Skip to main content

Biogeography and Ecology of Tulasnellaceae

  • Chapter
  • First Online:
Book cover Biogeography of Mycorrhizal Symbiosis

Part of the book series: Ecological Studies ((ECOLSTUD,volume 230))

Abstract

Species of Tulasnellaceae share the unique feature of tulasnelloid basidia, characterised by swollen sterigmata. All species have a resupinate inconspicuous or lacking basidiomata. Only three genera are assigned to the family, two of them being monospecific. Here, we treat the species of the genus Tulasnella phylogenetically, ecologically, and biogeographically and review the literature accordingly. Most geographic data are derived from floristic and molecular studies of tulasnelloid mycobionts in mycorrhizae. Tulasnella species have a world-wide distribution. They appear to be associated with orchids on a global scale, and may occur in many forest ecosystems as lignicolous fungi.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Agustini V, Sufaati S, Suharno, Suwannasai N (2016) Rhizoctonia-like fungi isolated from roots of Dendrobium lancifolium var. papuanum and Calanthe triplicata in Papua, Indonesia. Biodiversity 17:377–383

    Article  Google Scholar 

  • Almeida PR, van den Berg C, Goes-Neto A (2007) Morphological and molecular characterization of species of Tulasnella (Homobasidiomycetes) associated with Neotropical plants of Laeliinae (Orchidaceae) occuring in Brazil. Lankesteriana 7:22–27

    Google Scholar 

  • Almeida PRM, van den Berg C, Góes-Neto A (2014) Epulorhiza amonilioides sp. nov.: a new anamorphic species of orchid mycorrhiza from Brazil. Neodiversity 7:1–10

    Article  Google Scholar 

  • Andersen TF (1990) A study of hyphal morphology in the form genus Rhizoctonia. Mycotaxon 37:25–46

    Google Scholar 

  • Atala C, Pereira G, Romero C, Muñoz-Tapia L, Vargas R, Suz LM (2015) Orchidioid fungi of the form-genus Rhizoctonia associated with the roots of Chloraea cuneata Lindl. from Araucaria, Chile. Gayana Bot 72:145–148

    Article  Google Scholar 

  • Athipunyakom P, Manoch L, Piluck C, Artjariyasripong S, Tragulrung S (2004a) Mycorrhizal fungi from Spathoglottis plicata and the use of these fungi to germinate seeds of S. plicata in vitro. Kasetsart J (Nat Sci) 37:83–93

    Google Scholar 

  • Athipunyakom P, Manoch L, Piluek C (2004b) Isolation and identification of mycorrhizal fungi from eleven terrestrial orchids. Kasetsart J (Nat Sci) 38:216–228

    Google Scholar 

  • Bailarote BC, Lievens B, Jacquemyn H (2012) Does mycorrhizal specificity affect orchid decline and rarity? Am J Bot 99:1655–1665

    Article  PubMed  Google Scholar 

  • Balestrini R, Nerva L, Sillo F, Girlanda M, Perotto S (2014) Plant and fungal gene expression in mycorrhizal protocorms of the orchid Serapias vomeracea colonized by Tulasnella calospora. Planta 239:1337–1349

    Article  PubMed  CAS  Google Scholar 

  • Bandoni RJ, Oberwinkler F (1982) Stilbotulasnella: a new genus in the Tulasnellaceae. Can J Bot 60:875–1879

    Google Scholar 

  • Bateman RM, Rudall PJ, Bidartondo MI, Cozzolino S, Tranchida-Lombardo V, Carine MA, Moura M (2014) Speciation via floral heterochrony and presumed mycorrhizal host switching of endemic butterfly orchids on the Azorean archipelago. Am J Bot 101:979–1001

    Article  PubMed  Google Scholar 

  • Bates RJ, Weber JZ (1990) Orchids of South Australia. Caudell AB, Government Printer, South Australia, Adelaide

    Google Scholar 

  • Bernard N (1899) Sur la germination de Neottia nidus-avis. C R Acad Sci 128:1253–1255

    Google Scholar 

  • Bernard N (1909) Lévolution dans la symbiose des orchidées et leurs champignons commensaux. Ann Sci Nat Bot 9:1–196

    Google Scholar 

  • Bidartondo MI, Duckett JG (2010) Conservative ecological and evolutionary patterns in liverwort-fungal symbioses. Proc R Soc B 277:485–492

    Article  PubMed  Google Scholar 

  • Bidartondo MI, Bruns TD, Weiß M, Sérgio C, Read DJ (2003) Specialized cheating of the ectomycorrhizal symbiosis by an epiparasitic liverwort. Proc R Soc Lond B 270:835–842

    Article  Google Scholar 

  • Bidartondo MI, Burghardt B, Gebauer G, Bruns TD, Read DJ (2004) Changing partners in the dark: isotopic and molecular evidence of ectomycorrhizal liaisons between forest orchids and trees. Proc R Soc Lond B 271:1799–1806

    Article  CAS  Google Scholar 

  • Binder M, Hibbett DS, Larsson KH, Larsson E, Langer E, Langer G (2005) The phylogenetic distribution of resupinate forms across the major clades of mushroom-forming fungi (Homobasidiomycetes). Syst Biodivers 3:113–157

    Article  Google Scholar 

  • Boddington M, Dearnaley JDW (2009) Morphological and molecular identification of fungal endophytes from roots of Dendrobium speciosum. Proc R Soc Queensland 114:13–17

    Google Scholar 

  • Bonnardeaux Y, Brundrett M, Batty A, Dixon K, Koch J, Sivasithamparam K (2007) Diversity of mycorrhizal fungi of terrestrial orchids: compatilbility webs, brief encounters, lasting relationships and alien invasions. Mycol Res 111:51–61

    Article  PubMed  Google Scholar 

  • Bougoure JJ, Ludwig M, Brundrett MC, Grierson PF (2009a) Identity and specificity of the fungi forming mycorrhizas with rare, mycoheterotrophic Rhizanthella gardneri (Orchidaceae). Mycol Res 113:1097–1106

    Article  CAS  PubMed  Google Scholar 

  • Bougoure JJ, Brundrett MC, Grierson PF (2009b) Carbon and nitrogen supply to the underground orchid Rhizanthella gardneri. New Phytol 186:947–956

    Article  CAS  Google Scholar 

  • Bourdot H, Galzin A (1927) Hyménomycètes de France. Hetérobasidiés—Homobasidiés gymnocarpes. Soc Myc France, Sceaux

    Google Scholar 

  • Bresadola J (1903) Fungi polonici a cl. Viro B. Eichler lecti. Ann Mycol 1:65–131

    Google Scholar 

  • Brundrett MC (2007) Scientific approaches to Australian temperate terrestrial orchid conservation. Aust J Bot 55:293–307

    Article  Google Scholar 

  • Bruns TD, Szaro TM, Gardes M et al (1998) A sequence database for the identification of ectomycorrhizal basidiomycetes by phylogenetic analyses. Mol Ecol 7:257–272

    Article  CAS  Google Scholar 

  • Burgeff H (1909) Die Wurzelpilze der Orchideen, ihre Kultur und ihr Leben in der Pflanze. Gustav Fischer, Jena

    Book  Google Scholar 

  • Burgeff H (1932) Saprophytismus und Symbiose, Studien an tropischen Orchideen. Gustav Fischer, Jena

    Google Scholar 

  • Burgeff H (1936) Samenkeimung der Orchideen und Entwicklung ihrer Keimpflanzen. Gustav Fischer, Jena

    Google Scholar 

  • Cevallos S, Sánchez-Rodríguez A, Decock C, Declerck S, Suarez JP (2016) Are there keystone mycorrhizal fungi associated to tropical epiphytic orchids? Mycorrhiza. doi:10.1007/s00572-016-0746-8

    PubMed  Google Scholar 

  • Chase MW, Freudenstein JV, Cameron KM (2003) DNA data and Orchidaceae systematics: a new phylogenetic classification. In: Dixon KW, Kell SP, Barrett RL, Cribb PJ (eds) Orchid conservation. Nat Hist Publ, Kota Kinabalu, pp 69–89

    Google Scholar 

  • Christiansen MP (1959) Danish resupinate fungi. I. Ascomycetes and Heterobasidiomycetes. Dansk Bot Arkiv 19:20–34

    Google Scholar 

  • Chutima R, Dell B, Lumyong S (2011) Effects of mycorrhizal fungi on symbiotic seed germination of Pecteilis susannae (L.) Rafin. (Orchidaceae), a terrestrial orchid in Thailand. Symbiosis 53:149–156

    Article  CAS  Google Scholar 

  • Clarke JT, Warnock RCM, Donoghue PCJ (2011) Establishing a time-scale for plant evolution. New Phytol 192:266–301

    Article  PubMed  Google Scholar 

  • Cooper ED, Henwood MJ, Brown EA (2012) Are the liverworts really that old? Cretaceous origins and Cenozoic diversifications in Lepidoziaceae reflect a recurrent theme in liverwort evolution. Biol J Linn Soc 107:425–441

    Article  Google Scholar 

  • Cowden CC, Shefferson RP (2013) Diversity of root-associated fungi of mature Habenaria radiata and Epipactis thunbergii colonizing manmade wetlands in Hiroshima prefecture, Japan. Mycoscience 54:327–334

    Article  Google Scholar 

  • Crous PW, Wingfield MJ, Guarro J et al (2015) Fungal planet description sheets: 320–370. Persoonia 34:167–266

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cruz Blasí J (2007) Colonización micorrízica y diversidad de hongos micorrízicos de algunas especies de orquídeas epifitas tropicales en el Sureste de Chiapas, México. Tesis para Maestro en Ciencias, Montecillo, Texococo, Edo. De México

    Google Scholar 

  • Cruz DJ, Suárez JP, Kottke I, Piepenbring M, Oberwinker F (2011) Defining species in Tulasnella by correlating morphology and nrDNA ITS-5.8s sequence data of basidiomata from a tropical Andean forest. Mycol Prog 10:229–238

    Article  Google Scholar 

  • Cruz DJ, Suárez JP, Kottke I, Piepenbring M (2014) Cryptic species revealed by molecular phylogenetic analysis of sequences obtained from basidiomata of Tulasnella. Mycologia 106(4):708–722

    Article  PubMed  Google Scholar 

  • Cruz DJ, Suárez JP, Piepenbring M (2016) Morphological revision of Tulasnellaceae, with two new species of Tulasnella and new records of Tulasnella spp. for Ecuador. Nova Hedwigia 102:279–338

    Article  Google Scholar 

  • Currah RS, Sherburne R (1992) Septal ultrastructure of some fungal endophytes from boreal orchid mycorrhizas. Mycol Res 96:583–587

    Article  Google Scholar 

  • Currah RS, Zelmer C (1992) A key and notes for the genera of fungi mycorrhizal with orchids and a new species in the genus Epulorhiza. Rep Tottori Mycol Inst 30:43–59

    Google Scholar 

  • Currah RS, Sigler L, Hambleton S (1987) New records and new taxa of fungi from mycorrhizae of terrestrial orchids of Alberta. Can J Bot 65:2473–2482

    Article  Google Scholar 

  • Currah RS, Hambleton S, Smerciu EA (1988) Mycorrhizae and mycorrhizal fungi of Calypso bulbosa. Am J Bot 75:739–752

    Article  Google Scholar 

  • Currah RS, Smerciu EA, Hambleton S (1990) Mycorrhizae and mycorrhizal fungi of boreal species of Platanthera and Coeloglossum (Orchidaceae). Can J Bot 68:1171–1181

    Article  Google Scholar 

  • Currah RS, Zettler LW, McInnis TM (1997) Epulorhiza inquilina sp. nov. from Platanthera (Orchidaceae) and a key to Epulorhiza species. Mycotaxon 61:335–342

    Google Scholar 

  • Da Silva Coelho I, Vieira de Queiroz M, Dutra Costa M, Kasuya MCM, Fernandes de Araúji E (2010) Production and regeneration of protoplasts from orchid mycorrhizal fungi Epulorhiza repens and Ceratorhiza sp. Braz Arch Biol Technol 53:153–159

    Article  CAS  Google Scholar 

  • Dan Y, Yu X-M, Guo S-X, Meng Z-X (2012) Effects of forty-two strains of orchid mycorrhizal fungi on growth of plantlets of Anoectochilus roxburghii. Afr J Microbiol Res 6:1411–1416

    Google Scholar 

  • De Long JR, Swarts ND, Dixon KW, Egerton-Warburton LM (2013) Mycorrhizal preference promotes habitat invasion by a native Australien orchird: Microtis media. Ann Bot 111:409–418

    Article  PubMed  Google Scholar 

  • Dearnaley JDW (2007) Further advances in orchid mycorrhizal research. Mycorrhiza 17:475–486

    Article  PubMed  Google Scholar 

  • Dijk E, Eck ND (1995) Effects of mycorrhizal fungi on in vitro nitrogen response of some Dutch indigenous orchid species. Can J Bot 73:1203–1211

    Article  Google Scholar 

  • Dijk E, Willems JH, van Andel J (1997) Nutrients responses as a key factor to the ecology of orchid species. Acta Bot Neerl 46:229–363

    Article  Google Scholar 

  • Ding R, Chen X-H, Zhang L-J, Yu X-D, Qu B, Duan R, Xu Y-F (2014) Identity and specificity of Rhizoctonia-like fungi from different populations of Liparis japonica (Orchidaceae) in Northeast China. PLoS One 9(8):e105573

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Doğan HH, Kurt F (2016) New macrofungi records from Turkey and macrofungal diversity of Pozantı-Adana. Turk J Bot 40:209–217

    Article  Google Scholar 

  • Donk MA (1972) The Heterobasidiomycetes: a reconnaissance. I. Proc K Ned Akad Wet Ser C 75:365–375

    CAS  Google Scholar 

  • Drechsler C (1969) A Tulasnella parasitic on Amoeba terricola. Am J Bot 56:1217–1220

    Article  Google Scholar 

  • Dueñas M (1996) Tremellales and Tulasnellales of Menorca (Balearic Islands, Spain). Nova Hedwigia 62:467–476

    Google Scholar 

  • Dueñas M (2001) Iberian intrahymenial Platygloeales, Tremellales and Tulasnellales. Nova Hedwigia 72:441–459

    Google Scholar 

  • Dueñas M (2005) New and interesting Iberian heterobasidiomycetous fungi. 1. Nova Hedwigia 81:177–198

    Article  Google Scholar 

  • Eom A-H (2012) Identification of orchid mycorrhizal fungi isolated from five species of terrestrial orchids in Korea. Korean J Mycol 40:132–135

    Article  Google Scholar 

  • Eom A-H (2015) Identification of orchid mycorrhizal fungi isolated from terrestrial orchids in Mt. Hambaek, Korea. Korean J Mycol 43:129–132

    Google Scholar 

  • Eom A-H, Kim D-S (2013) Identification of orchid mycorrhizal fungi isolated from Epipactis thunbergii in Korea. Korean J Mycol 41:9–13

    Article  Google Scholar 

  • Ercole E, Adamo M, Rodda M, Gebauer G, Girlanda M, Perotto S (2014) Temporal variation in mycorrhizal diversity and carbon and nitrogen stable isotope abundance in the wintergreen meadow orchid Anacamptis morio mycorrhiza. New Phytol 205:1308–1319

    Article  PubMed  CAS  Google Scholar 

  • Esfeld K, Hensen I, Wesche K, Jakob SS, Tischew S, Blattner FR (2008) Molecular data indicate multiple independent colonizations of former lignite mining areas in Eastern Germany by Epipactis palustris (Orchidaceae). Biodivers Conserv 17:2441–2453

    Article  Google Scholar 

  • Fernández di Pardo A, Chiocchio VM, Barrera V, Colombo RP, Martinez AE, Gasoni L, Godeas AM (2015) Mycorrhizal fungi isolated from native terrestrial orchids of pristine regions in Córdoba (Argentina). Rev Biol Trop 63:275–283

    Article  PubMed  Google Scholar 

  • Filipello Marchisio V, Berta G, Fontana A, Marzetti Mannina F (1985) Endophytes of wild orchids native to Italy: their morphology, caryology, ultrastructure and cytochemical characterization. New Phytol 100:623–641

    Article  Google Scholar 

  • Fracchia S, Aranda-Rickert A, Flachsland E, Terada G, Sede S (2014) Mycorrhizal compatibility and symbiotic reproduction of Gavilea australis, an endangered terrestrial orchid from South Patagonia. Mycorrhiza 24:627–634

    Article  PubMed  Google Scholar 

  • Frericks J (2014) The effects of endophytic fungi of NZ terrestrial orchids: developing methods for conservation. MSc thesis, Victoria University of Wellington

    Google Scholar 

  • Garnica S, Riess K, Schön ME, Oberwinkler F, Setaro SD (2016) Divergence times and phylogenetic patterns of Sebacinales, a highly diverse and widespread fungal lineage. PLoS One 11(3):e0149531. doi:10.1371/journal.pone.0149531

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Girlanda M, Segreto R, Cafasso D, Liebel HB, Rodda M, Ercole E, Cozzolino S, Gebauer G, Perotto S (2011) Photosynthetic mediterranean meadow orchids feature partial mycoheterotrophy and specific mycorrhizal associations. Am J Bot 98:1148–1163

    Article  PubMed  Google Scholar 

  • Givnish TJ, Spalnik D, Ames M, Lyon SP, Hunter SJ, Zuluaga A, Iles WJD, Clements MA, Arroyo MTK, Leebens-Mack J, Endara L, Kriebel R, Neubig KM, Whitten WM, Williams NH, Cameron KM (2015) Orchid phylogenomics and multiple drivers of their extraordinary diversification. Proc R Soc B 282:20151553

    Article  PubMed Central  Google Scholar 

  • González Garcia V, Portal Onco MA, Rubio Susan V (2006) Biology and systematics of the form genus Rhizoctonia. Span J Agric Res 4:55–79

    Article  Google Scholar 

  • Gónzalez D, Rodriguez-Carres M, Boekhout T, Stalpers J, Kuramae EE, Nakatani AK, Vilgalys R, Cubeta MA (2016) Phylogenetic relationships of Rhizoctonia fungi within the Cantharellales. Fungal Biol 120:603–619

    Article  PubMed  PubMed Central  Google Scholar 

  • Greslebin GA, Rajchenberg M (2001) The genus Tulasnella with a new species in the Patagonian Andes forests of Argentina. Mycol Res 105:1149–1151

    Article  Google Scholar 

  • Hadley G (1970) Non-specificity of symbiotic infection in orchid mycorrhiza. New Phytol 69:1015–1023

    Article  Google Scholar 

  • Hauerslev K (1989) Two new tremellaceous fungi from Denmark. Opera Bot 100:113–114

    Google Scholar 

  • Hayakawa S, Uetake Y, Ogoshi A (1999) Identification of symbiotic Rhizoctonias from naturally occurring protocorms and roots of Dactylorhiza aristata (Orchidaceae). Jour Fac Agric Hokkaido Univ 69:129–141

    Google Scholar 

  • Herrera H, Valadares R, Contreras D, Bashan Y, Arriagada C (2016) Mycorrhizal compatibility and symbiotic seed germination of orchids from the coastal range and Andes in south Central Chile. Mycorrhiza. doi:10.1007/s00572-016-0733-0

    PubMed  Google Scholar 

  • Hibbett D, Thorn RG (2001) Basidiomycota: Homobasidiomycetes. In: McLaughlin DJ, McLaughlin EG, Lemke PA (eds) The Mycota. VIIB. Systematics and Evolution. Springer, Berlin, pp 121–168

    Google Scholar 

  • Hibbett DS, Binder M, Bischoff JF et al (2007) A higher-level phylogenetic classification of the fungi. Mycol Res 111:509–547

    Article  PubMed  Google Scholar 

  • Hibbett DS, Bauer R, Binder M, Giachini AJ, Hosaka K, Justo A, Larsson E, Larsson KH, Lawrey JD, Miettinen O, Nagy LG, Nilsson RH, Weiß M, Thorn RG (2014) Agaricomycetes. In: McLaughlin DJ, Spatafora JW (eds) Systematics and evolution. The Mycota XII Part A, 2nd edn. Springer, Berlin, pp 373–429

    Google Scholar 

  • Hjortstam K (1978) Wood inhabiting fungi in the nature reserve Raback on mount Kinnekulle Sweden. Sven Bot Tidskr 72:321–326

    Google Scholar 

  • Huang F, Zhang C (2015) Diversity, host- and habitat-preferences on the fungi communities from the roots of Cymbidium spp. at two sites in China. J Anim Plant Sci 25:270–277

    Google Scholar 

  • Illyés (2011) Hazai lápi kosborfajok aktív védelmét megalapozó élöhelyi és laboratóriumi vizsgálatok, különös tekintettel a hagymaburok (Liparis loeselii) és a tözegorchidea (Hammarbya paludosa) fajokra. Doctoral thesis, Budapest

    Google Scholar 

  • Illyés Z, Rudnoy S, Bratek Z (2005) Aspects of in situ, in vitro germination and mycorrhizal partners of Liparis loeselii. Acta Biol Szeged 49:137–139

    Google Scholar 

  • Illyés Z, Halász K, Rudnóy S, Ouanphanivanh N, Garay T, Bratek Z (2009) Changes in the diversity of mycorrhizal fungi of orchids as a function of the water supply of the habitat. J Appl Bot Food Qual 83:28–36

    Google Scholar 

  • Illyés Z, Ouanphanivanh N, Rudnóy S, Orczán K, Bratek Z (2010) The most recent results on orchid mycorrhizal fungi in Hungary. Acta Biol Hung 61(Suppl):88–96

    Google Scholar 

  • Jacquemyn H, Honnay O, Cammue BPA, Brys R, Lievens B (2010) Low specificity and nested subset structure characterize mycorrhizal associations in five closely related species of the genus Orchis. Mol Ecol 19:4086–4095

    Article  PubMed  Google Scholar 

  • Jacquemyn H, Brys R, Cammue BPA, Honnay O, Lievens B (2011a) Mycorrhizal associations and reproductive isolation in three closely related Orchis species. Ann Bot 107:347–356

    Article  CAS  PubMed  Google Scholar 

  • Jacquemyn H, Merckx V, Brys R, Tyteca D, Cammue BPA, Honnay O, Lievens B (2011b) Analysis of network architecture reveals phylogenetic constraints on mycorrhizal specificity in the genus Orchis (Orchidaceae). New Phytol 192:518–528

    Article  PubMed  Google Scholar 

  • Jacquemyn H, Deja A, De hert K, Cachapa Bailarote B, Lievens B (2012) Variation in mycorrhizal associations with tulasnelloid fungi among populations of five Dactylorhiza species. PLoS One 7(8):e42212. doi:10.1371/journal.pone.0042212

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jacquemyn H, Brys R, Merckx VSFT, Waud M, Lievens B, Wiegand T (2014) Coexisting orchid species have distinct mycorrhizal communities and display strong spatial segregation. New Phytol 202:616–627

    Article  PubMed  Google Scholar 

  • Jacquemyn H, Brys R, Waud M, Busschaert P, Lievens B (2015a) Mycorrhizal networks and coexistence in species-rich orchid communities. New Phytol 206:1127–1134

    Article  CAS  PubMed  Google Scholar 

  • Jacquemyn H, Waud M, Merckx VSFT, Lievens B, Brys R (2015b) Mycorrhizal diversity, seed germination and long-term changes in population size across nine populations of the terrestrial orchid Neottia ovata. Mol Ecol 24:3269–3280

    Article  PubMed  Google Scholar 

  • Jacquemyn H, Waud M, Lievens B, Brys R (2016a) Differences in mycorrhizal communities between Epipactis palustris, E. helleborine and its presumed sister species E. neerlandica. Ann Bot 118:105–114

    Article  PubMed  Google Scholar 

  • Jacquemyn H, Waud M, Merckx VSFT, Brys R, Tyteca D, Hedrén M, Lievens B (2016b) Habitat-driven variation in mycorrhizal communities in the terrestrial orchid genus Dactylorhiza. Sci Rep 6:37182. doi:10.1038/srep37182

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jiang WM, Yang GM, Zhang CL, Fu CX (2011) Species composition and molecular analysis of symbiotic fungi in roots of Changnienia amoena (Orchidaceae). Afr J Microbiol Res 5:222–228

    Google Scholar 

  • Jiang JH, Lee Y-I, Cubeta MA, Chen L-C (2015) Characterization and colonization of endomycorrhizal Rhizoctonia fungi in the medicinal herb Anoectochilus formosanus (Orchidaceae). Mycorrhiza 25:431–445

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jin H, Xu Z-X, Chen J-H, Han S-F, Ge S, Luo Y-B (2009) Interaction between tissue-cultured seedlings of Dendrobium officinale and mycorrhizal fungus (Epulorhiza sp.) during symbiotic culture. Chin J Plant Ecol 33:433–441

    CAS  Google Scholar 

  • Kartzinel TR, Trapnell DW, Shefferson RP (2013) Highly diverse and spatially heterogeneous mycorrhizal symbiosis in a rare epiphyte is unrelated to broad biogeographic or environmental features. Mol Ecol 22:5949–5961

    Article  PubMed  Google Scholar 

  • Keel BG, Zettler LW, Kaplin BA (2011) Seed germination of Habenaria repens (Orchidaceae) in situ beyond its range, and its potential for assisted migration imposed by climate change. Castanea 76:43–54

    Article  Google Scholar 

  • Khamchatra N, Dixon K, Chayamarit K, Apisitwanich S, Tantiwiwat S (2016a) Using in situ baiting technique to isolate and identify endophytic and mycorrhizal fungi from seed of a threatened epiphytic orchid, Dendrobium friedericksianum Rchb. f. (Orchidaceae). Agric Nat Resour 50:8–13

    Google Scholar 

  • Khamchatra N, Dixon KW, Tantiwiwat S, Piapukiew J (2016b) Symbiotic seed germination of an endangered epiphytic slipper orchid, Paphiopedilum villosum (Lindl.) Stein. from Thailand. S Afr J Bot 104:76–81

    Article  Google Scholar 

  • Kohout P, Těšitelová T, Roy M, Vohník M, Jersáková J (2013) A diverse fungal community associated with Pseudorchis albida (Orchidaceae) roots. Fungal Ecol 6:50–64

    Article  Google Scholar 

  • Kottke I, Suárez JP (2009) Mutualistic, root-inhabiting fungi of orchids identification and functional types. In: Pridgeon AM, Suárez JP (eds) Proceedings of the second scientific conference on Andean Orchids. Universidad Técnica Particular de Loja, Loja, Ecuador, pp 84–99

    Google Scholar 

  • Kottke I, Beiter A, Weiß M, Haug I, Oberwinkler F, Nebel M (2003) Heterobasidiomycetes form symbiotic associations with hepatics: Jungermanniales have sebacinoid mycobionts while Aneura pinguis (Metzgeriales) is associated with a Tulasnella species. Mycol Res 107:957–968

    Article  PubMed  Google Scholar 

  • Kottke I, Haug I, Setaro S, Suárez JP, Weiß M, Preußing M, Nebel M, Oberwinkler F (2008) Guilds of mycorrhizal fungi and their relation to trees, ericads, orchids and liverworts in a neotropical mountain rain forest. Basic Appl Ecol 9:13–23

    Article  CAS  Google Scholar 

  • Kottke I, Setaro S, Haug I, Herrera P, Cruz D, Fries A, Gawlik J, Homeier J, Werner FA, Gerique A, Suárez JP (2013) Mycorrhiza networks promote biodiversity and stabilize the tropical mountain rain forest ecosystem: perspectives for understanding complex communities. In: Bendix J, Beck E, Bräuning A, Makeschin F, Mosandl R, Scheu S, Wilcke W (eds) Ecosystem services, biodiversity and environmental change in a tropical mountain ecosystem of South Ecuador. Springer, Berlin, pp 187–203

    Chapter  Google Scholar 

  • Krause C, Garnica S, Bauer R, Nebel M (2011) Aneuraceae (Metzgeriales) and tulasnelloid fungi (Basidiomycota)—a model for early steps in fungal symbiosis. Fungal Biol 115:839–851

    Article  PubMed  Google Scholar 

  • Kristiansen KA, Tayler DL, Kjøller R, Rasmussen N, Rosendahl S (2001) Identification of mycorrhizal fungi from single pelotons of Dactylorhiza majalis (Orchidaceae) using single-strand conformation polymorphism and mitochondrial ribosomal large subunit DNA sequences. Mol Ecol 10:2089–2093

    Article  CAS  PubMed  Google Scholar 

  • Kristiansen KA, Freudenstein JV, Rasmussen FN, Rasmussen HN (2004) Molecular identification of mycorrhizal fungi in Neuwiedia veratrifolia (Orchidaceae). Mol Phylogenet Evol 33:251–158

    Article  CAS  PubMed  Google Scholar 

  • Kunttu P, Kulju M, Kotiranta H (2015) Contributions to the Finnish aphyllophoroid funga (Basidiomycota): new and rare species. Czech Mycol 67:137–156

    Google Scholar 

  • Lee S-S, You JH (2000) Identification of the orchid mycorrhizal fungi isolated from the roots of Korean native orchid. Mycobiology 28:17–26

    CAS  Google Scholar 

  • Lee S-S, Lee J-G, Lee J-W et al (2001) Effect of orchid symbiotic fungus on young plant growth of Cymbidium misericores and C. rubrigemmum in greenhouse. J Korean Hortic Sci 42:223–226

    Google Scholar 

  • Li B, Tang MJ, Tang K, Zhao LF, Guo SX (2012) Screening for differentially expressed genes in Anoectochilus roxburghii (Orchidaceae) during symbiosis with the mycorrhizal fungus Epulorhiza sp. Sci China Life Sci 55:164–171

    Article  CAS  PubMed  Google Scholar 

  • Liebel HT, Bidartondo M, Gebauer M (2015) Are carbon and nitrogen exchange between fungi and the orchid Goodyera repens affected by irradiance? Ann Bot 115:251–261

    Article  PubMed  Google Scholar 

  • Linde CC, Phillips RD, Crisp MD, Peakall R (2013) Congruent species delineation of Tulasnella using multiple loci and methods. New Phytol 201:6–12

    Article  PubMed  Google Scholar 

  • Lopez SE (1987) Contribution to the study of Argentina xylophilous fungi III. Basidiomycetous jelly fungi. Darwin 28:271–282

    Google Scholar 

  • Lowy B (1964) A new genus of the Tulasnellaceae. Mycologia 56:696–700

    Article  Google Scholar 

  • Ma M, Tan TK, Wong SM (2003) Identification and molecular phylogeny of Epulorhiza isolates from tropical orchids. Mycol Res 107:1041–1049

    Article  CAS  PubMed  Google Scholar 

  • Martin GW (1939) New or noteworthy fungi from Panama and Colombia. III. Mycologia 31:239–249

    Article  Google Scholar 

  • Martos F, Munoz F, Pailler T, Kottke I, Gonneau C, Selosse MA (2012) The role of epiphytism in architecture and evolutionary constraint within mycorrhizal networks of tropical orchids. Mol Ecol 21:5098–5109

    Article  PubMed  Google Scholar 

  • Massey EE, Zettler LW (2007) An expanded role for in vitro symbiotic seed germination as a conservation tool: two case studies in North America (Platanthera leucophaea and Epidendrum nocturnum). Proc 3rd Int Orchid Conserv Congr. Lankesteriana 7:303–308

    Google Scholar 

  • Masuhara G, Katsuya K (1994) In situ and in vitro specificity between Rhizoctonia spp. and Spiranthes sinensis (Persoon) Ames var. amoena (M. Bieberstein) Hara. New Phytol 127:711–718

    Article  Google Scholar 

  • McCormick MK, Jacquemyn H (2014) What constrains the distribution of orchid populations? New Phytol 202:392–400

    Article  Google Scholar 

  • McCormick MK, Whigham DF, O’Neill J (2004) Mycorrhizal diversity in photosynthetic terrestrial orchids. New Phytol 163:425–438

    Article  Google Scholar 

  • McCormick MK, Whigham DF, Sloan D, O’Malley K, Hodkinson B (2006) Orchid—fungus fidelity: a marriage meant to last? Ecology 87:903–911

    Article  PubMed  Google Scholar 

  • McCormick MK, Taylor DL, Juhaszova K, Burnet RK Jr, Whigham DF, O’Neill JP (2012) Limitations on orchid recruitment: not a simple picture. Mol Ecol 21:1511–1523

    Article  PubMed  Google Scholar 

  • McNeill J, Turland NJ (2011) Major changes to the Code of Nomenclature—Melbourne, July 2011. Taxon 60:14959–11497

    Google Scholar 

  • McNeill J, Barrie FR, Buck WR, Demoulin V, Greuter D, Hawksworth DL, Herendeen PS, Knapp S, Marhold K, Prado J, Prud’homme van Reine WF, Smith GF, Wiersema, JH, Turland NJ, Members of the editorial committee (2012) International Code of Nomenclature for algae, fungi, and plants (Melbourne Code). Koeltz Sci Books, Königstein, pp 1–14

    Google Scholar 

  • Milligan MJ, Williams PG (1988) The mycelial relationship of multinucleate rhizoctonias from non-orchids with Microtis (Orchidaceae). New Phytol 108:205–209

    Article  Google Scholar 

  • Moncalvo JM, Nilsson RH, Koster B, Dunham SM, Bernauer T, Matheny PB, Porter TM, Margaritescu S, Weiß M, Garnica S, Danell E, Langer G, Langer E, Larsson E, Larsson K-H, Vilgalys R (2006) The cantharelloid clade: dealing with incongruent gene trees and phylogenetic reconstruction methods. Mycologia 98:937–948

    Article  PubMed  Google Scholar 

  • Moore RT (1987) The genera of Rhizoctonia-like fungi: Ascorhizctonia, Ceratorhiza gen. nov, Epulorhiza gen. nov., Moniliopsis, and Rhizoctonia. Mycotaxon 29:91–99

    Google Scholar 

  • Mordue JEM, Currah RS, Bridge PD (1989) An integrated approach to Rhizoctonia taxonomy: cultural, biochemical and numerical techniques. Mycol Res 92:78–90

    Article  Google Scholar 

  • Mosquera-Espinosa AT, Bayman P, Otero JT (2010) Ceratobasidium como hongo micorrízico de orquídeas en Colombia. Acta Agro 59:316–326

    Google Scholar 

  • Mujica MI, Saez N, Cisternas M, Manzano M, Armesto JJ, Pérez F (2016) Relationship between soil nutrients and mycorrhizal associations of two Bipinnula species (Orchidaceae) from Central Chile. Ann Bot. doi:10.1093/aob/mcw082

    PubMed  Google Scholar 

  • Nebel M, Kreier HP, Preußing M, Weiß M, Kottke I (2004) Symbiotic fungal associations of liverworts are the possible ancestors of mycorrhizae. In: Agerer R, Piepenbring M, Blanz P (eds) Frontiers in Basidiomycote mycology. IHW-Verlag, Eching, pp 339–360

    Google Scholar 

  • Nogueira RE, van den Berg POL, Kasuya MCM (2014) Isolation and molecular characterization of Rhizoctonia-like fungi associated with orchid roots in the Quadrilátero Ferrífero and Zona da Mata regions of the state of Minas Gerais, Brazil. Acta Bot Brasilica 28:298–300

    Article  Google Scholar 

  • Nontachaiyapoom S, Sasirat S, Manoch L (2010) Isolation and identification of Rhizoctonia-like fungi from roots of three orchid genera, Paphiopedilum, Dendrobium, and Cymbidium, collected in Chiang Rai and Chiang Mai provinces of Thailand. Mycorrhiza 20:459–471

    Article  PubMed  Google Scholar 

  • Nontachaiyapoom S, Sasirat S, Manoch L (2011) Symbiotic seed germination of Grammatophyllum speciosum Blume and Dendrobium draconis Rchb.f., native orchids of Thailand. Sci Hortic 130:303–308

    Article  Google Scholar 

  • Nouhra E, Urcelay C, Longo S, Tedersoo L (2013) Ectomycorrhizal fungal communities associated to Nothofagus species in Northern Patagonia. Mycorrhiza 23:487–496

    Article  PubMed  Google Scholar 

  • Nurfadilah S, Swarts ND, Dixon KW, Lambers H, Merritt DJ (2013) Variation in nutrient-acquisition patterns by mycorrhizal fungi of rare and common orchids explains diversification in a global biodiversity hotspot. Ann Bot 111:1233–1241

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Oberwinkler F (2012) Mykologie am Lehrstuhl Spezielle Botanik und Mykologie der Universität Tübingen, 1974–2011. Andrias 19:23–110, additional 16 plates

    Google Scholar 

  • Oberwinkler F, Riess K, Bauer R, Kirschner R, Garnica S (2013) Taxonomic re-evaluation of the Ceratobasidium-Rhicotonia complex and Rhizoctonia butinii, a new species attacking spruce. Mycol Prog 12:763–776

    Article  Google Scholar 

  • Ogura-Tsujita Y, Yokoyama J, Miyoshi K, Yukawa T (2012) Shifts in mycorrhizal fungi during the evolution of autotrophy to mycoheterotrophy in Cymbidium (Orchidaceae). Am J Bot 99:1158–1176

    Article  PubMed  Google Scholar 

  • Øien DI, O’Neill JP, Whigham DF, McCormick MK (2008) Germination ecology of the boreal-alpine terrestrial orchid Dactylorhiza lapponica (Orchidaceae). Ann Bot Fenn 45:161–172

    Article  Google Scholar 

  • Olive LS (1946) New or rare Heterobasidiomycetes from North Carolina II. J Elisha Mitchell Sci Soc 62:65–71

    Google Scholar 

  • Olive LS (1957) Tulasnellaceae of Tahiti. A revision of the family. Mycologia 49:663–679

    Article  Google Scholar 

  • Ordynets O (2012) New records of corticioid fungi with heterobasidia from Ukraine. Turk J Bot 36:590–602

    Google Scholar 

  • Ortega-Larrocea MP, Rangel-Villafranco M (2007) Fungus-assisted reintroduction and long-term survival of two Mexican terrestrial orchids in the natural habitat. Lankesteriana 7:317–321

    Google Scholar 

  • Otero JT, Ackerman JD, Bayman P (2002) Diversity and host specificity of endophytic Rhizoctonia-like fungi from tropical orchids. Am J Bot 89:1852–1858

    Article  CAS  Google Scholar 

  • Ouanphanivanh N, Illýes Z, Rudnóy S, Bratek Z (2007) Orchid mycorrhizal fungal diversity of Orchis militaris habitats. Tájökológiai Lapok 5:325–332

    Google Scholar 

  • Ovando I, Damon A, Bello R, Ambrosio D, Albores V, Adriano L, Salvador M (2005) Isolation of endophytic fungi and their mycorrhizal potential for the tropical epiphytic orchids Cattleya skinneri, C. aurantiaca and Brassvola nodosa. Asian J Plant Sci 4:309–315

    Article  Google Scholar 

  • Pandey M, Sharma J, Taylor D, Yadon VL (2013) A narrowly endemic photosynthetic orchid is non-specific in its mycorrhizal associations. Mol Ecol 22:2341–2354

    Article  PubMed  Google Scholar 

  • Pearson AA (1928) New British Heterobasidiae. Trans Br Mycol Soc 13:69–74

    Article  Google Scholar 

  • Pecoraro L, Girlanda M, Kull T, Perini C, Perotto S (2012) Analysis of fungal diversity in Orchis tridentata Scopoli. Dent Eur J Biol 7:850–857

    Google Scholar 

  • Pecoraro L, Girlanda M, Kull T, Perini C, Perotto S (2013) Fungi from the roots of the terrestrial photosynthetic orchid Himantoglossum adriaticum. Plant Ecol Evol 146:145–152

    Article  Google Scholar 

  • Pecoraro L, Girlanda M, Liu Z-J, Huang L, Perotto S (2015) Molecular analysis of fungi associated with the Mediterranean orchid Ophrys bertolonii Mor. Ann Microbiol 65:2001–2007

    Article  CAS  Google Scholar 

  • Pellegrino G, Luca A, Bellusci F (2014) Relationships between orchid and fungal biodiversity: mycorrhizal preferences in Mediterranean orchids. Plant Biosyst 3504:1–10

    Google Scholar 

  • Pereira MC (2009) Diversidade e especificidade micorrízica em orquídeas do gênera Epidendrum. Universidade Federal de Viçosa, Viçosa

    Google Scholar 

  • Pereira OL, Rollemberg CL, Borges AC, Matsuoka K, Kasuya MCM (2003) Epulorhiza epiphytica sp. nov. isolated from mycorrhizal roots of epiphytic orchids in Brazil. Mycoscience 44:153–155

    Article  Google Scholar 

  • Pereira OL, Kasuya MCM, Borges AC, Fernandes de Araújo E (2005a) Morphological and molecular characterization of mycorrhizal fungi isolated from neotropical orchids in Brazil. Can J Bot 83:54–65

    Article  CAS  Google Scholar 

  • Pereira OL, Kasuya MCM, Rollemberg CL, Chaer GM (2005b) Isolamento e identificação de fungos micorrízicos rizoctonióides associados a três espécies de orquídeas epífitas neotropicais no Brasil. R Bras Ci Solo 29:191–197

    Article  Google Scholar 

  • Pereira OL, Kasuya MCM, Rollemberg CL, Borges AC (2005c) Indução in vitro da germinaçã de sementes de Oncidium flexuosum (Orchidaceae) por fungos micorrízicos rizoctonióides. R Bras Ci Solo 29:199–206

    Article  Google Scholar 

  • Pereira MC, Pereira OL, Costa MD, Rocha RB, Kasuya MCM (2009) Diversidade de fungos micorruízicos Epulorhiza spp. isolados de Epidendrum secundum (Orchidaceae). Rev Bras Cienc Solo 33:1187–1197

    Article  Google Scholar 

  • Pereira MC, Torres DP, Rodrigues Guimaraes FA, Pereira OL, Kasuya MCM (2011a) Seed germination and protocorm development of Epidendrum secundum Jacq. (Orchidaceae) in association with Epulorhiza mycorrhizal fungi. Acta Bot Brasilica 25:534–541

    Article  Google Scholar 

  • Pereira MC, Moreira Vieira N, Tótala MR, Kasuya MCM (2011b) Total fatty acid composition in the characterization and identification of orchid mycorrhizal fungi Epulorhiza spp. Rev Bras Cienc Solo 35:1159–1165

    Article  CAS  Google Scholar 

  • Pereira G, Romero C, Suz LM, Atala C (2014a) Essential mycorrhizal partners of the endemic Chilean orchids Chloraea collicensis and C. gavilu. Flora 209:95–99

    Article  Google Scholar 

  • Pereira MC, da Silva Coelho I, da Silva Valadares RB, Oliveira SF, Bocayuva M, Pereira OL, Ferandes Araújo E, Kasuya MCM (2014b) Morphological and molecular characterization of Tulasnella spp. fungi isolated from the roots of Epidendrum secundum, a widespread Brazilian orchid. Symbiosis 62:111–121

    Article  CAS  Google Scholar 

  • Pereira MC, Rocha DI, Veloso TGR, Pereira OL, Francino DMT, Strozi Alves Meira RM, Kasuya MCM (2015) Characterization of seed germination and protocorm development of Cyrtopodium glutiniferum (Orchidaceae) promoted by mycorrhizal fungi Epulorhiza spp. Acta Bot Brasilica 29:567–574

    Article  Google Scholar 

  • Perkins AJ, Masuhara G, McGee PA (1995) Specificity of the associations between Microtis parviflora (Orchidaceae) and its mycorrhizal fungi. Aust J Bot 43:85–91

    Article  Google Scholar 

  • Peterson RL, Currah RS (1990) Synthesis of mycorrhizae between protocorms of Goodyera repens (Orchidaceae) and Ceratobasidium cereale. Can J Bot 68:1117–1125

    Article  Google Scholar 

  • Phillips RD, Barrett MD, Dixon KW, Hopper SD (2011) Do mycorrhizal symbioses cause rarity in orchids? J Ecol 99:858–869

    Article  Google Scholar 

  • Phillips RD, Peakall R, Hutchinson MF, Linde CC, Xu T, Dixon KW, Hopper SD (2014) Specialized ecological interactions and plant species rarity: the role of pollinators and mycorrhizal fungi across multiple spatial scales. Biol Conserv 169:285–295

    Article  Google Scholar 

  • Polemis E, Roberts P, Dimou DM, Zervakis GI (2016) Heterobasidiomcetous fungi form Aegean Islands (Greece): new annotated records for a neglected group. Plant Biosyst 150:295–303

    Article  Google Scholar 

  • Porras-Alfaro A, Bayman P (2007) Mycorrhizal fungi of Vanilla: diversity, specificity and effects on seed germination and plant growth. Mycologia 99:510–5225

    Article  CAS  PubMed  Google Scholar 

  • Pressel S, Bidartondo M, Ligrone R, Duckett J (2010) Fungal symbioses in bryophytes: new insights in the twenty first century. Phytotaxa 9:238–253

    Article  Google Scholar 

  • Preußing M, Nebel M, Oberwinkler F, Weiß M (2010) Diverging diversity patterns in the Tulasnella (Basidiomycota, Tulasnellales) mycobionts of Aneura pinguis (Marchantiophyta, Metzgeriales) from Europe and Ecuador. Mycorrhiza 20:147–159

    Article  PubMed  Google Scholar 

  • Rafter M, Yokoya K, Shofield EJ, Zettler LW, Sarasan V (2016) Non-specific symbiotic germination of Cynorkis purpurea (Thouars) Kraezl., a habitat-specific terrestrial orchid from the Central Highlands of Madagascar. Mycorrhiza 26:541–552

    Article  CAS  PubMed  Google Scholar 

  • Rasmussen HN (2002) Recent developments in the study of orchid mycorrhiza. Plant Soil 244:149–163

    Article  CAS  Google Scholar 

  • Rasmussen H, Rasmussen FN (1991) Climatic and seasonal regulation of seed plant establishment in Dactylorhiza majalis inferred from symbiotic experiments in vitro. Lindleyana 6:221–227

    Google Scholar 

  • Rasmussen H, Rasmussen FN (2007) Trophic relationships in orchid mycorrhiza – diversity and implications for conservation. Lankesteriana 7:334–341

    Google Scholar 

  • Rasmussen HN, Dixon KW, Jersáková J, Těšitelová T (2015) Germination and seedling establishment in orchids: a complex of requirements. Ann Bot 116:391–402

    Article  PubMed  PubMed Central  Google Scholar 

  • Richardson KA, Peterson RL, Currah RS (1992) Seed reserves and early symbiotic protocorm development of Platanthera hyperborea (Orchidaceae). Can J Bot 70:291–300

    Article  Google Scholar 

  • Richardson KA, Currah RS, Hambleton S (1993) Basidiomycetous endophytes from the roots of neotropical epiphytic Orchidaceae. Lindleyana 8:127–137

    Google Scholar 

  • Riofrío M, Cruz DJ, Torres E, De La Cruz M, Iriondo J-M, Suárez JP (2013) Mycorrhizal preferences and fine spatial structure of the epiphytic orchid Epidendrum rhopalostele. Am J Bot 100:1–10

    Article  CAS  Google Scholar 

  • Roberts P (1992) Spiral-spored Tulasnella species from Devon and the New Forest. Mycol Res 96:233–236

    Article  Google Scholar 

  • Roberts P (1993a) The genus Tulasnella in Norway. Windahlia 20:67–74

    Google Scholar 

  • Roberts P (1993b) Allantoid-spored Tulasnella species from Devon. Mycol Res 97:213–220

    Article  Google Scholar 

  • Roberts P (1994a) Long-spored Tulasnella species from Devon, with additional notes on allantoid-spored species. Mycol Res 98:1235–1244

    Article  Google Scholar 

  • Roberts P (1994b) Globose and ellipsoid-spored Tulasnella species from Devon and Surrey, with a key to the genus in Europe. Mycol Res 98:1431–1452

    Article  Google Scholar 

  • Roberts P (1996) Heterobasidiomycetes from Majorca & Cabrera (Balearic Islands). Mycotaxon 60:111–123

    Google Scholar 

  • Roberts P (1999) Rhizoctonia-forming fungi: a taxonomic guide. Royal Botanic Gardens, Kew

    Google Scholar 

  • Roberts P (2003) Tulasnella echinospora: an unusual new species from Great Britain and Sweden. Cryptogam Mycol 25:23–27

    Google Scholar 

  • Roberts P (2006) Caribbean heterobasidiomycetes: 2. Jamaica. Mycotaxon 96:83–107

    Google Scholar 

  • Roberts P, Piątek M (2004) Heterobasidiomycetes of the families Oliveoniaceae and Tulasnellaceae from Poland. Polish Bot J 49:45–54

    Google Scholar 

  • Roche SA, Carter RJ, Peakall R, Smith LM, Whitehead MR, Linde CC (2010) A narrow group of monophyletic Tulasnella (Tulasnellaceae) symbiont lineages are associated with multiple species of Chiloglottis (Orchidaceae): implications for orchid diversity. Am J Bot 97:1313–1327

    Article  PubMed  Google Scholar 

  • Rogers DP (1933) A taxonomic review of the Tulasnellaceae. Ann Mycol 31:181–203

    Google Scholar 

  • Ruibal MP, Peakall R, Smith LM, Linde CC (2013) Phylogenetic and microsatellite markers for Tulasnella (Tulasnellaceae) mycorrhizal fungi associated with Australian orchids. Appl Plant Sci 1(3):1200394

    Article  Google Scholar 

  • Salifah HAB, Muskhazli M, Rusea G, Nithiyaa P (2011) Variation in mycorrhizla specificity for in vitro symbiotic seed germination of Grammatophyllum speciosum Blume. Sains Malays 40:45–455

    Google Scholar 

  • Salman R, Prendergast G, Roberts P (2001) Germination in Dactylorhiza fuchsii seeds using fungi from non-orchid sources. In: Kindlmann P, Willems JH, Whigham DF (eds) Conference on trends and fluctuations and underlying mechanisms in terrestrial orchid populations location. Ceske Budejovice, pp 133–153

    Google Scholar 

  • Sathiyadash K, Muthukumar T, Uma E, Pandey RR (2012) Mycorrhizal association and morphology in orchids. J Plant Interact 7:238–247

    Article  Google Scholar 

  • Sathiyadash K, Muthukumar T, Murugan SB, Sathishkumar R, Pandey RR (2014) In vitro symbiotic seed germination of South Indian endemic orchid Coelogyne nervosa. Mycoscience 55:183–189

    Article  Google Scholar 

  • Schatz B, Geoffroy A, Dainat B, Bessière J-M, Buatois B, Hossaert-McKey M, Selosse M-A (2010) A case study of modified interactions with symbionts in a hybrid mediterranean orchid. Am J Bot 97:1278–1288

    Article  PubMed  Google Scholar 

  • Schröter J (1888) Die Pilze Schlesiens. In: Cohn JV (ed) Kryptogamenflora von Schlesien, vol 3. Kern JV Verlag, Breslau

    Google Scholar 

  • Selosse M-A, Weiss M, Jany J, Tillier A (2002) Communities and populations of sebacinoid basidiomycetes associated with the achlorophyllous orchid Neottia nidus-avis (L.) LCM Rich. and neighbouring tree ectomycorrhizae. Mol Ecol 11:1831–1844

    Article  CAS  PubMed  Google Scholar 

  • Shan XC, Liewe EC, Weatherhead MA, Hodgkiss IJ (2002) Characterization and taxonomic placement of Rhizoctonia-like endophytes from orchid roots. Mycologia 94:230–239

    Article  CAS  PubMed  Google Scholar 

  • Sharma J, Zettler LW, van Sambeek JW (2003a) A survey of mycobionts of federally threatened Platanthera praeclara (Orchidaceae). Symbiosis 34:145–155

    Google Scholar 

  • Sharma J, Zettler LW, van Sambeek JW, Ellersieck MR, Starbuck CJ (2003b) Symbiotic seed germination and mycorrhizae of federally threatened Platanthera praeclara (Orchidaceae). Am Midl Nat 149:104–120

    Article  Google Scholar 

  • Shefferson RP, Weiß M, Kull T, Taylor DL (2005) High specificity generally characterizes mycorrhizal association in rare lady’s slipper orchids, genus Cypripedium. Mol Ecol 14:613–626

    Article  CAS  PubMed  Google Scholar 

  • Shefferson RP, Taylor DL, Weiß M, Garnica S, McCormick MK, Adams S, Gray HM, McFarland JW, Kull T, Tali K, Yukawa T, Kawahara T, Miyoshi K, Lee Y-I (2007) The evolutionary history of mycorrhizal specificity among lady’s slipper orchids. Evolution 61:1380–1390

    Article  PubMed  Google Scholar 

  • Shefferson RP, Kull T, Tali K (2008) Mycorrhizal interactions of orchids colonizing Estonian mine tailings hills. Am J Bot 95:156–164

    Article  PubMed  Google Scholar 

  • Shefferson RP, Cowden CC, McCormick MK, Yukawa T, Ogura-Tsujita Y, Hashimoto T (2010) Evolution of host breadth in broad interactions: mycorrhizal specificity in East Asian and North American rattlesnake plantains (Goodyera spp.) and their fungal hosts. Mol Ecol 19:3008–3017

    Article  PubMed  Google Scholar 

  • Shimura H, Sadamoto M, Matsuura M, Kawahara T, Naito S, Koda Y (2009) Characterization of mycorrhizal fungi isolated from the threatened Cypripedium macranthos in a northern island of Japan: two phylogenetically distinct fungi associated with the orchid. Mycorrhiza 19:525–534

    Article  PubMed  Google Scholar 

  • Smith ZF, James EA, McLean CB (2007) Experimental reintroduction of the threatened terrestrial orchid Diuris fragrantissima. Lankesteriana 7:377–380

    Google Scholar 

  • Smith ZF, James EA, McLean CB (2010) Mycorrhizal specificity of Diuris fragrantissima (Orchidaceae) and persistence in a reintroduced population. Aust J Bot 58:97–106

    Article  Google Scholar 

  • Smreciu EA, Currah RS (1989) Symbiotic germination of seeds of terrestrial orchids of North America and Europe. Lindleyana 4:6–15

    Google Scholar 

  • Stark C, Babik W, Durka W (2009) Fungi from the roots of the common terrestrial orchid Gymnadenia conopsea. Mycol Res 113:952–959

    Article  PubMed  Google Scholar 

  • Steinfort U, Verdugo G, Besoain X, Cisterna MA (2010) Mycorrhizal association and symbiotic germination of the terrestrial orchid Bipinnula fimbriata (Poepp.) Johnst. (Orchidaceae). Flora 205:811–817

    Article  Google Scholar 

  • Stewart SL, Kane ME (2006) Symbiotic seed germination of Habenaria macroceratitis (Orchidaceae), a rare Florida terrestrial orchid. Plant Cell Tissue Organ Cult 86:159–167

    Article  CAS  Google Scholar 

  • Stewart SL, Zettler LW (2002) Symbiotic germination of three semi-aquatic rein orchids (Habenaria macroceratitis, H. quinqueseta, H. repens) from Florida. Aquatic Bot 72:25–35

    Article  Google Scholar 

  • Stewart SL, Zettler LW, Minso J, Brown PM (2003) Symbiotic germination and reintroduction of Spiranthes brevilabris Lindley, and endangered orchid native to Florida. Selbyana 24:64–70

    Google Scholar 

  • Stöckel M, Těšitelová T, Jersáková J, Bidartondo MI, Gebauer G (2014) Carbon and nitrogen gain during the growth of orchid seedlings in nature. New Phytol 202:606–615

    Article  PubMed  CAS  Google Scholar 

  • Strid A (1975) Lignicolous and corticolous fungi in Alder vegetation in Central Norway with special reference to Aphyllophorales Basidiomycetes. Kong Norske Vidensk Selskab Skrif 4:1–52

    Google Scholar 

  • Strullu DG, Gourret JP (1974) Ultrastructure et évolution du champignon symbiotique des racines de Dactylorchis maculata. J Microsc 20:285–294

    Google Scholar 

  • Suárez JP, Kottke I (2016) Main fungal partners and different levels of specificity of orchid mycorrhizae in the tropical mountain forests of Ecuador. Lankesteriana 16:299–305

    Article  Google Scholar 

  • Suárez JP, Weiss M, Abele A, Garnica S, Oberwinkler F, Kottke I (2006) Diverse tulasnelloid fungi form mycorrhizas with epiphytic orchids in an Andean cloud forest. Mycol Res 110:1257–1270

    Article  PubMed  CAS  Google Scholar 

  • Suárez JP, Eguiguren JS, Herrera P, Jost L (2016) Do mycorrhizal fungi drive speciation in Teagueia (Orchidaceae) in the upper Pastaza watershed of Ecuador? Symbiosis 69:161–168

    Article  Google Scholar 

  • Sufaati S, Agustini V, Suharno (2012) Isolation and phylogenetic relationship of orchid-mycorrhiza of Spathoglottis plicata of Papua using mitochondrial ribosomal large subunit (mt-Ls) DNA. Biodiversitas 13:59–64

    Article  Google Scholar 

  • Sun Y, He X, Glenny D (2014) Transantarctic disjunctions in Schistochilaceae (Marchantiophyta) explained by early extinction events, post-Gondwanan radiations and palaeoclimatic changes. Mol Phylogenet Evol 76:189–201

    Article  PubMed  Google Scholar 

  • Suryantini R, Wulandari RS, Kasiamandri RS (2015) Orchid mycorrhizal fungi: identification of Rhizoctonia from West Kalimantan. Microbiol Indones 9:157–162

    Article  Google Scholar 

  • Swangmaneecharern P, Serivichyaswat P, Nontachaiyapoom S (2012) Promoting effect of orchid mycorrhizal fungi Epulorhiza isolates on seed germination of Dendrobium orchids. Sci Hortic 148:55–58

    Article  Google Scholar 

  • Talbot PHB (1973) Holobasidiomycetidae: Tulasnellales. In: Ainsworth GC, Sparrow FK, Sussman AS (eds) The fungi, vol IV, Sect. B. Academic Press, New York, pp 322–325

    Google Scholar 

  • Tan X-M, Chen X-M, Wang C-L, Jin X-H, Cui J-L, Chen J, Guo S-X, Zhao L-F (2012) Isolation and identification of endophytic fungi in roots of nine Holcoglossum plants (Orchidaceae) collected from Yunnan, Guangxi, and Hainan provinces of China. Curr Microbiol 64:140–147

    Article  CAS  PubMed  Google Scholar 

  • Tan XM, Wang CL, Chen XM, Zhou YQ, Wang YQ, Luo AX, Liu ZH, Guo SX (2014) In vitro seed germination and seedling growth of an endangered epiphytic orchid, Dendrobium officinale, endemic to China using mycorrhizal fungi (Tulasnella sp.) Sci Hortic 165:62–68

    Article  Google Scholar 

  • Tao G, Liu ZY, Hyde KD, Liu XZ, Yu ZN (2008) Whole rDNA analysis reveals novel and endophytic fungi in Bletilla ochracea (Orchidaceae). Fungal Divers 33:101–122

    Google Scholar 

  • Taylor JW, Berbee ML (2006) Dating divergences in the Fungal Tree of Life: review and new analyses. Mycologia 98:838–849

    Article  PubMed  Google Scholar 

  • Taylor DL, McCormick MK (2008) Internal transcribed spacer primers and sequences for improved characterization of basidiomycetous orchid mycorrhizas. New Phytol 177:1020–1033

    Article  CAS  PubMed  Google Scholar 

  • Tedersoo L, Jairus T, Horton BM, Abarenkov K, Suvi T, Saar I, Kõljalg U (2008a) Strong host preference of ectomycorrhizal fungi in a Tasmanian wet sclerophyll forest as revealed by DNA barcoding and taxon-specific primers. New Phytol 180:479–490

    Article  CAS  PubMed  Google Scholar 

  • Tedersoo L, Suvi T, Jairus T, Kõljalg U (2008b) Forest microsite effects on community composition of ectomycorrhizal fungi on seedlings of Picea abies and Betula pendula. Environ Microbiol 10:1189–1201

    Article  CAS  PubMed  Google Scholar 

  • Tedersoo L, May TW, Smith ME (2010) Ectomycorrhizal lifestyle in fungi: global diversity, distribution, and evolution of phylogenetic lineages. Mycorrhiza 20:217–263

    Article  PubMed  Google Scholar 

  • Teixeira AFS, Pessoa HP, Miranda L, Resende PH, Pereira MC (2015) Effect of mycorrhizal fungi and abiotic factors on the development and distribution of Oeceoclades maculata (Lindl.) Lindl. in understory of Avocado. Evol Conserv Biodivers 6:23–32

    Article  Google Scholar 

  • Těšitelová T, Jersáková J, Roy M, Kubátová B, Těšitel J, Urfus T, Trávníček P, Suda J (2013) Ploidy-specific symbiotic interactions: divergence of mycorrhizal fungi between cytotypes of the Gymnadenia conopsea group (Orchidaceae). New Phytol 199:1022–1033

    Article  PubMed  Google Scholar 

  • Torkelsen A-E (1977) Jelly fungi in western Norway. Blyttia 35:179–192

    Google Scholar 

  • Uetaka Y, Ogoshi A, Hayakawa S (1999) Observations of teleomorphs of rhizoctonias (Thanatephorus orchidicola and Tulasnella) isolated from orchids. Hokkaido Univ Coll Scholar Acad Pap 22:121–125

    Google Scholar 

  • Van de Put K, Antonissen I (1996) Tulasnella’s uit Vlaanderen. Sterbeeckia 17:44–69

    Google Scholar 

  • Veldre V, Abarenkov K, Bahram M, Florent Martos F, Selosse M-A, Tamm H et al (2013) Evolution of nutritional modes of Ceratobasidiaceae (Cantharellales, Basidiomycota) as revealed from publicly available ITS sequences. Fungal Ecol c6:256–268

    Google Scholar 

  • Voyron S, Ercole E, Ghignone S, Perotto S, Girlanda M (2016) Fine-scale spatial distribution of orchid mycorrhizal fungi in the soil of host-rich grasslands. New Phytol. doi:10.1111/nph.14286

    Google Scholar 

  • Wang X, Yam TW, Meng Q, Zhu J, Zhang P, Wu H, Wang J, Zhao Y, Song X (2016) The dual inoculation of endophytic fungi and bacteria promotes seedlings growth in Dendrobium catenatum (Orchidaceae) und in vitro culture conditions. Plant Cell Tissue Organ Cult 126:523–531

    Article  CAS  Google Scholar 

  • Warcup JH (1971) Specificity of mycorrhizal association in some Australian terrestrial orchids. New Phytol 70:41–46

    Article  Google Scholar 

  • Warcup JH (1973) Symbiotic germination of some Australian terrestrial orchids. New Phytol 72:387–392

    Article  Google Scholar 

  • Warcup JH (1981) The mycorrhizal relationships of Australian orchids. New Phytol 87:371–381

    Article  Google Scholar 

  • Warcup JH (1985) Rhizanthella gardneri (Orchidaceae), its Rhizocotonia endophyte and close association with Melaleuca uncinata (Myrtaceae) in western Australia. New Phytol 99:273–280

    Article  Google Scholar 

  • Warcup JH, Talbot PHB (1967) Perfect states of Rhizoctonias associated with orchids I. New Phytol 66:631–641

    Article  Google Scholar 

  • Warcup JH, Talbot PHB (1971) Perfect states of Rhizoctonias associated with orchids II. New Phytol 76:35–40

    Article  Google Scholar 

  • Warcup JH, Talbot PHB (1980) Perfect states of Rhizoctonias associated with orchids III. New Phytol 86:267–272

    Article  Google Scholar 

  • Waterman RJ, Bidartondo MI, Stofberg J, Combs JK, Gebauer G, Savolainen V, Barraclaugh TG, Pauw A (2011) The effects of above- and belowground mutualisms on orchid speciation and coexistence. Am Nat 177:E54–E68

    Article  PubMed  Google Scholar 

  • Waud M, Busschaert P, Lievens B, Jacquemyn H (2016a) Specificity and localised distribution of mycorrhizal fungi in the soil may contribute to co-existence of orchid species. Fungal Ecol 20:155–165

    Article  Google Scholar 

  • Waud M, Wiegand T, Brys R, Lievens B, Jacquemyn H (2016b) Nonrandom seedling establishment corresponds with distance-dependent decline in mycorrhizal abundance in two terrestrial orchids. New Phytol 211:255–264

    Article  CAS  PubMed  Google Scholar 

  • Weiß M, Bauer R, Begerow D (2004) Spotlights on heterobasidiomycetes. In: Agerer R, Piepenbring M, Blanz P (eds) Frontiers in Basidiomycote mycology. Eching, IHW-Verlag, pp 7–48

    Google Scholar 

  • Whitridge and Southworth (2005) Mycorrhizal symbionts of the terrestrial orchid Cypripedium fasciculatum. Selbyana 26:328–334

    Google Scholar 

  • Wickett NJ, Goffinet B (2008) Origin and relationship of the myco-heterotrophic liverwort Cryptothallus mirabilis Malmb. (Metzgeriales, Marchantiophyta). Bot J Linn Soc 156:1–12

    Article  Google Scholar 

  • Wojewoda W (1978) Polish Tulasnellales part 1. Tulasnella inclusa new record. Acta Mycol 14:109–112

    Article  Google Scholar 

  • Wojewoda W (1983) Polish Tulasnellales 2. Tulasnella hyalina new record. Acta Mycol 19:41–46

    Article  Google Scholar 

  • Wojewoda W (1986) Polish Tulasnellales III. Tulasnella violacea (Johan-Olsen ap. Bref.) Juel. Acta Mycol 22:99–102

    Article  Google Scholar 

  • Xing X, Ma X, Deng Z, Chen J, Wu F, Guo S (2013) Specificity and preference of mycorrhizal associations in two species of the genus Dendrobium (Orchidaceae). Mycorrhiza 23:317–324

    Article  PubMed  Google Scholar 

  • Yang G, Li C (2012) General description of Rhizoctonia species complex. In: Cumagun CJ (ed) Plant pathology. InTech, Rijeka. isbn: 978–953–51-0489-6

    Google Scholar 

  • Yokoya K, Zettler LW, Kendon JP, Bidartondo MI, Stice AL, Skarha S, Corey LL, Knight AC, Sarasan V (2015) Preliminary findings on identification of mycorrhizal fungi from diverse orchids in the central highlands of Madagascar. Mycorrhiza 25:611–625

    Article  PubMed  Google Scholar 

  • Youm J-Y, Han H-K, Chung J-M, Cho Y-C, Lee B-C, Eom A-H (2012) Identification of orchid mycorrhizal fungi isolated from five species of terrestrial orchids in Korea. Kor J Mycol 40:132–135

    Article  Google Scholar 

  • Yu Y, Cui Y-H, Hsiang T, Zeng Z-Q, Yu Z-H (2015) Isolation and identification of endophytes from roots of Cymbidium goeringii and Cymbidium faberi (Orchidaceae). Nova Hedwigia 101:57–64

    Article  Google Scholar 

  • Yuan L, Yang ZL, Li S-Y, Hu H, Huang J-L (2010) Mycorrhizal specificity, preference, and plasticity of six slipper orchids from south western China. Mycorrhiza 20:559–568

    Article  PubMed  Google Scholar 

  • Yukawa T, Ogura-Tsujita Y, Shefferson RP, Yokoyama J (2009) Mycorrhizal diversity in Apostasia (Orchidaceae) indicates the origin and evolution of orchid mycorrhiza. Am J Bot 96:1997–2009

    Article  PubMed  Google Scholar 

  • Zelmer CD, Currah RS (1995) Ceratorhiza pernacatena and Epulorhiza calendulina ssp. nov.: Mycorrhizal fungi of terrestrial orchids. Can J Bot 73:1981–1985

    Article  Google Scholar 

  • Zelmer CD, Currah RS (1997) Symbiotic germination of Spiranthes lacera (Orchidaceae) with a naturally occurring endophyte. Lindleyana 12:142–148

    Google Scholar 

  • Zettler LW, Hofer CJ (1998) Propagation of the little club-spur orchid (Platanthera clavellata) by symbiotic seed germination and its ecological implications. Environ Exp Bot 39:189–195

    Article  Google Scholar 

  • Zettler LW, Perlman S, Dennis DJ, Hopkins SE, Poulter SB (2005) Symbiotic germination of the federally endangered Hawaiian endemic, Platanthera holochila (Orchidaceae) using a mycobiont from Florida: a conservation dilemma. Selbyana 26:269–276

    Google Scholar 

  • Zettler LW, Poulter SB, McDonald KI, Stewart L (2007) Conservation-driven propagation of an epiphytic orchid (Epidendrum nocturnum) with a mycorrhizal fungus. HortScience 42:135–139

    Google Scholar 

  • Zettler WW, Corey AL, Jacks AL, Gruender LT, Lopez AM (2013) Tulasnella irregularis (Basidiomycota: Tulasnellaceae) from roots of Encyclia tampensis in South Florida, and confirmation of its mycorrhizal significance through symbiotic seed germination. Lankesteriana 13:119–128

    Google Scholar 

  • Zhang F-S, Lv Y-L, Zhao Y, Guo S-X (2013) Promoting role of an endophyte on the growth and contents of kinsenosides and flavonoids of Anoectochilus formosanus Hayata, a rare and threatened medicinal orchidaceae plant. J Zheijang Univ Sci B 14:785–792

    Article  CAS  Google Scholar 

  • Zhao X, Zhang J, Chen C, Yang J, Zhu H, Liu M, Lv F (2014a) Deep-sequencing-based comparative transcriptional profiles of Cymbidium hybridum roots in response to mycorrhizal and non-mycorrhizal beneficial fungi. BMC Genomics 15:747

    Google Scholar 

  • Zhao X-L, Yang J-Z, Liu S, Chen C-L, Zhu H-Y, Cao J-X (2014b) The colonization patterns of different fungi on roots of Cymbidium hybridum plantlets and their respective inoculation effects on growth and nutrient uptake of orchid plantlets. World J Microbiol Biotechnol 30:1993–2003

    Article  CAS  PubMed  Google Scholar 

  • Zhou X, Gao JY (2016) Highly compatible Epa-01 strain promotes seed germination and protocorm development of Papilionanthe teres (Orchidaceae). Plant Cell Tissue Organ Cult 125:479–493

    Article  CAS  Google Scholar 

  • Zi X-M, Sheng C-L, Goodale UM, Shao S-C, Gao J-Y (2014) In situ seed baiting to isolate germination-enhancing fungi for an epiphytic orchid, Dendrobium aphyllum (Orchidaceae). Mycorrhiza 24:487–499

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Leho Tedersoo for the invitation to contribute to the book on Biogeography of Mycorrhizae, Roland Kirschner and two anonymous reviewers for critical comments. Gratefully acknowledged are the copyright permissions for Fig. 12.1 (Staatliches Museum für Naturkunde Karlsruhe), and Fig. 12.2 (J. Cramer in Gebr. Borntraeger Verlagsbuchhandlung, Stuttgart).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Franz Oberwinkler .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Oberwinkler, F., Cruz, D., Suárez, J.P. (2017). Biogeography and Ecology of Tulasnellaceae. In: Tedersoo, L. (eds) Biogeography of Mycorrhizal Symbiosis. Ecological Studies, vol 230. Springer, Cham. https://doi.org/10.1007/978-3-319-56363-3_12

Download citation

Publish with us

Policies and ethics