorbiaceae Sensu Lato) using plastid rbcL DNA sequences. Am J Bot 91:1882–1900

    Article  CAS  PubMed  Google Scholar 

  • Xi Z, Ruhfel BR, Schaefer H, Amorim AM, Sugumaran M, Wurdack KJ, Endress PK, Matthews ML, Stevens PF, Mathews S, Davis CC (2012) Phylogenomics and a posteriori data partitioning resolve the Cretaceous angiosperm radiation Malpighiales. Proc Natl Acad Sci 109:17519–17524

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yamamoto K, Degawa Y, Hirose D, Fukuda M, Yamada A (2015) Morphology and phylogeny of four Endogone species and Sphaerocreas pubescens collected in Japan. Mycol Prog 14:86

    Article  Google Scholar 

  • Yu TE, Egger KN, Peterson RL (2001) Ectendomycorrhizal associations—characteristics and functions. Mycorrhiza 11:167–177

    Article  CAS  Google Scholar 

  • Zainudin SR (1990) Studies on germination and seedling growth of Neobalanocarpus heimii (King) Ashton. Thesis. Universiti Pertanian Malaysia, Kuala Lumpur

    Google Scholar 

  • Zak B (1973) Classification of ectomycorrizae. In: Marks GC, Kozlowski TT (eds) Ectomycorrhizae: their ecology and physiology. Academic Press, New York, NY, pp 43–78

    Chapter  Google Scholar 

  • Zak B (1974) Ectendomycorrhiza of Pacific madrone (Arbutus menziesii). Trans Br Mycol Soc 62:202–204

    Article  Google Scholar 

  • Zanne AE, Tank DC, Cornwell WK, Eastman JM, Smith SA, FitzJohn RG et al (2014) Three keys to the radiation of angiosperms into freezing environments. Nature 506:89–92

    Article  CAS  PubMed  Google Scholar 

  • Zemunik G, Laliberte E, Lambers H, Turner BL (2015) Diversity of plant nutrient-acquisition strategies increases during long-term ecosystem development. Nat Plants 1:15050

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank J. Alvarez-Manjarrez for permission to use EcM information about Achatocarpus; A.H. Thornhill for providing a raw phylogram of Myrtaceae; F. Teste, M. de la Estrella and J. Horn for discussing their unpublished results about Australian mycorrhizae, Detarioideae phylogeny and Dipterocarpaceae-Cistaceae phylogeny, respectively; and non-anonymous referees G. Zemunik and J. Trappe for constructive comments. This study was supported by the Estonian Science Foundation grant 1399PUT and MOBERC1.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leho Tedersoo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Tedersoo, L., Brundrett, M.C. (2017). Evolution of Ectomycorrhizal Symbiosis in Plants. In: Tedersoo, L. (eds) Biogeography of Mycorrhizal Symbiosis. Ecological Studies, vol 230. Springer, Cham. https://doi.org/10.1007/978-3-319-56363-3_19

Download citation

Publish with us

Policies and ethics