Advertisement

Lipid Membranes: From Self-assembly to Elasticity

  • M. Mert Terzi
  • Markus DesernoEmail author
Chapter
Part of the CISM International Centre for Mechanical Sciences book series (CISM, volume 577)

Abstract

In aqueous solution, lipid molecules spontaneously assemble into macroscopic bilayer membranes, which have highly interesting mechanical properties. In this chapter, we first discuss some basic aspects of this self-assembly process. In the second part, we then revisit and slightly expand a well-known continuum-level theory that describes the elastic properties pertaining to membrane geometry and lipid tilt. We then illustrate in part three several conceptually different strategies for how one of the emerging elastic parameters—the bending modulus—can be obtained in computer simulations.

Keywords

Area Element Spherical Micelle Spontaneous Curvature Cylindrical Micelle Surface Energy Density 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

Many people have contributed in numerous ways to the results presented in this chapter. We would especially like to acknowledge Luca Deseri, Patrick Diggins IV, Jemal Guven, Mingyang Hu, Zach McDargh, and Pablo Vázquez-Montejo. MD would also like to thank David Steigmann for putting together this exciting summer school. Financial support from the National Science Foundation via the grants CMMI-0941690 and CHE-1464926 is also gratefully acknowledged.

References

  1. M. Abramowitz, I.A. Stegun, Handbook of Mathematical Functions (Dover, New York, 1970)zbMATHGoogle Scholar
  2. O. Berger, O. Edholm, F. Jähnig, Molecular dynamics simulations of a fluid bilayer of dipalmitoylphosphatidylcholine at full hydration, constant pressure, and constant temperature. Biophys. J. 72(5), 2002–2013 (1997)CrossRefGoogle Scholar
  3. F. Campelo, C. Arnarez, S.J. Marrink, M.M. Kozlov, Helfrich model of membrane bending: From Gibbs theory of liquid interfaces to membranes as thick anisotropic elastic layers. Adv. Colloid Interface Sci. 208, 25–33 (2014)CrossRefGoogle Scholar
  4. R. Capovilla, J. Guven, Stresses in lipid membranes. J. Phys. A: Math. Gen. 35(30), 6233 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  5. R. Capovilla, J. Guven, Stress and geometry of lipid vesicles. J. Phys.: Condens. Matt. 16(22), S2187 (2004)Google Scholar
  6. N. Chu, N. Kučerka, Y. Liu, S. Tristram-Nagle, J.F. Nagle, Anomalous swelling of lipid bilayer stacks is caused by softening of the bending modulus. Phys. Rev. E 71(4), 041904 (2005)CrossRefGoogle Scholar
  7. I.R. Cooke, M. Deserno, Coupling between lipid shape and membrane curvature. Biophys. J. 91(2), 487–495 (2006)CrossRefGoogle Scholar
  8. I.R. Cooke, K. Kremer, M. Deserno, Tunable generic model for fluid bilayer membranes. Phys. Rev. E 72(1), 011506 (2005)CrossRefGoogle Scholar
  9. M. Deserno, Fluid lipid membranes: from differential geometry to curvature stresses. Chem. Phys. Lipids. 185, 11–45 (2015)Google Scholar
  10. P. Diggins, Z.A. McDargh, M. Deserno, Curvature softening and negative compressibility of gel-phase lipid membranes. J. Am. Chem. Soc. 137, 12752–12755 (2015)CrossRefGoogle Scholar
  11. R. Dimova, B. Pouligny, C. Dietrich, Pretransitional effects in dimyristoylphosphatidylcholine vesicle membranes: optical dynamometry study. Biophys. J. 79(1), 340–356 (2000)CrossRefGoogle Scholar
  12. M. do Carmo, Differential Geometry of Curves and Surfaces (Prentice Hall, Englewood Cliffs, 1976)zbMATHGoogle Scholar
  13. A. Goebel, K. Lunkenheimer, Interfacial tension of the water/n-alkane interface. Langmuir 13(2), 369–372 (1997)CrossRefGoogle Scholar
  14. J. Guven, Membrane geometry with auxiliary variables and quadratic constraints. J. Phys. A: Math. Gen. 37(28), L313 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  15. M. Hamm, M.M. Kozlov, Elastic energy of tilt and bending of fluid membranes. Eur. Phys. J. E 3(4), 323–335 (2000)CrossRefGoogle Scholar
  16. V.A. Harmandaris, M. Deserno, A novel method for measuring the bending rigidity of model lipid membranes by simulating tethers. J. Chem. Phys. 125(20), 204905 (2006)CrossRefGoogle Scholar
  17. W. Helfrich, The size of bilayer vesicles generated by sonication. Phys. Lett. A 50(2), 115–116 (1974)CrossRefGoogle Scholar
  18. M. Hu, P. Diggins, M. Deserno, Determining the bending modulus of a lipid membrane by simulating buckling. J. Chem. Phys. 138(21), 214110 (2013)CrossRefGoogle Scholar
  19. J.N. Israelachvili, D.J. Mitchell, B.W. Ninham, Theory of self-assembly of hydrocarbon amphiphiles into micelles and bilayers. J. Chem. Soc., Farad. Transact. 2: Mol. Chem. Phys. 72, 1525–1568 (1976)CrossRefGoogle Scholar
  20. R.A.L. Jones, Soft Condensed Matter (Oxford University Press, Oxford, 2002)Google Scholar
  21. E.E. Kooijman, V. Chupin, N.L. Fuller, M.M. Kozlov, B. de Kruijff, K.N.J. Burger, P.R. Rand, Spontaneous curvature of phosphatidic acid and lysophosphatidic acid. Biochemistry 44(6), 2097–2102 (2005)CrossRefGoogle Scholar
  22. D.I. Kopelevich, J.F. Nagle, Correlation between length and tilt of lipid tails. J. Chem. Phys. 143(15), 154702 (2015)CrossRefGoogle Scholar
  23. N. Kučerka, S. Tristram-Nagle, J.F. Nagle, Structure of fully hydrated fluid phase lipid bilayers with monounsaturated chains. J. Mem. Biol. 208(3), 193–202 (2006)CrossRefGoogle Scholar
  24. L.D. Landau, E.M. Lifshitz, Theory of Elasticity, vol. 7, 3rd edn., Course of Theoretical Physics (Pergamon Press, Oxford, 1986)zbMATHGoogle Scholar
  25. C.-H. Lee, W.-C. Lin, J. Wang, All-optical measurements of the bending rigidity of lipid-vesicle membranes across structural phase transitions. Phys. Rev. E 64, 020901 (2001)CrossRefGoogle Scholar
  26. E. Lindahl, O. Edholm, Mesoscopic undulations and thickness fluctuations in lipid bilayers from molecular dynamics simulations. Biophys. J. 79(1), 426–433 (2000)CrossRefGoogle Scholar
  27. S.J. Marrink, H.J. Risselada, S. Yefimov, D.P. Tieleman, A.H. De Vries, The MARTINI force field: coarse grained model for biomolecular simulations. J. Phys. Chem. B 111(27), 7812–7824 (2007)CrossRefGoogle Scholar
  28. J.F. Nagle, Theory of the main lipid bilayer phase transition. Ann. Rev. Phys. Chem. 31(1), 157–196 (1980)CrossRefGoogle Scholar
  29. H. Noguchi, Anisotropic surface tension of buckled fluid membranes. Phys. Rev. E 83(6), 061919 (2011)CrossRefGoogle Scholar
  30. O. Oshri, H. Diamant, Properties of compressible elastica from relativistic analogy. Soft Matter 12(3), 664–668 (2016)CrossRefGoogle Scholar
  31. T. Portet, R. Dimova, A new method for measuring edge tensions and stability of lipid bilayers: effect of membrane composition. Biophys. J. 99(10), 3264–3273 (2010)CrossRefGoogle Scholar
  32. J.N. Reddy, Theory and Analysis of Elastic Plates and Shells (CRC, London, 2006)Google Scholar
  33. J.S. Rowlinson, B. Widom, Molecular Theory of Capillarity (Dover, New York, 2002)Google Scholar
  34. S. Steltenkamp, M.M. Müller, M. Deserno, C. Hennesthal, C. Steinem, A. Janshoff, Mechanical properties of pore-spanning lipid bilayers probed by atomic force microscopy. Biophys. J. 91(1), 217–226 (2006)CrossRefGoogle Scholar
  35. N.J. Turro, A. Yekta, Luminescent probes for detergent solutions. a simple procedure for determination of the mean aggregation number of micelles. J. Am. Chem. Soc. 100(18), 5951–5952 (1978)CrossRefGoogle Scholar
  36. R.M. Venable, F.L.H. Brown, R.W. Pastor, Mechanical properties of lipid bilayers from molecular dynamics simulation. Chem. Phys. Lipids 192, 60–74 (2015)CrossRefGoogle Scholar
  37. X. Wang, M. Deserno, Determining the pivotal plane of fluid lipid membranes in simulations. J. Chem. Phys. 143(16), 164109 (2015)CrossRefGoogle Scholar
  38. X. Wang, M. Deserno, Determining the lipid tilt modulus by simulating membrane buckles. J. Phys. Chem. B 120(26), 6061–6073 (2016)Google Scholar
  39. M.C. Watson, E.G. Brandt, P.M. Welch, F.L.H. Brown, Determining biomembrane bending rigidities from simulations of modest size. Phys. Rev. Lett. 109(2), 028102 (2012)CrossRefGoogle Scholar
  40. J.A. Wheeler, Geometrodynamics and the Issue of the Final State, in Relativity, Groups and Topology, ed. by C. DeWitt, B.S. DeWitt (Gordon and Breach, New York, 1964), p. 316Google Scholar
  41. T.A. Witten, P.A. Pincus, Structured Fluids: Polymers, Colloids, Surfactants (Oxford University Press, Oxford, 2004)Google Scholar

Copyright information

© CISM International Centre for Mechanical Sciences 2018

Authors and Affiliations

  1. 1.Department of PhysicsCarnegie Mellon UniversityPittsburghUSA

Personalised recommendations