Skip to main content

On the Computational Modeling of Lipid Bilayers Using Thin-Shell Theory

  • Chapter
  • First Online:
Book cover The Role of Mechanics in the Study of Lipid Bilayers

Part of the book series: CISM International Centre for Mechanical Sciences ((CISM,volume 577))

Abstract

This chapter discusses the computational modeling of lipid bilayers based on the nonlinear theory of thin shells. Several computational challenges are identified and various theoretical and computational ingredients are proposed in order to counter them. In particular, \(C^1\)-continuous, NURBS-based, LBB-conforming surface finite element discretizations are discussed. The constitutive behavior of the bilayer is based on in-plane viscosity and (near) area-incompressibility combined with the Helfrich bending model. Various shear stabilization techniques are proposed for quasi-static computations. All ingredients are formulated in the curvilinear coordinate system characterizing general surface parameterizations. The consistent linearization of the formulation is presented, and several numerical examples are shown.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Note that \(\det [c^{\alpha }_\beta ]=\det [c^\alpha _{~\beta }]=\det [c^{~\alpha }_\beta ]\) even if \(c^\alpha _{~\beta }\ne c^{~\alpha }_\beta \).

  2. 2.

    For an extension to changing mass, e.g., due to protein binding, see Sahu et al. (2017).

  3. 3.

    Per current length of the cut face.

  4. 4.

    Since \(\sigma ^{\alpha \beta }_\mathrm {visc}\,\dot{a}_{\alpha \beta }=4\eta \,\varvec{d}:\varvec{d}=4\eta \Vert \varvec{d}\Vert ^2>0\) due to (65) and (66).

  5. 5.

    Strictly, \(G^1\)-continuity (i.e., continuity in \({\varvec{n}}\) but not necessary in \({\varvec{a}}_\alpha \)) is sufficient.

  6. 6.

    Named after Ladyzhenskaya, Babuška, and Brezzi.

  7. 7.

    Assuming that the tube is sufficiently long and can be idealized by a perfect cylinder.

  8. 8.

    The shear stresses are now physical and need to be applied both in-plane and out-of-plane.

References

  • A. Agrawal, D. Steigmann, Modeling protein-mediated morphology in biomembranes. Biomech. Model. Mechanobiol. 8(5), 371–379 (2009)

    Article  Google Scholar 

  • M. Arroyo, A. DeSimone, Relaxation dynamics of fluid membranes. Phys. Rev. E 79, 031915 (2009)

    Article  MathSciNet  Google Scholar 

  • I. Babuška, The finite element method with Lagrangian multipliers. Num. Math. 20, 179–192 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  • E. Baesu, R.E. Rudd, J. Belak, M. McElfresh, Continuum modeling of cell membranes. Int. J. Non-lin. Mech. 39, 369–377 (2004)

    Article  MATH  Google Scholar 

  • K.-J. Bathe, Finite Element Procedures (Prentice-Hall, New Jersey, 1996)

    MATH  Google Scholar 

  • K.-J. Bathe, The inf-sup condition and its evaluation for mixed finite element methods. Comput. Struct. 79, 243–252 (2001)

    Article  MathSciNet  Google Scholar 

  • D.J. Benson, Y. Bazilevs, M.-C. Hsu, T.J.R. Hughes, A large deformation, rotation-free, isogeometric shell. Comput. Methods Appl. Mech. Engrg. 200(13–16), 1367–1378 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  • M.J. Borden, M.A. Scott, J.A. Evans, T.J.R. Hughes, Isogeometric finite element data structures based on Bezier extraction of NURBS. Int. J. Numer. Meth. Engng. 87, 15–47 (2011)

    Article  MATH  Google Scholar 

  • P.B. Canham, The minimum energy of bending as a possible explanation of the biconcave shape of the human red blood cell. J. Theoret. Biol. 26, 61–81 (1970)

    Article  Google Scholar 

  • F. Cirak, M. Ortiz, Fully C\(^1\)-conforming subdivision elements for finite element-deformation thin-shell analysis. Int. J. Numer. Meth. Engng 51, 813–833 (2001)

    Article  MATH  Google Scholar 

  • B.D. Coleman, W. Noll, The thermodynamics of elastic materials with heat conduction and viscosity. Arch. Ration. Mech. Anal. 13, 167–178 (1964)

    Article  MathSciNet  MATH  Google Scholar 

  • C.J. Corbett, Isogeometric Finite Element Enrichment for Problems Dominated by Surface Effects. Ph.D. thesis, RWTH Aachen University, Aachen, Germany (2016)

    Google Scholar 

  • J.A. Cottrell, T.J.R. Hughes, Y. Bazilevs, Isogeometric Analysis (Wiley, Chichester, 2009)

    Book  MATH  Google Scholar 

  • D. Cuvelier, I. Derényi, P. Bassereau, P. Nassoy, Coalescence of membrane tethers: experiments, theory, and applications. Biophys. J. 88, 2714–2726 (2005)

    Article  Google Scholar 

  • M. Dao, C.T. Lim, S. Suresh, Mechanics of the human red blood cell deformed by optical tweezers. J. Mech. Phys. Solids 51, 2259–2280 (2003)

    Article  Google Scholar 

  • I. Derényi, F. Jülicher, J. Prost, Formation and interaction of membrane tubes. Phy. Rev. Lett. 88(23), 238101 (2002)

    Article  Google Scholar 

  • Q. Du, X.Q. Wang, Convergence of numerical approximations to a phase field bending elasticity model of membrane deformations. Int. J. Numer. Anal. Model. 4(3–4), 441–459 (2007)

    MathSciNet  MATH  Google Scholar 

  • N.T. Dung, G.N. Wells, Geometrically nonlinear formulation for thin shells without rotation degrees of freedom. Comput. Methods Appl. Mech. Engrg. 197, 2778–2788 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  • T.X. Duong, F. Roohbakhshan, R.A. Sauer, A new rotation-free isogeometric thin shell formulation and a corresponding continuity constraint for patch boundaries. Comput. Methods Appl. Mech. Engrg. 316, 43–83 (2017)

    Article  MathSciNet  Google Scholar 

  • C.M. Elliott, B. Stinner, Modeling and computation of two phase geometric biomembranes using surface finite elements. J. Comp. Phys. 229(18), 6585–6612 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  • F. Feng, W.S. Klug, Finite element modeling of lipid bilayer membranes. J. Comput. Phys. 220, 394–408 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  • F.G. Flores, C.F. Estrada, A rotation-free thin shell quadrilateral. Comput. Methods Appl. Mech. Engrg. 196(25–28), 2631–2646 (2007)

    Article  MATH  Google Scholar 

  • R. Gu, X. Wang, M. Gunzburger, Simulating vesicle-substrate adhesion using two phase field functions. J. Comput. Phys. 275, 626–641 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  • W. Helfrich, Elastic properties of lipid bilayers: theory and possible experiments. Z. Naturforsch. 28c, 693–703 (1973)

    Google Scholar 

  • T.J.R. Hughes, J.A. Cottrell, Y. Bazilevs, Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement. Comput. Methods Appl. Mech. Engrg. 194, 4135–4195 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  • M. Jarić, U. Seifert, W. Wirtz, M. Wortis, Vesicular instabilities: The prolate-to-oblate transition and other shape instabilities of fluid bilayer membranes. Phys. Rev. E 52(6), 6623–6634 (1995)

    Article  Google Scholar 

  • J.T. Jenkins, The equations of mechanical equilibrium of a model membrane. SIAM J. Appl. Math. 32(4), 755–764 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  • Y. Jie, L. Quanhui, L. Jixing, O.-Y. Zhong-Can, Numerical observation of nonaxisymmetric vesicles in fluid membranes. Phys. Rev. E 58(4), 4730–4736 (1998)

    Article  Google Scholar 

  • K.A. Johannessen, T. Kvamsdal, T. Dokken, Isogeometric analysis using LRB-splines. Comput. Methods Appl. Mech. Engng. 269, 471–514 (2014)

    Article  MATH  Google Scholar 

  • O. Kahraman, N. Stoop, M.M. Müller, Fluid membrane vesicles in confinement. New J. Phys. 14, 095021 (2012)

    Article  Google Scholar 

  • J. Kiendl, K.-U. Bletzinger, J. Linhard, R. Wüchner, Isogeometric shell analysis with Kirchhoff-Love elements. Comput. Methods Appl. Mech. Engrg. 198, 3902–3914 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  • J. Kiendl, Y. Bazilevs, M.-C. Hsu, R. Wüchner, K.-U. Bletzinger, The bending strip method for isogeometric analysis of Kirchhoff-Love shell structures comprised of multiple patches. Comput. Methods Appl. Mech. Engrg. 199(37–40), 2403–2416 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  • J. Kiendl, M.-C. Hsu, M.C. Wu, A. Reali, Isogeometric Kirchhoff-Love shell formulations for general hyperelastic materials. Comput. Methods Appl. Mech. Engrg. 291, 280–303 (2015)

    Article  MathSciNet  Google Scholar 

  • T. Kloeppel, W.A. Wall, A novel two-layer, coupled finite element approach for modeling the nonlinear elastic and viscoelastic behavior of human erythrocytes. Biomech. Model. Mechanobiol. 10(4), 445–459 (2011)

    Article  Google Scholar 

  • M.M. Kozlov, F. Campelo, N. Liska, L.V. Chernomordik, S.J. Marrink, H.T. McMahon, Mechanisms shaping cell membranes. Curr. Opin. Cell Biol. 29, 53–60 (2014)

    Article  Google Scholar 

  • C. Lau, W.E. Brownell, A.A. Spector, Internal forces, tension and energy density in tethered cellular membranes. J. Biomech. 45(7), 1328–1331 (2012)

    Article  Google Scholar 

  • H. Li, G. Lykotrafitis, Two-component coarse-grained molecular-dynamics model for the human erythrocyte membrane. Biophys. J. 102(1), 75–84 (2012)

    Article  Google Scholar 

  • A. Libai, J.G. Simmonds, The Nonlinear Theory of Elastic Shells, 2nd edn. (Cambridge University Press, Cambridge, 1998)

    Book  MATH  Google Scholar 

  • J. Linhard, R. Wüchner, K.-U. Bletzinger, “Upgrading” membranes to shells - The CEG rotation free element and its application in structural anaylsis. Finite Elem. Anal. Des. 44(1–2), 63–74 (2007)

    Google Scholar 

  • R. Lipowsky, Spontaneous tabulation of membranes and vesicles reveals membrane tension generated by spontaneous curvature. Faraday Discuss. 161, 305–331 (2013)

    Article  Google Scholar 

  • T.V. Loc, T.H. Chien, N.X. Hung, On two-field nurbs-based isogeometric formulation for incompressible media problems. Vietnam J. Mech. 35, 225–237 (2013)

    Article  Google Scholar 

  • L. Ma, W.S. Klug, Viscous regularization and r-adaptive meshing for finite element analysis of lipid membrane mechanics. J. Comput. Phys. 227, 5816–5835 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  • H.T. McMahon, J.L. Gallop, Membrane curvature and mechanisms of dynamic cell membrane remodelling. Nature 438(7068), 590–596 (2005)

    Article  Google Scholar 

  • P.M. Naghdi, Finite deformation of elastic rods and shells, in Proceedings of the IUTAM Symposium on Finite Elasticity, ed. by D.E. Carlson, R.T. Shields (Martinus Nijhoff Publishers, The Hague, 1982), pp. 47–103

    Google Scholar 

  • N. Nguyen-Thanh, J. Kiendl, H. Nguyen-Xuan, R. Wüchner, K.-U. Bletzinger, Y. Bazilevs, T. Rabczuk, Rotation free isogeometric thin shell analysis using pht-splines. Comput. Methods Appl. Mech. Engrg. 200(47–48), 3410–3424 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  • Z. Peng, R.J. Asaro, Q. Zhu, Multiscale simulation of erythrocyte membranes. Phys. Rev. E 81, 031904 (2010)

    Article  Google Scholar 

  • W. Pietraszkiewicz, Geometrically nonlinear theories of thin elastic shells. Adv. Mech. 12(1), 51–130 (1989)

    MathSciNet  Google Scholar 

  • M. Rahimi, M. Arroyo, Shape dynamics, lipid hydrodynamics, and the complex viscoelasticity of bilayer membranes. Phys. Rev. E 86, 011932 (2012)

    Article  Google Scholar 

  • N. Ramakrishnan, P.B.S. Kumar, J.H. Ipsen, Monte carlo simulations of fluid vesicles with in-plane orientational ordering. Phys. Rev. E 81, 041922 (2010)

    Article  Google Scholar 

  • P. Rangamani, A. Agrawal, K.K. Mandadapu, G. Oster, D.J. Steigmann, Interaction between surface shape and intra-surface viscous flow on lipid membranes. Biomech. Model. Mechanobiol. 12(4), 833–845 (2013)

    Article  Google Scholar 

  • P. Rangamani, K.K. Mandadapu, G. Oster, Protein-induced membrane curvature alters local membrane tension. Biophys. J. 107(3), 751–762 (2014)

    Article  Google Scholar 

  • R. Rangarajan, H. Gao, A finite element method to compute three-dimensional equilibrium configurations of fluid membranes: Optimal parameterization, variational formulation and applications. J. Comput. Phys. 297, 266–294 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  • J.E. Rim, P.K. Purohit, W.S. Klug, Mechanical collapse of confined fluid membrane vesicles. Biomech. Model. Mechanobio. 13(6), 1277–1288 (2014)

    Article  Google Scholar 

  • A. Rosolen, C. Peco, M. Arroyo, An adaptive meshfree method for phase-field models of biomembranes. Part I: approximation with maximum-entropy basis functions. J. Comput. Phys. 249, 303–319 (2013)

    Google Scholar 

  • A. Sahu, R.A. Sauer, K.K. Mandadapu, The irreversible thermodynamics of curved lipid membranes (2017), arXiv:1701.06495

  • D. Salac, M. Miksis, A level set projection model of lipid vesicles in general flows. J. Comput. Phys. 230(22), 8192–8215 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  • R.A. Sauer, Stabilized finite element formulations for liquid membranes and their application to droplet contact. Int. J. Numer. Meth. Fluids 75(7), 519–545 (2014)

    Article  MathSciNet  Google Scholar 

  • R.A. Sauer, L. De Lorenzis, A computational contact formulation based on surface potentials. Comput. Methods Appl. Mech. Engrg. 253, 369–395 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  • R.A. Sauer, L. De Lorenzis, An unbiased computational contact formulation for 3D friction. Int. J. Numer. Meth. Engrg. 101(4), 251–280 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  • R.A. Sauer, T.X. Duong, On the theoretical foundations of solid and liquid shells. Math. Mech. Solids. 22(3), 343–371 (2017)

    Article  Google Scholar 

  • R.A. Sauer, T.X. Duong, C.J. Corbett, A computational formulation for constrained solid and liquid membranes considering isogeometric finite elements. Comput. Methods Appl. Mech. Engrg. 271, 48–68 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  • R.A. Sauer, T.X. Duong, K.K. Mandadapu, D.J. Steigmann, A stabilized finite element formulation for liquid shells and its application to lipid bilayers. J. Comput. Phys. 330, 436–466 (2017)

    Article  MathSciNet  Google Scholar 

  • M.A. Scott, M.J. Borden, C.V. Verhoosel, T.W. Sederberg, T.J.R. Hughes, Isogeometric finite element data structures based on Bézier extraction of T-splines. Int. J. Numer. Meth. Engng. 88(2), 126–156 (2011)

    Article  MATH  Google Scholar 

  • Z. Shi, T. Baumgart, Membrane tension and peripheral protein density mediate membrane shape transitions. Nat. commun. 6, 5974 (2015)

    Article  Google Scholar 

  • D. Steigmann, E. Baesu, R.E. Rudd, J. Belak, M. McElfresh, On the variational theory of cell-membrane equilibria. Interfaces Free Bound. 5, 357–366 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  • D.J. Steigmann, Fluid films with curvature elasticity. Arch. Rat. Mech. Anal. 150, 127–152 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  • I.V. Tasso, G.C. Buscaglia, A finite element method for viscous membranes. Comput. Methods Appl. Mech. Engrg. 255, 226–237 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  • N. Walani, J. Torres, A. Agrawal, Endocytic proteins drive vesicle growth via instability in high membrane tension environment. Proc. Natl. Acad. Sci. 112(12), E1423–E1432 (2015)

    Google Scholar 

  • J. Zimmerberg, M.M. Kozlov, How proteins produce cellular membrane curvature. Nat. Rev. Mol. Cell Biol. 7(1), 9–19 (2006)

    Article  Google Scholar 

  • C. Zimmermann, R.A. Sauer, Adaptive local surface refinement based on LR-NURBS and its application to contact (2017), arXiv:1701.08742

Download references

Acknowledgements

The author is grateful to the German Research Foundation (DFG) for supporting this research under grants GSC 111 and SA1822/5-1. The author also wishes to thank Kranthi Mandadapu, Thang Duong, and Amaresh Sahu for their valuable comments, and Yannick Omar for his help with the example in Sect. 13.3. Special thanks also go to David Steigmann for organizing the CISM summer school that led to this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roger A. Sauer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 CISM International Centre for Mechanical Sciences

About this chapter

Cite this chapter

Sauer, R.A. (2018). On the Computational Modeling of Lipid Bilayers Using Thin-Shell Theory. In: Steigmann, D. (eds) The Role of Mechanics in the Study of Lipid Bilayers. CISM International Centre for Mechanical Sciences, vol 577. Springer, Cham. https://doi.org/10.1007/978-3-319-56348-0_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-56348-0_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-56347-3

  • Online ISBN: 978-3-319-56348-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics