Skip to main content

What Is Additive Manufacturing? Additive Systems, Processes and Materials

  • Chapter
  • First Online:
The Management of Additive Manufacturing

Part of the book series: Springer Series in Advanced Manufacturing ((SSAM))

Abstract

This chapter introduces the current status of additive technologies. It initially discusses various terminologies used by researchers and practitioners to define this emerging technology, in order to reach the most appropriate phrase.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Ahn, S. H., Montero, M., Odell, D., Roundy, S., & Wright, P. K. (2002). Anisotropic material properties of fused deposition modeling ABS. Rapid prototyping Journal, 8(4), 248–257.

    Article  Google Scholar 

  • Anitha, R., Arunachalam, S., & Radhakrishnan, P. (2001). Critical parameters influencing the quality of prototypes in fused deposition modelling. Journal of Materials Processing Technology, 118(1), 385–388.

    Article  Google Scholar 

  • Bak, D. (2003). Rapid prototyping or rapid production? 3D printing processes move industry towards the latter. Assembly Automation, 23(4), 340–345.

    Article  Google Scholar 

  • Berman, B. (2012). 3-D printing: The new industrial revolution. Business horizons, 55(2), 155–162.

    Article  Google Scholar 

  • Bogers, M., Hadar, R., & Bilberg, A. (2016). Additive manufacturing for consumer-centric business models: Implications for supply chains in consumer goods manufacturing. Technological Forecasting and Social Change, 102, 225–239.

    Article  Google Scholar 

  • Chua, C. K., Chou, S. M., & Wong, T. S. (1998). A study of the state-of-the-art rapid prototyping technologies. The International Journal of Advanced Manufacturing Technology, 14(2), 146–152.

    Article  Google Scholar 

  • Cotteleer, M., & Joyce, J. (2014). 3D opportunity: Additive manufacturing paths to performance, innovation, and growth. Deloitte Review, 14, 5–19.

    Google Scholar 

  • Deckers, J., Shahzad, K., Vleugels, J., & Kruth, J. P. (2012). Isostatic pressing assisted indirect selective laser sintering of alumina components. Rapid Prototyping Journal, 18(5), 409–419.

    Article  Google Scholar 

  • Derby, B., & Reis, N. (2003). Inkjet printing of highly loaded particulate suspensions. Mrs. Bulletin, 28(11), 815–818.

    Article  Google Scholar 

  • Forbes. (2015). Roundup of 3D printing market forecasts and estimates. Retrieved from http://www.forbes.com/sites/louiscolumbus/2015/03/31/2015-roundup-of-3d-printing-market-forecasts-and-estimates/#6e27547d1dc6.

  • Gibson, I., Rosen, D. W., & Stucker, B. (2010). Additive manufacturing technologies. New York: Springer.

    Book  Google Scholar 

  • Goodridge, R. D., Dalgarno, K. W., & Wood, D. J. (2006). Indirect selective laser sintering of an apatite-mullite glass-ceramic for potential use in bone replacement applications. In. Proceedings of the Institution of Mechanical Engineers. Part H: Journal of Engineering in Medicine, 220(1), 57–68.

    Article  Google Scholar 

  • Goodridge, R. D., Tuck, C. J., & Hague, R. J. M. (2012). Laser sintering of polyamides and other polymers. Progress in Materials Science, 57(2), 229–267.

    Article  Google Scholar 

  • Guo, N., & Leu, M. C. (2013). Additive manufacturing: Technology, applications and research needs. Frontiers of Mechanical Engineering, 8(3), 215–243.

    Article  Google Scholar 

  • Harrysson, O. L., Cansizoglu, O., Marcellin-Little, D. J., Cormier, D. R., & West, H. A. (2008). Direct metal fabrication of titanium implants with tailored materials and mechanical properties using electron beam melting technology. Materials Science and Engineering: C, 28(3), 366–373.

    Article  Google Scholar 

  • Hopkinson, N., & Dickens, P. (2001). Rapid prototyping for direct manufacture. Rapid Prototyping Journal, 7(4), 197–202.

    Article  Google Scholar 

  • Hopkinson, N., Hague, R., & Dickens, P. (Eds.). (2006). Rapid manufacturing: an industrial revolution for the digital age. Wiley.

    Google Scholar 

  • Hull, C. W. (1990). U.S. Patent No. 4,929,402. Washington, DC: U.S. Patent and Trademark Office.

    Google Scholar 

  • Khorram Niaki, M., & Nonino, F. (2017a). Additive manufacturing management: A review and future research agenda. International Journal of Production Research, 55(5), 1419–1439.

    Google Scholar 

  • Khorram Niaki, M., & Nonino, F. (2017b). Impact of additive manufacturing on business competitiveness: A multiple case study. Journal of Manufacturing Technology Management, 28(1), 56–74.

    Google Scholar 

  • Kruth, J. P., Wang, X., Laoui, T., & Froyen, L. (2003). Lasers and materials in selective laser sintering. Assembly Automation, 23(4), 357–371.

    Article  Google Scholar 

  • Levy, G. N., Schindel, R., & Kruth, J. P. (2003). Rapid manufacturing and rapid tooling with layer manufacturing (LM) technologies, state of the art and future perspectives. CIRP Annals-Manufacturing Technology, 52(2), 589–609.

    Article  Google Scholar 

  • Liu, J., & Li, L. (2004). In-time motion adjustment in laser cladding manufacturing process for improving dimensional accuracy and surface finish of the formed part. Optics & Laser Technology, 36(6), 477–483.

    Article  Google Scholar 

  • Liu, Q., Leu, M. C., & Schmitt, S. M. (2006). Rapid prototyping in dentistry: technology and application. International Journal of Advanced Manufacturing Technology, 29(3–4), 317–335.

    Google Scholar 

  • Mansour, S., & Hague, R. (2003). Impact of rapid manufacturing on design for manufacture for injection molding. In. Proceedings of the Institution of Mechanical Engineers. Part B: Journal of Engineering Manufacture, 217(4), 453–461.

    Article  Google Scholar 

  • Monzón, M. D., Ortega, Z., Martínez, A., & Ortega, F. (2015). Standardization in additive manufacturing: activities carried out by international organizations and projects. The International Journal of Advanced Manufacturing Technology, 76(5–8), 1111–1121.

    Article  Google Scholar 

  • Mueller, B., & Kochan, D. (1999). Laminated object manufacturing for rapid tooling and patternmaking in foundry industry. Computers in Industry, 39(1), 47–53.

    Article  Google Scholar 

  • Mumtaz, K. A., & Hopkinson, N. (2010). Selective laser melting of thin wall parts using pulse shaping. Journal of Materials Processing Technology, 210(2), 279–287.

    Article  Google Scholar 

  • Murphy, E. J., Ansel, R. E., & Krajewski, J. J. (1989). U.S. Patent No. 4,844,144. Washington, DC: U.S. Patent and Trademark Office.

    Google Scholar 

  • NASA/Jet Propulsion Laboratory. Accessed in 2017 from: https://www.jpl.nasa.gov/.

    Google Scholar 

  • Nee, A. Y. C., Fuh, J. Y. H., & Miyazawa, T. (2001). On the improvement of the stereolithography (SL) process. Journal of Materials Processing Technology, 113(1), 262–268.

    Article  Google Scholar 

  • Petrovic, V., Vicente Haro Gonzalez, J., Jorda Ferrando, O., Delgado Gordillo, J., Ramon Blasco Puchades, J., & Portoles Grinan, L. (2011). Additive layered manufacturing: Sectors of industrial application shown through case studies. International Journal of Production Research, 49(4), 1061–1079.

    Google Scholar 

  • Rosochowski, A., & Matuszak, A. (2000). Rapid tooling: The state of the art. Journal of Materials Processing Technology, 106(1), 191–198.

    Article  Google Scholar 

  • Shi, Y., Li, Z., Sun, H., Huang, S., & Zeng, F. (2004). Effect of the properties of the polymer materials on the quality of selective laser sintering parts. In. Proceedings of the Institution of Mechanical Engineers. Part L: Journal of Materials Design and Applications, 218(3), 247–252.

    Google Scholar 

  • Singh, S., Ramakrishna, S., & Singh, R. (2017). Material issues in additive manufacturing: A review. Journal of Manufacturing Processes, 25, 185–200.

    Google Scholar 

  • Wang, J., & Shaw, L. L. (2005). Rheological and extrusion behaviour of dental porcelain slurries for rapid prototyping applications. Materials Science and Engineering: A, 397(1), 314–321.

    Google Scholar 

  • West, J., & Kuk, G. (2014). Proprietary benefits from open communities: How MakerBot leveraged thingiverse in 3D Printing. Available at SSRN 2544970.

    Google Scholar 

  • Wohlers, T. (2007). Wohlers report 2007: State of the industry: Annual worldwide progress report. USA: Wohlers Associates Inc. ISBN 0-9754429-3-7.

    Google Scholar 

  • Wohlers, T. (2014). Wohlers report 2014: 3D Printing and additive manufacturing state of the industry. Fort Collins, CO, USA: Wohlers Associates Inc.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mojtaba Khorram Niaki .

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Khorram Niaki, M., Nonino, F. (2018). What Is Additive Manufacturing? Additive Systems, Processes and Materials. In: The Management of Additive Manufacturing. Springer Series in Advanced Manufacturing. Springer, Cham. https://doi.org/10.1007/978-3-319-56309-1_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-56309-1_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-56308-4

  • Online ISBN: 978-3-319-56309-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics