Skip to main content

Product Lifecycle Management Challenges of CPPS

  • Chapter
  • First Online:

Abstract

In the chapter Product Lifecycle Management (PLM) Challenges of CPPS, data and information management issues arising from the advanced use of modern product development and engineering methods are addressed. These advanced methods are required for engineering processes of smart systems and individualized products with high complexity and variability. Emphasis is put on challenges of the life-cycle oriented information integration of products and the respective Cyber-Physical Production Systems (CPPS). Furthermore, the chapter addresses data and information management problems coming from integration of the use and operation phase of products and systems in terms of forward and backward information flows.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    The term “product” is used synonymously for any kind of consumer product, machine or technical system in general, which requires a development and engineering process.

References

  • Ashton, K.: That ‘internet of things’ thing. RFiD J. 22, 97–114. http://www.rfidjournal.com/articles/view?4986 (2009). Retrieved 25 Jul 2016

  • Ben Khedher, A., Henry, S., Bouras, A.: Integration between MES and product lifecycle management. In IEEE International Conference on Emerging Technologies and Factory Automation (ETFA’11), pp. 8–13. Toulouse, 2011

    Google Scholar 

  • Chandrasegaran, S.K., Ramani, K., Sriram, R.D., Horvath, L., Bernard, A., Harik, R.F., Gao, W.: The evolution, challenges, and future of knowledge representation in product design systems. Comput. Aided Des. 2013, 204–228 (2013)

    Google Scholar 

  • Charaf, K., Ding, H.: Is overall equipment effectiveness (OEE) universally applicable? The case of Saint-Gobain. Int. J. Econ. Fin. 7(2), 241–252 (2015)

    Google Scholar 

  • Cheng, B.H.C., Atlee, J.M.: Research directions in requirements engineering. In: Proceedings of Future of Software Engineering, pp. 285–303. IEEE Computer Society, Washington (2007)

    Google Scholar 

  • Gerhard, D.: The role of semantic technologies in future PLM. In: Fathi, M. (ed.) Integration of Practice-Oriented Knowledge Technology: Trends and Prospectives, pp. 157–170. Springer, Berlin (2012)

    Google Scholar 

  • Gerhard, D., Lutz, C.: Rechnerunterstütztes Konfigurieren und Auslegen kundenindividueller Produkte. ZWF Z. wirtschaftlichen Fabrikbetrieb. 3, 103–104 (2011)

    Google Scholar 

  • Gerhard, D., Weilguny, L.: Applied feature technology – review of developing a generic solution facilitating data-consistency and enabling knowledge-based engineering. In: CIRP Design Conference 2008, Twente, NL, 2008

    Google Scholar 

  • Gill, H.: Cyber-physical systems – beyond ES, SNs, and SCADA. In: Presentation in the Trusted Computing in Embedded Systems (TCES) Workshop. http://repository.cmu.edu/cgi/viewcontent.cgi?article=1724&context=sei (2010). Retrieved 25 Jul 2016

  • Gröger, C., Mitschang, B., Niedermann, F.: Data mining-driven manufacturing process optimisation. In: Proceedings of the World Congress on Engineering, vol. III, pp. 1–7, 2012

    Google Scholar 

  • Gunes, V., et al.: A survey on concepts, applications, and challenges in cyber-physical systems. KSII Trans. Internet Inf. Syst. 8(12), (2014)

    Google Scholar 

  • IEC 62264-3: Enterprise-control system integration – Part 3: activity models of manufacturing operations management. Beuth, Berlin (2014)

    Google Scholar 

  • INCOSE: International council on systems engineering: systems engineering vision 2020 INCOSE-TP-2004-004-02 ver. 2.03. http://oldsite.incose.org/ProductsPubs/pdf/SEVision2020_20071003_v2_03.pdf (2007). Retrieved 25 Jul 2016

  • ISO 10303: Industrial Automation Systems and Integration – Product Data Representation and Exchange. International Organization for Standardization (ISO), Geneva (1994)

    Google Scholar 

  • ISO 14306: Industrial Automation Systems and Integration – JT File Format Specification for 3D Visualization. International Organization for Standardization (ISO), Geneva (2012)

    Google Scholar 

  • Laney, D.: 3-D data management: controlling data volume, velocity and variety. http://blogs.gartner.com/doug-laney/deja-vvvue-others-claiming-gartners-volume-velocity-variety-construct-for-big-data/ (2001). Retrieved 25 Jul 2016

  • Lee, J., Bagheri, B., Kao, H.A.: A cyber-physical systems architecture for Industry 4.0-based manufacturing systems. Elsevier Manuf. Lett. 3, 18–23 (2015)

    Article  Google Scholar 

  • Matthias, K., Kane, S.P.: Docker Up & Running, Shipping Reliable Containers in Production. O’Reilly Media, Sebastopol, CA (2015)

    Google Scholar 

  • Monostori, L.: Cyber -physical production systems: roots, expectations and R&D challenges. Variety management in manufacturing. Proceedings of the 47th CIRP Conference on Manufacturing Systems. Proc. CIRP. 17(2014), 9–13 (2014)

    Article  Google Scholar 

  • Mouat, A.: Using Docker, Developing and Deploying Software with Containers. O’Reilly Media, Sebastopol, CA (2015)

    Google Scholar 

  • Nakajima, S.: TPM tenkai, JIPM Tokyo. https://en.wikipedia.org/wiki/Seiichi_Nakajima (1982). Retrieved 25 Jul 2016

  • Nattermann, R., Anderl, R.: Approach for a data-management-system and a proceeding-model for the development of adaptronic systems. In: Proceedings for the ASME International Mechanical Engineering Congress & Exposition (IMECE), Vancouver, 2010

    Google Scholar 

  • Newman, S.: Building Microcervices, Designing Fine-Grained Systems, p. 18. O’Reilly Media, Sebastopol, CA (2015)

    Google Scholar 

  • OSLC4MBSE: Working Group. http://www.omgwiki.org/OMGSysML/doku.php?id=sysml-oslc:oslc4mbse_working_group (2013). Retrieved 25 Jul 2016

  • Ostad-Ahmad-Ghorabi, H., Rahmani, T., Gerhard, D.: Forecasting environmental profiles in the early stages of product development by using an ontological approach. In: Abramovici, M., Stark, R. (eds.) Smart Product Engineering, pp. 715–724. Springer, Berlin/Heidelberg (2013)

    Google Scholar 

  • PROSTEP: White Paper Datenmanagement für Smart Systems Engineering (Smart SE). ProSTEP iViP (2015)

    Google Scholar 

  • Quintana, V., Rivest, L., Pellerin, R., Venne, F., Kheddouci, F.: Will model-based definition replace engineering drawings throughout the product lifecycle? A global perspective from aerospace industry. Comput. Ind. 61(5), 497–508 (2010)

    Article  Google Scholar 

  • Schuh, G.: Produktionsplanung und -steuerung Grundlagen, Gestaltung und Konzepte, 3rd edn. Springer, Berlin (2006)

    Book  Google Scholar 

  • Seibold, Z., Furmanns, K.: Dezentrale Koordinationsmechanismen für Multifunktionalität und Wiederverwendbarkeit. In: Bauernhansl, et al. (eds.) Industrie 4.0 in Produktion, Automatisierung und Logistik, pp. 1–17. Springer, Berlin (2015)

    Google Scholar 

  • Sethi, A.K., Sethi, S.P.: Flexibility in manufacturing: a survey. Int. J. Flex. Manuf. Syst. 2, 289–328 (1990)

    Article  Google Scholar 

  • SYSML: The SysML specification, v 1.0. http://www.sysml.org (2007). Retrieved 25 Jul 2016

  • Tolio, T., Ceglarek, D., El Maraghy, H.A., Fischer, A., Hu, S.J., Laperrière, L., Newman, S.T., Váncza, J.: SPECIES – co-evolution of products, processes and production systems. CIRP Ann. Manuf. Technol. 59(2), 672–693 (2010)

    Article  Google Scholar 

  • Tuegel, E.J., Ingraffea, A.R., Eason, T.G., Spottswood, S.M.: Reengineering aircraft structural life prediction using a digital twin. Int. J. Aerospace Eng. 2011, Article ID 154798 (2011). http://dx.doi.org/10.1155/2011/154798. https://www.hindawi.com/journals/ijae/2011/154798/

  • VDI 2206: VDI-Guideline 2206 – design methodology for mechatronic systems. Beuth, Berlin (2004)

    Google Scholar 

  • VDI 2219: VDI-Guideline 2219 – information technology in product development – introduction and usage of PDM systems. Beuth, Berlin (2002)

    Google Scholar 

  • VDI 2221: VDI-Guideline 2221 – systematic approach to the development and design of technical systems and products. Beuth, Berlin (1993)

    Google Scholar 

  • VDI 5600: VDI-Guideline 5600 – manufacturing execution systems (MES). Beuth, Berlin (2007)

    Google Scholar 

  • Welp, E.G., Labenda, P., Bludau, C.: Usage of ontologies and software agents for knowledge-bases design of mechatronic systems. In: Proceedings of the 16th International Conference on Engineering Design (ICED 07), Paris, 2007

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Detlef Gerhard .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Gerhard, D. (2017). Product Lifecycle Management Challenges of CPPS. In: Biffl, S., Lüder, A., Gerhard, D. (eds) Multi-Disciplinary Engineering for Cyber-Physical Production Systems. Springer, Cham. https://doi.org/10.1007/978-3-319-56345-9_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-56345-9_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-56344-2

  • Online ISBN: 978-3-319-56345-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics