Skip to main content

Lipid Membranes: From Self-assembly to Elasticity

  • Chapter
  • First Online:
The Role of Mechanics in the Study of Lipid Bilayers

Part of the book series: CISM International Centre for Mechanical Sciences ((CISM,volume 577))

Abstract

In aqueous solution, lipid molecules spontaneously assemble into macroscopic bilayer membranes, which have highly interesting mechanical properties. In this chapter, we first discuss some basic aspects of this self-assembly process. In the second part, we then revisit and slightly expand a well-known continuum-level theory that describes the elastic properties pertaining to membrane geometry and lipid tilt. We then illustrate in part three several conceptually different strategies for how one of the emerging elastic parameters—the bending modulus—can be obtained in computer simulations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Here we assume that a flat membrane is untilted—which is true for fluid phases, but not necessarily so for membranes in the gel phase.

  2. 2.

    During the workshop Jemal Guven pointed out that the additional required factor \(\cos \theta \) is the equivalent of what in a \(3+1\) foliation treatment of general relativity is called the “Lapse function” (Wheeler 1964).

  3. 3.

    Notice that if the monolayer leaflet were not fluid, a deformation that starts from a flat leaflet and ends up with one that has a non-vanishing Gaussian curvature cannot be isometric by virtue of the Theorema Egregium. Hence, this approach of writing the elastic energy by looking at the stretching away from a pivotal plane relies by construction on fluidity.

  4. 4.

    This is merely a consequence of the fact that the length \(\ell \), which pits curvature against tilt, is microscopic. On scales larger than \(\ell \), tilt therefore only enters as a minor correction to the overall bending physics of then problem.

  5. 5.

    Since \(T^2=T_p^2+T_q^2\), the tilt modulus along the edge (the q-direction) is just the prefactor of \(T^2\) in Eq. (124).

  6. 6.

    In simulations that can be achieved relatively easily by suitable boundary conditions.

  7. 7.

    Recall that we must measure the undulation spectrum \(\langle |\tilde{h}_{\varvec{q}}|^2\rangle \) over a sufficiently wide q-range to plausibly fit a spectrum, and that this spectrum decays rapidly with q.

  8. 8.

    Hu et al. (2013) discuss buckle fluctuations in a little bit more detail. They conclude that systematic fluctuation corrections exist, but that they are small for \(f_x\). They are not necessarily small for the force \(f_y\) acting along the buckle’s ridges, though.

  9. 9.

    One efficient construction method proceeds via the analytical expressions for position and angle of a buckle—Eqs. (139) and (140)—for mapping a flat membrane (leaflet-wise) into a buckled one. If a lipid’s center of mass in the flat configuration has coordinates \((x_0,y_0,z_0)\), map it to \((x(x_0),y_0,z(x_0))\) and rotate it around the y-axis by the angle \(\psi (x_0)\).

References

  • M. Abramowitz, I.A. Stegun, Handbook of Mathematical Functions (Dover, New York, 1970)

    MATH  Google Scholar 

  • O. Berger, O. Edholm, F. Jähnig, Molecular dynamics simulations of a fluid bilayer of dipalmitoylphosphatidylcholine at full hydration, constant pressure, and constant temperature. Biophys. J. 72(5), 2002–2013 (1997)

    Article  Google Scholar 

  • F. Campelo, C. Arnarez, S.J. Marrink, M.M. Kozlov, Helfrich model of membrane bending: From Gibbs theory of liquid interfaces to membranes as thick anisotropic elastic layers. Adv. Colloid Interface Sci. 208, 25–33 (2014)

    Article  Google Scholar 

  • R. Capovilla, J. Guven, Stresses in lipid membranes. J. Phys. A: Math. Gen. 35(30), 6233 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  • R. Capovilla, J. Guven, Stress and geometry of lipid vesicles. J. Phys.: Condens. Matt. 16(22), S2187 (2004)

    Google Scholar 

  • N. Chu, N. KuÄŤerka, Y. Liu, S. Tristram-Nagle, J.F. Nagle, Anomalous swelling of lipid bilayer stacks is caused by softening of the bending modulus. Phys. Rev. E 71(4), 041904 (2005)

    Article  Google Scholar 

  • I.R. Cooke, M. Deserno, Coupling between lipid shape and membrane curvature. Biophys. J. 91(2), 487–495 (2006)

    Article  Google Scholar 

  • I.R. Cooke, K. Kremer, M. Deserno, Tunable generic model for fluid bilayer membranes. Phys. Rev. E 72(1), 011506 (2005)

    Article  Google Scholar 

  • M. Deserno, Fluid lipid membranes: from differential geometry to curvature stresses. Chem. Phys. Lipids. 185, 11–45 (2015)

    Google Scholar 

  • P. Diggins, Z.A. McDargh, M. Deserno, Curvature softening and negative compressibility of gel-phase lipid membranes. J. Am. Chem. Soc. 137, 12752–12755 (2015)

    Article  Google Scholar 

  • R. Dimova, B. Pouligny, C. Dietrich, Pretransitional effects in dimyristoylphosphatidylcholine vesicle membranes: optical dynamometry study. Biophys. J. 79(1), 340–356 (2000)

    Article  Google Scholar 

  • M. do Carmo, Differential Geometry of Curves and Surfaces (Prentice Hall, Englewood Cliffs, 1976)

    MATH  Google Scholar 

  • A. Goebel, K. Lunkenheimer, Interfacial tension of the water/n-alkane interface. Langmuir 13(2), 369–372 (1997)

    Article  Google Scholar 

  • J. Guven, Membrane geometry with auxiliary variables and quadratic constraints. J. Phys. A: Math. Gen. 37(28), L313 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  • M. Hamm, M.M. Kozlov, Elastic energy of tilt and bending of fluid membranes. Eur. Phys. J. E 3(4), 323–335 (2000)

    Article  Google Scholar 

  • V.A. Harmandaris, M. Deserno, A novel method for measuring the bending rigidity of model lipid membranes by simulating tethers. J. Chem. Phys. 125(20), 204905 (2006)

    Article  Google Scholar 

  • W. Helfrich, The size of bilayer vesicles generated by sonication. Phys. Lett. A 50(2), 115–116 (1974)

    Article  Google Scholar 

  • M. Hu, P. Diggins, M. Deserno, Determining the bending modulus of a lipid membrane by simulating buckling. J. Chem. Phys. 138(21), 214110 (2013)

    Article  Google Scholar 

  • J.N. Israelachvili, D.J. Mitchell, B.W. Ninham, Theory of self-assembly of hydrocarbon amphiphiles into micelles and bilayers. J. Chem. Soc., Farad. Transact. 2: Mol. Chem. Phys. 72, 1525–1568 (1976)

    Article  Google Scholar 

  • R.A.L. Jones, Soft Condensed Matter (Oxford University Press, Oxford, 2002)

    Google Scholar 

  • E.E. Kooijman, V. Chupin, N.L. Fuller, M.M. Kozlov, B. de Kruijff, K.N.J. Burger, P.R. Rand, Spontaneous curvature of phosphatidic acid and lysophosphatidic acid. Biochemistry 44(6), 2097–2102 (2005)

    Article  Google Scholar 

  • D.I. Kopelevich, J.F. Nagle, Correlation between length and tilt of lipid tails. J. Chem. Phys. 143(15), 154702 (2015)

    Article  Google Scholar 

  • N. KuÄŤerka, S. Tristram-Nagle, J.F. Nagle, Structure of fully hydrated fluid phase lipid bilayers with monounsaturated chains. J. Mem. Biol. 208(3), 193–202 (2006)

    Article  Google Scholar 

  • L.D. Landau, E.M. Lifshitz, Theory of Elasticity, vol. 7, 3rd edn., Course of Theoretical Physics (Pergamon Press, Oxford, 1986)

    MATH  Google Scholar 

  • C.-H. Lee, W.-C. Lin, J. Wang, All-optical measurements of the bending rigidity of lipid-vesicle membranes across structural phase transitions. Phys. Rev. E 64, 020901 (2001)

    Article  Google Scholar 

  • E. Lindahl, O. Edholm, Mesoscopic undulations and thickness fluctuations in lipid bilayers from molecular dynamics simulations. Biophys. J. 79(1), 426–433 (2000)

    Article  Google Scholar 

  • S.J. Marrink, H.J. Risselada, S. Yefimov, D.P. Tieleman, A.H. De Vries, The MARTINI force field: coarse grained model for biomolecular simulations. J. Phys. Chem. B 111(27), 7812–7824 (2007)

    Article  Google Scholar 

  • J.F. Nagle, Theory of the main lipid bilayer phase transition. Ann. Rev. Phys. Chem. 31(1), 157–196 (1980)

    Article  Google Scholar 

  • H. Noguchi, Anisotropic surface tension of buckled fluid membranes. Phys. Rev. E 83(6), 061919 (2011)

    Article  Google Scholar 

  • O. Oshri, H. Diamant, Properties of compressible elastica from relativistic analogy. Soft Matter 12(3), 664–668 (2016)

    Article  Google Scholar 

  • T. Portet, R. Dimova, A new method for measuring edge tensions and stability of lipid bilayers: effect of membrane composition. Biophys. J. 99(10), 3264–3273 (2010)

    Article  Google Scholar 

  • J.N. Reddy, Theory and Analysis of Elastic Plates and Shells (CRC, London, 2006)

    Google Scholar 

  • J.S. Rowlinson, B. Widom, Molecular Theory of Capillarity (Dover, New York, 2002)

    Google Scholar 

  • S. Steltenkamp, M.M. MĂĽller, M. Deserno, C. Hennesthal, C. Steinem, A. Janshoff, Mechanical properties of pore-spanning lipid bilayers probed by atomic force microscopy. Biophys. J. 91(1), 217–226 (2006)

    Article  Google Scholar 

  • N.J. Turro, A. Yekta, Luminescent probes for detergent solutions. a simple procedure for determination of the mean aggregation number of micelles. J. Am. Chem. Soc. 100(18), 5951–5952 (1978)

    Article  Google Scholar 

  • R.M. Venable, F.L.H. Brown, R.W. Pastor, Mechanical properties of lipid bilayers from molecular dynamics simulation. Chem. Phys. Lipids 192, 60–74 (2015)

    Article  Google Scholar 

  • X. Wang, M. Deserno, Determining the pivotal plane of fluid lipid membranes in simulations. J. Chem. Phys. 143(16), 164109 (2015)

    Article  Google Scholar 

  • X. Wang, M. Deserno, Determining the lipid tilt modulus by simulating membrane buckles. J. Phys. Chem. B 120(26), 6061–6073 (2016)

    Google Scholar 

  • M.C. Watson, E.G. Brandt, P.M. Welch, F.L.H. Brown, Determining biomembrane bending rigidities from simulations of modest size. Phys. Rev. Lett. 109(2), 028102 (2012)

    Article  Google Scholar 

  • J.A. Wheeler, Geometrodynamics and the Issue of the Final State, in Relativity, Groups and Topology, ed. by C. DeWitt, B.S. DeWitt (Gordon and Breach, New York, 1964), p. 316

    Google Scholar 

  • T.A. Witten, P.A. Pincus, Structured Fluids: Polymers, Colloids, Surfactants (Oxford University Press, Oxford, 2004)

    Google Scholar 

Download references

Acknowledgements

Many people have contributed in numerous ways to the results presented in this chapter. We would especially like to acknowledge Luca Deseri, Patrick Diggins IV, Jemal Guven, Mingyang Hu, Zach McDargh, and Pablo Vázquez-Montejo. MD would also like to thank David Steigmann for putting together this exciting summer school. Financial support from the National Science Foundation via the grants CMMI-0941690 and CHE-1464926 is also gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Markus Deserno .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 CISM International Centre for Mechanical Sciences

About this chapter

Cite this chapter

Terzi, M.M., Deserno, M. (2018). Lipid Membranes: From Self-assembly to Elasticity. In: Steigmann, D. (eds) The Role of Mechanics in the Study of Lipid Bilayers. CISM International Centre for Mechanical Sciences, vol 577. Springer, Cham. https://doi.org/10.1007/978-3-319-56348-0_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-56348-0_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-56347-3

  • Online ISBN: 978-3-319-56348-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics